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Abstract- This paper proposes a genetic algorithm
(GA) with random immigrants for dynamic optimiza-
tion problems where the worst individual and its neigh-
bours are replaced every generation. In this GA, the in-
dividuals interact with each other and, when their fit-
ness is close, as in the case where the diversity level is
low, one single replacement can affect a large number of
individuals. This simple approach can take the system
to a kind of self-organization behavior, known as Self-
Organized Criticality (SOC), which is useful to maintain
the diversity of the population in dynamic environments
and hence allows the GA to escape from local optima
when the problem changes. The experimental results
show that the proposed GA presents the phenomenon
of SOC.

1 Introduction

The research in genetic algorithms (GAs) has been mainly
focused on stationary optimization problems, in spite of a
significant part of optimization problems in real world being
dynamic optimization problems (DOPs) [4]. In DOPs, the
evaluation function (or fitness function) and the constraints
of the problem are not fixed [20]. When changes occur,
the solution given by the optimization procedure may be no
longer effective, and a new solution should be found.

The optimization problem can change by several factors,
like faults, machine degradation, environmental or climatic
modifications, and economic factors. In fact, the natural
evolution, which is the inspiration for GAs, is always non-
stationary. The occurrence of natural cataclysms, geologi-
cal modifications, competition for natural resources, coevo-
lution between species, and climatic modifications are only
some examples of changes related to natural evolution.

The simplest approach to deal with DOPs is to start a
new optimization process whenever a change in the prob-
lem is noticed. However, the optimization process gener-
ally requires time and substantial computational effort. If
the new solution after the change in the problem is, in some
sense, related to the previous solution, the knowledge ob-
tained during the search for the old solution can be utilized
to find the new solution [4]. In this case, the search for
new solutions based on the old solutions can save substan-
tial processing time. Evolutionary algorithms are particu-
larly attractive to such problems. Individuals representing
solutions of the problem before the changes can be trans-
ferred into the new optimization process.
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However, in GAs, the population of solutions generally
converges in the fitness landscape to points close to the
best individual of the population. If the fitness landscape
changes, the actual population can be trapped in local op-
tima located close to the old solution. In fact, the prema-
ture convergence of the solution to a local optima is not a
problem exclusive to DOPs, but it can be a serious problem
in stationary optimization problems too [17]. In order to
avoid the premature convergence, several approaches where
the diversity level is re-introduced or maintained through-
out the run have appeared in literature over the past years
[4, 5, 12, 20]. Typical examples of this solution are the GAs
with random immigrants and the use of hypermutation [6].

The random immigrants approach, which is inspired in
the flux of immigrants that wander in and out of a popula-
tion between two generations in nature, is very interesting
and simple [6]. In the GAs with random immigrants, some
individuals of the current population are substituted by ran-
dom individuals in each generation of the run. A replace-
ment strategy, like replacing random or worst individuals
of the population, defines which individuals are replaced by
new ones [21].

However, in some cases, when the number of genes in
the individual (parameters in the solution) is high and the lo-
cal optimum where the population is found has fitness much
higher than the mean fitness of all possible solutions of the
search space, the survival probability of the new random in-
dividuals is generally very small. This occurs because the
selection methods employed in GAs preserve, directly or
indirectly, the best individuals of the population, and the
probability that the fitness of the new random individuals is
higher than (or close to) the fitness of the current individuals
is generally small.

In this paper, instead of substituting the worst individu-
als or the random individuals in each generation like in the
standard random immigrants approach, the worst individual
and its next neighbours are replaced. In this way, individu-
als start to interact between themselves and, when the fitness
of the individuals are close, as in the case where the diver-
sity level is small, one single replacement of an individual
can affect a great number of individuals of the population
in a chain reaction. In order to protect the newly introduced
immigrants from being replaced by fitter individuals, they
are placed in a subpopulation and are not allowed to be re-
placed by individuals of the main population. The number
of individuals in the subpopulation is not defined by the pro-
grammer, but is given by the number of individuals created
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in the chain reaction. It is important to observe that this
simple approach can take the system to a self-organization
behavior, which can be useful in DOPs.

The experimental results suggest that the proposed GA
presents a kind of self-organizing behavior, known as Self-
Organized Criticality (SOC) [1], which is described in this
paper in Section 2. The proposed GA is presented in Sec-
tion 3, and the results of the experiments with DOPs are
presented in Section 4. Finally, Section 5 concludes the pa-
per with discussions on relevant future work.

2 Self-Organized Criticality

Bak, Tang, and Wiesenfeld suggested in [2] that systems
consisting of several interacting constituents may present
an interesting kind of self-organizing behavior [13]. The
authors described this interesting behavior as SOC. It was
suggested that several diverse phenomena exhibit SOC, like
sand piles, earthquakes, forest fires, electric breakdowns,
and growing interfaces.

The seductive characteristic of systems that exhibit SOC
is that they self-organize into a particular critical state with-
out the need of any significant tuning action from outside.
The critical state is described by the response of a system
to external perturbation. In a system exhibiting noncriti-
cal behavior, the distribution of responses to perturbation at
different positions and at different times is narrow and well
described by an averaged value. In a system exhibiting crit-
ical behavior, no single characteristic response exists, i.e.
the system exhibits scale invariance. A small perturbation
in one given location of the system may generate a small
effect on its neighbourhood or a chain reaction that affects
all the constituents of the system.

The statistical distributions describing the response of
the system exhibiting SOC are given by power laws in the
form

P(s) S'(1)

and
P(d) d- (2)

where s is the number of constituents of the system affected
by the perturbation, d is the duration of the chain reaction
(lifetime), and T and a are constants. As an example, con-
sider the sand pile model described in [2], where a single
grain is added at a random position in every interval of time
At. In order to characterize the response of the system, one
can measure the number of sand grains (s) involved in each
avalanche induced by the addition of a single grain and the
duration (d) of each avalanche. In the critical state, the sta-
tistical distributions describing the response of the sand pile
model to the addition of a single grain are given by Eqs. 1
and 2, and the addition of a single grain can affect only a
grain in its neighbourhood or can affect the whole sand pile.

Researchers have suggested that SOC occurs in natural
evolution too [1]. An evidence of SOC in evolution would
be the fact that it does take place through bursts of activ-
ity intercalated by calm periods, instead of gradually at a

slow and constant pace. There are many more small ex-
tinction events than large events, such as the Cretaceous ex-
tinction of dinosaurs and many other species, and extinction
events occur on a large variety of length scales [19]. These
facts suggested that extinctions propagate through ecosys-
tems, such as avalanches in a sand pile, and perturbations of
the same size can unleash extinction events of a large vari-
ety of sizes. This would occur because species co-evolve to
a critical state [14].

Bak and Sneppen [1] proposed a very simple simulation
model to study the connection between evolution and SOC.
In the one-dimensional version of the model, the individu-
als (or species in the authors' terminology) are disposed in
a circle, and a random value of fitness is assigned to each
one of them. In each generation of the simulation, the val-
ues of fitness of the individual with the smallest fitness in
the current population, one individual located in its right
position, and one located in its left position are replaced by
new random values. An analogy of the connection between
neighbours in the model is the interaction between species
in nature. If, as an example, a prey is extinct, the fitness of
its predators will change. The Bak-Sneppen Model can be
summarized by Algorithm 1.

Algorithm 1 Bak-Sneppen Model
1: Find the index j of the individual with the smallest fitness
2: Replace the fitness of the individuals with index j, j - 1, and

j + 1 by random values drawn with uniform density

This simple model can lead to an interesting behavior. In
the beginning of the simulation, the mean fitness of the pop-
ulation is small, but, as the number of generation increases,
the mean fitness increases too. Eventually, the mean fit-
ness ceases to increase, and the critical state is reached.
In the Bak-Sneppen Model, a substitution of the fitness of
the worst individual causes the substitution of its two next
neighbours. In the critical state, the values of fitness of the
neighbours are very often replaced by random numbers with
smaller values. The new worst individual can be then one
of these two neighbours, which are substituted with its two
next neighbours, originating a chain reaction, called extinc-
tion event in this paper, that can affect all the individuals of
the population. The extinction events exhibit scale invari-
ance and their statistical distributions are given by power
laws in the form of Eqs. 1 and 2. Large extinction events
generally occur when almost all individuals of the popula-
tion have similar high values of fitness.

It is important to observe that SOC avoids the situation
where the species get trapped in local optima in the fit-
ness landscape in this evolution model. The idea is pow-
erful and relatively simple, and soon researchers proposed
the use of SOC in optimization processes. Boettcher and
Percus [3] proposed the optimization with extremal dynam-
ics, a local-search heuristic for finding solutions in problems
where constituents of the system are connected, e.g. the
spin glass optimization problem. L0vbjerg and Krink [16]
extended Particle Swarm Optimization with SOC in order to
help the control of the optimization process and to maintain
the diversity level.
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In GAs, Krink and Thomsen [15] proposed the use of
the sand pile model previously discussed to generate power
laws utilized to control the size of spatial extinction zones in
a diffusion model. When an individual is extinct, a mutated
version of the best individual of the population is created in
its place. It is important to observe that, in the algorithm
proposed in [15], SOC appears in the sand pile model uti-
lized to control the size of the extinctions, and not as a result
of the self-organization of the constituents of the system (in-
dividuals of the GA).

3 Proposed Algorithm

In this paper, we propose the substitution of the worst in-
dividual and its two next neighbours for new random indi-
viduals in the random immigrants approach. The indexes
of the individuals are used to determine the neighbourhood
relations. In each generation of the algorithm, the individ-
ual with the smallest fitness in the current population (in-
dex j), one individual located in its right position (index
j + 1), and one located in its left position (index j - 1) are
replaced by new random individuals. We hope that, with
this replacement strategy, the system can exhibit SOC in or-
der to increase the diversity level of the population in a self-
organized way and, then, to avoid the situation where the
individuals get trapped in local optima in the fitness land-
scape when the problem changes.

However, this simple idea does not guarantee that the
system exhibits SOC as the new random individuals added
to the current population, which generally have small val-
ues of fitness, are very often substituted by individuals with
high values of fitness present in the population. As a con-
sequence, the statistical distribution describing the response
of the system to a single extinction will not be a power law,
but a narrow one characterized by an averaged value.

In order to protect the newly introduced individuals from
being replaced by individuals with high values of fitness, a
second strategy should be adopted. In this strategy, the new
individuals created during an extinction event are preserved
in a subpopulation, which is not defined by the program-
mer, but is given by the number of individuals created in
the current extinction event. The individuals in the current
population that do not belong to the subpopulation are not
allowed to replace individuals present in the subpopulation.
The individuals that belong to the subpopulation are allowed
to evolve, i.e. they are submitted to mutation, crossover,
and selection. It is important to observe that selection and
crossover are allowed only between individuals that belong
to the subpopulation.

In the proposed algorithm, there are two major modifica-
tions in the standard GA. In the first modification, which is
presented in Algorithm 2, the current size of each extinction
event, denoted by ext, is recorded, and the minimum and
maximum index values of the replaced individuals ( -min 1
and imax + 1) are utilized to compute the number of individ-
uals affected by the current extinction, i.e. the individuals
that belong to the subpopulation. When the chain reaction
ceases, i.e. the individual with the smallest fitness do not
belong to the subpopulation or is not neighbour of the min-

imum and maximum index values of the replaced individu-
als, the size of the extinction is set to 1.

Algorithm 2 Extinctions
1: Find the index j of the individual with the smallest fitness
2: Replace the individuals with index j, j - 1, and j + 1 by

random individuals
3: if (j > imin - 1) and (j < imax + 1) then
4: ext ext + 1
5: if (j imin-1) then
6: imin j
7: end if
8: if (j = imax + 1) then
9: imax J

10: end if
11: else
12: ext - 1
13: imin
14: imax <
15: end if

i
j

The second modification, which is presented in Algo-
rithm 3, lies in the selection approach for each individual in
the new population. Two cases can occur. In the first case,
when the index of the new individual was not affected by
the current extinction event, the new individual is selected in
the standard approach, i.e. the individual is chosen from the
whole population according to a given criteria. Otherwise,
i.e. if the index of the new individual was affected by the
current extinction, the new individual is selected from the
subpopulation formed by the individuals replaced in the cur-
rent extinction (individuals with index values from imm,n- 1
to max+ 1).

Algorithm 3 Selection
Require: individual's index i, where 1 < i < N and N is the

population size
1: if (i < imin-1) or (i >imax + 1) then
2: Select individual from the whole population
3: else
4: Select individual from the subpopulation composed by the

individuals with index from imil- 1 to imax + 1
5: end if

4 Experimental Studies

In order to evaluate the performance of proposed algorithm,
two sets of experiments are carried out. In the first set of ex-
periments, the dynamic test environment for GAs proposed
by Yang [22] is employed. In the second set of experiments,
evolutionary robots are simulated in dynamic environments.
In the experiments, the proposed algorithm is compared to
the standard GA, and to two versions of the GA with random
immigrants. In the first version, three individuals randomly
chosen are replaced by new random individuals. In the sec-
ond version, the three worst individuals, i.e. the individuals
with the smallest fitness, are replaced by new random indi-
viduals.
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4.1 Dynamic Test Environments

In order to evaluate the performance of different GAs in
DOPs, Yang [22] proposed an environment generator based
on unitation and trap functions. The unitation function u(x)
of a binary vector x of length 1 is given by the number of
ones in this vector. A trap function is defined as follows

-{z (u(x) - z) otherwise

where a is the local and possibly deceptive optimum, b is the
global optimum, and z is the slope-change location which
separates the attraction basin sizes of the two optima. A
trap function can be a deceptive function for GAs, i.e. a
function where there exist low-order schemata that, instead
of combining to form high-order schemata, forms schemata
resulting in a deceptive solution that is sub-optimal [10].
A trap function is deceptive on average if the ratio of the
fitness of the local optimum to that of the global optimum is
constrained by the following relation [8].

a > 2-1/(1-z) (4)
b 2-1/z

Deception is not the only element that can generate dif-
ficulty to a GA. The problem difficulty can also be caused
by exogenous noise and scaling, which arises in functions
that consist of several schemata with different worth to the
solution [11]. A scaling problem can be simulated using
additively decomposable functions as follows

m

f(x) = ci fi(xii) (5)

where m is the number of schemata that are juxtaposed and
summed together, I? is the set of the fixed bit positions that
form schema i, and ci is the scaling factor for each sub-
function fi.

Using Equations 3 and 5, it is possible to create different
dynamic environments where the problem difficulty can be
adjusted. In this paper, dynamic environments where the de-
ception difficulty is modified by changing the peak heights
of optima are employed [22]. In these dynamic environ-
ments, the fitness of an individual x is given by additively
decomposable trap functions defined as follows

m
f(x) = ci f1(xii, t) (6)

i=l1

f (xri, t) = { ai(t) (Z .-U(xi,)) if u(xii) < Zi

Iiz (u(xji) - zi) otherwise

where: i = 1, 2,3; xT [4XT xT2 XT3]; XI1 = [X1 .. X6]
; XI2 = [X7 ... X12]T; XI3 = [x13 *.. x8l]T; li=6; bi =

b=1.0; zi = z; the scaling is given by ci = 2i-1; ai switches
between Amin > 0 and Amax > bi in every 2000 genera-
tions. The parameter Amin is constrained by Eq. 4, i.e.
it is chosen in order that the trap functions are deceptive
on average. In this way, in every 2000 generations, the

global optimum changes between b and ai = Amax, and
the problem changes between deceptive and non-deceptive.
Two environments are utilized to generate the results for all
GAs. In the first (Environment 1), z = 5, Amin = 0.6,
and Amax = 1.4. In the second (Environment 2), z = 4,
Amin = 0.9, and Amax = 1.9.

4.1.1 Experimental Design

For each run of an algorithm in a dynamic environment, the
individuals of the initial population of the algorithm are ran-
domly chosen. The individuals are selected in each genera-
tion according to elitism and the roulette wheel method. The
two-point crossover is utilized. For all algorithms, 20000
generations are executed with the number of individuals in
the population equal to 100.

The comparison of the results obtained from different al-
gorithms on DOPs is more complex than the same compar-
ison for stationary problems [20]. For DOPs, it is necessary
to evaluate not the final result, but rather the optimization
process itself. Here, the measure Adaptability, proposed in
[20] and based on a measure proposed by De Jong [7], is
utilized to evaluate the GAs. Adaptability is computed as
the difference, averaged over the entire run, between the fit-
ness of the current best individual of each generation and
the corresponding optimum value. The best results for the
Adaptability measure are those with the smallest values.

4.1.2 Experimental Results

Table 1 presents the measure Adaptability and the mean fit-
ness of all individuals of the population averaged over 20
trials for environments 1 and 2. The results of three ex-
periments of environment 1 with different values for the
crossover rate (p,) and mutation rate (Pm) are presented.
The values of Pc and Pm are indicated in Table 1. The per-
centage inside the parentheses indicates the sum, over all
generations, of the difference between the current value of
the maximum fitness and the fitness of the current best indi-
vidual.

Hypothesis tests, considering the Student's t-
distribution, with a level of significance equal to 0.01
indicate that the measure Adaptability is smaller for the
proposed GA in these experiments.

4.2 Evolutionary Robotics

Robots in which artificial evolution is used as a fundamen-
tal form of adaptation or design are known as evolutionary
robots [18]. In the experiments presented in this section,
mobile robots are simulated in DOPs using a modified ver-
sion of the Evorobot simulator developed by S. Nolfi [18].
In the simulator utilized in the experiments presented in this
section, the robots are controlled by a recurrent artificial
neural network (Elman Network) with synaptic weights ad-
justed by GAs.

The experiments presented here are inspired in the ex-
periment proposed by Floreano and Mondada [9], where a
Khepera robot with 8 infrared distance sensors (six in one
side and two in another side of the robot), 2 ambient light
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Table 1: Experimental Results of Algorithms in Dynamic Test Environments
GA Environment 1 Environment 1 Environment 1 Environment 2

(P = 0.2,pm = 0.01) (pc = =.7,p, 0.01) (p, = 0.2,p, = 0.001) (pc = 0.2,p, = 0.01)
Standard 0.19454(16.21 %) 0.19575 (16.31 %5) 0.20010 (16.67 %o) 0.18764 (12.94%o)

Adaptability Random immigrants 0.03559 (2.97 %) 0.02808 (2.34 %) 0.04582 (3.82 %) 0.02320 (1.60 %)
(best individual) Random immigrants (worst) 0.03946 (3.29 %) 0.02761 (2.30 %) 0.05689 (4.74 %) 0.02579 (1.78 %)

Proposed algorithm 0.02071 (1.73 %) 0.01168 (0.97 %) 0.02591 (2.16 %) 0.01362 (0.94 %)
Standard 0.9265 0.9222 0.9899 1.1659

Mean Fitness Random immigrants 1.0582 1.0514 1.1222 1.2993
(all individuals) Random immigrants (worst) 1.0719 1.0729 1.1258 1.3207

Proposed algorithm 1.0339 1.0202 1.0978 1.2585

sensors, and 1 floor brightness sensor should navigate in an
arena of40 x 45 cm. The robot has a measurable limited en-
ergy, which is recharged every time the robot crosses a bat-
tery recharge area. The battery recharge area is indicated by
a different color of the floor and by a light source mounted
in a tower inside the area.

4.2.1 Experimental Design

In the experiments presented in this section, the fitness func-
tion is given by the accumulated average rotation speed of
the two wheels of the robot during its life time, i.e. while
the battery has energy and while it does not crash into a
wall or an obstacle, considering a maximum limit of 60 sec-
onds (a fully charged battery allows the robot to move for
20 seconds). The fitness is not computed while the robot
remains in the battery recharge area. Although the fitness
function does not specify that the robot should return to the
battery recharge area, the individuals that develop the abil-
ity to find it and to periodically return to the battery recharge
area while exploring the arena without hitting the obstacles
accumulate more fitness. The neural network utilized to
control the robots has 17 inputs (8 infrared sensors, 2 ambi-
ent light sensors, 1 floor brightness sensor, 1 sensor for the
battery energy, and 5 recurrent units), 5 hidden neurons, and
2 outputs (2 motors).

Experiments with 1200 generations each are presented
in this section. In the experiments, the environment where
the robot is evolving is changed after each 300 generations.
Environment changing frequently occurs in real problems,
where some aspects of the environment are frequently mod-
ified. Besides, robots are frequently evolved in simula-
tions to avoid damage, and, when a satisfactory behavior
is reached, the neural networks utilized to control are trans-
ferred to the real robots. In the experiments, four different
environments, where the locations of the battery recharge
area and internal walls are different, are considered.

In the runs, the individuals of the initial population are
randomly chosen. The individuals are represented by a vec-
tor of 1 19 real values. In each generation of the GAs, the 20
best individuals are selected and each one generates 5 chil-
dren (N=100). In both experiments, Pm is equal to 0.01 and
crossover is not utilized.

4.2.2 Results

Table 2 presents the adaptability (supposing a maximum fit-
ness equal to 1.0) and the mean fitness of all individuals of
the population averaged over 20 trials. Most of the times,

Table 2: Results - Evolutionary Robotics
GA Experiment 1

Standard 0.40391 (40.39 %)
Adaptability Random immigrants 0.39226 (39.23 %)

(best individual) Random immigrants (worst) 0.41860 (41.86 %)
Proposed algorithm 0.34351 (34.35 %)

Standard 0.22700
Mean Fitness Random immigrants 0.23038

(all individuals) Random immigrants (worst) 0.22360
Proposed algorithm 0.26492

a new solution is found, allowing the robot to navigate in
the environment and to return to the battery recharge area
only when the battery level is low. When the environment
changes, the fitness values of the robots become small, and
a new solution is searched.

Hypothesis tests, considering the Student's t-
distribution, with a level of significance equal to 0.07
indicate that the measure Adaptability is smaller for the
proposed GA in the evolutionary robotics experiment.

4.3 Analysis of the Results

In the experiments presented here, the mean values of adapt-
ability for the three GAs with random immigrants (includ-
ing the proposed GA) are smaller than the mean values for
the standard GA, indicating that the average fitness of the
best individuals are higher for the GAs with random im-
migrants. These results can be explained by the fact that
the standard GA has difficulties in escaping from the lo-
cal optima induced by the deceptive problem (e.g., between
generations 0 to 1999 of the dynamic test environments ex-
periments) and by changing the global optima (e.g. between
2000 and 3999 in the same experiments). On the other hand,
random immigrants inserted in every generation provide di-
versity to the populations in the last three GAs, which ex-
plains their better results.

Let us now analyze the results of the three GAs with ran-
dom immigrants. First, let us investigate how the proposed
algorithm works. In the beginning of the experiments, the
individuals of the initial populations generally have small
fitness. In the proposed GA, the new individuals that re-
place the individual with the smallest fitness and its neigh-
bours generally have small values of fitness too. As sev-
eral individuals in the population have small values of fit-
ness, the probability that one of the neighbours of the cur-
rent worst individual becomes the new worst is small. As
a consequence, a single replacement of an individual gener-
ally does not generate large chain reactions of extinctions,

2820



20

II I II 11 I
I III 1l

5

0'
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

generation x 104

Figure 1: Mean fitness and duration of the extinction events in the forth trial of the experiment in dynamic test environment
1.

i.e. the distribution of the duration of extinction events is
narrow and well described by a small average value. As the
number of generations increases, the mean fitness increases
too. In this situation, several individuals of the current pop-
ulation have values of fitness higher than the average fitness
of the new random individuals. Then, the probability that
one of the two neighbours of the old worst individual, which
were replaced in the last generation, becomes the new worst
individual increases. When this new worst individual is re-

placed with its two next neighbours, a chain reaction can be
developed and the extinction events can have, then, a large
variety of sizes. In this case, the extinction events can not
be characterized by a narrow distribution.

This situation can be observed in Figure 1, where the
mean fitness and the duration of the extinction events in the
forth trial of the experiment in dynamic test environment 1

(Pc = 0.2 and Pm = 0.01) are plotted. One can observe
that, when the global optimum changes from a smaller to a

higher value, the mean fitness of the population increased,
resulting in higher mean values for the duration of the ex-

tinction events and, as a consequence, increasing the diver-
sity of the population. Such interesting behavior is reached
by self-organization, and not by a rule imposed by the pro-

grammer.

Figure 2 presents the three first steps of an extinction
event for a version of the experiment in dynamic test envi-
ronment 2 with only 10 individuals. The figure respectively
shows the fitness of all individuals in the current popula-
tion in generations 6195, 6196, and 6197. In generation
6195, the individual 3 has the smallest fitness of the popu-

lation (index j in Algorithm 2). In this way, this individual
and its two next neighbours (individuals 2 and 4) are re-

placed by new random individuals. The individual 4 (index
j) has now the smallest fitness in generation 6196, and it

1 2 3 4 5 6 7 8 9 10

3

min -1 max+1 gen. 6196, ext =2
o 2-

1 2 3 4 5 6 7 8 9 10

3
1 11min-1 i imax+1 gen. 6197 ext=3

0 2

-t0

1 2 3 4 5 6 7 8 9 10
individual

Figure 2: Fitness of the individuals of the current popula-
tion in generations 6195, 6196, and 6197 for a version of
the experiment in dynamic test environment 2 with 10 indi-
viduals.

and its two next neighbours (individuals 3 and 5) are then
replaced. In generation 6197, the individual 5 (index j) has
the smallest fitness. Observe that the chain reaction was

propagated because the remaining individuals have values
of fitness higher than the individuals in the subpopulation
defined by the limits ini - 1 and +max+ 1 (see Algorithms
2 and 3). The individuals that do not belong to this sub-
population are not allowed to replace an individual of this
subpopulation.
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The better results of the proposed GA when compared to
the other GAs with random immigrants in the experiments
presented here can be explained by two major factors. First,
the number of different individuals that are replaced in a
fixed period of generations is generally higher for the pro-
posed GA. One can observe in Figure 2 that the subpopu-
lation in generation 6197 is formed by 5 individuals (with
indexes from -min1 to imax + 1). In the GA with random
immigrants where the worst individuals are replaced, it is
common that new individuals replace individuals with the
same index in next generation, because the new individuals
generally have small values of fitness. In this way, the num-
ber of different individuals that are replaced in a fixed pe-
riod of generations is generally smaller in comparison to the
proposed GA, and, as a result, the diversity becomes smaller
too. This fact can be observed by analyzing the results pre-
sented in Table 1, where the mean fitness of the population
is smaller in the proposed GA, even though its higher val-
ues of fitness of the best individuals (i.e. the adaptability is
smaller).

The second major fact that explains the better results for
the proposed GA is that the survival probability of a new
random individual, which can be evolved to become a solu-
tion of the problem, is generally smaller in the standard GAs
with random immigrants. This is explained because the val-
ues of fitness for the current individuals, whose locations
are generally located in (or close to) local maxima after sev-
eral generations, are generally much higher than the mean
fitness of the search space, i.e. the mean fitness of all possi-
ble individuals. This occurs because the selection methods
employed in GA preserves, directly or indirectly, the best
individuals of the population. An immigrant generally sur-
vives during the evolution only if its fitness is close to the
mean fitness of the population, which is a rare event when
the number of parameters in the solution is high or when
the local optimum where the population is found has values
of fitness much higher than the mean fitness of the search
space. On the other hand, the proposed GA preserves a new
potential solution in a subpopulation and allows it to evolve
while the current extinction event is in progress. When the
extinction event ends, evolved versions of possible new so-
lutions given by fair immigrants are generally present in the
current population and can be combined with the individu-
als of the main population to generate new solutions.

In the investigated experiments, like in the fossil
recorded data for the extinction events in nature [19], there
are more small than large extinction events, and the ex-
tinction events occur on a large variety of length scales.
In Figure 3, the distribution of the number of extinction
events against each size is plotted in a log-log scale for the
forth trial of the experiment on dynamic test environment 1
(Pc = 0.2 and Pm = 0.01). From Figure 3 it can be ob-
served that the result exhibits power laws (see Section 2),
even without any apparent tuning, indicating the presence
of SOC. This kind of self-organization behavior arises in
systems where many degrees of freedom are interacting and
the dynamics of the system is dominated by the interaction
between these degrees of freedom, rather than by the intrin-
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Figure 3: Number of occurrences for each size of the extinc-
tion events in the forth trial of the experiment in dynamic
test environment 1.

sic dynamics of the individual degrees of freedom [13]. In
the proposed GA, the population self-organizes in order to
allow the occurrence of extinction events with a large vari-
ety of length scales. Large extinction events generally occur
when the mean fitness of the population is high, and, as a
consequence, the diversity level of the population is small.
In this way, the diversity of the population is controlled by
self-organization, allowing the GA to escape from local op-
tima when the problem changes.

5 Conclusions and Future Work

In this work, a GA with random immigrants where the worst
individual and its next neighbours are replaced in every gen-
eration is proposed. In the proposed GA, the individual
starts to interact between themselves and, when the fitness
of the individuals are high and close, as in the case where the
diversity level is small, one single replacement can affect a
large number of individuals in an extinction event. In order
to avoid that the individuals with the best fitness replaces the
newly introduced individuals, these ones are preserved in a
subpopulation. The number of individuals in the subpopu-
lation is not defined by the programmer, but is given by the
number of individuals created in the extinction event. It is
important to observe that this simple approach can take the
system to a self-organization behavior, which can be use-
ful in DOPs to maintain the diversity of the solutions and,
then, to allow the GA to escape from local optima when the
problem changes. In this way, the proposed algorithm is in-
teresting in problems where the new solution is located in
a peak that is hardly reached from the location of the old
solution by traditional GA operators.

In the proposed algorithm, the old solutions generated
by the standard genetic operators can be combined with the
solutions created during an extinction event. In this way, the
proposed GA can save considerable computation time when
compared to a standard GA where a new optimization pro-
cess with random individuals is started whenever a change
in the problem is noticed.
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Studying and combining self-organizing behaviors, such
as the self-organized criticality studied in this paper, into
GAs have shown to be beneficial for their performance un-
der dynamic environments. Much work can be further done
in this area. In this paper a simple neighbourhood scheme is
used for indexing individuals for the extinction event. That
is, individuals in the population are randomly arranged,
where neighbouring individuals may not have certain rela-
tionship. This is not always true for natural or evolutionary
systems. Developing other neighbouring schemes that as-
sign certain relationship between neighbours instead of the
random scheme for extinction events in the proposed GA
may further improve its performance for DOPs, which is
now under investigation by the authors. Another relevant
future work is to compare the self-organizing property with
other properties, such as the speciation schemes, for GAs
under more comprehensive dynamic environments.
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