
Quiescent Consistency: Defining and Verifying Relaxed
Linearizability

John Derrick1, Brijesh Dongol1, Gerhard Schellhorn2, Bogdan Tofan2, Oleg Travkin3,
and Heike Wehrheim3

1Department of Computing, University of Sheffield, Sheffield, UK
2Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
3Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany

Abstract. Concurrent data structures like stacks, sets or queues need to be highly
optimized to provide large degrees of parallelism with reduced contention. Lin-
earizability, a key consistency condition for concurrent objects, sometimes limits
the potential for optimization. Hence algorithm designers have started to build
concurrent data structures that are not linearizable but only satisfy relaxed con-
sistency requirements.
In this paper, we study quiescent consistency as proposed by Shavit and Her-
lihy, which is one such relaxed condition. More precisely, we give the first for-
mal definition of quiescent consistency, investigate its relationship with lineariz-
ability, and provide a proof technique for it based on (coupled) simulations. We
demonstrate our proof technique by verifying quiescent consistency of a (non-
linearizable) FIFO queue built using a diffraction tree.

1 Introduction

The growth of multi- and many-core architectures has led to the increased use of algo-
rithms that allow multiple processes to access and update a single shared data structure.
Typically, these algorithms are concurrent (more efficient) re-implementations of stan-
dard data structures such as stacks, queues, sets, etc. Simple concurrent algorithms use
locks to control access to the shared state, but more sophisticated algorithms dispense
with locking and use non-blocking primitives such as compare-and-swap for synchro-
nisation, enabling a finer granularity of atomicity. Because fine-grained atomicity in-
creases the potential for parallelism, which in turn improves efficiency, such algorithms
are set to become increasingly commonplace [19, 13].

The subtlety and complexity of fine-grained concurrent algorithms necessitates for-
mal verification of their correctness. Several notions of correctness have been proposed
including sequential consistency, quiescent consistency, and linearizability, which are
defined by mapping the behaviours of a concurrent data structure to the behaviours of
the corresponding abstract (sequential) data structure.

To date, most attention has been focused on linearizability as introduced by Herlihy
and Wing [14], which requires that each operation call appears to take effect instanta-
neously at some point between its invocation and response. A number of approaches to
proving linearizability have been developed, and several algorithms have been shown



to be linearizable [5, 21, 3, 17, 9, 20]. The methodology used in these proofs varies,
and ranges from shape analysis and separation logic to rely-guarantee reasoning and
simulation-based methods.

However, linearizability is not the only relevant condition – weaker notions such
as sequential consistency [15], quiescent consistency [13], and eventual consistency
[18], as well as relaxed forms of linearizability like quasi linearizability [2] and k-
linearizability [12] have also been defined. As algorithm designers seek to further de-
crease contention among the parallel processes (and increase efficiency) [19], these
weaker criteria are set to become increasingly important. Below, we shall see example
algorithms that use counting networks [4] and diffraction trees [1] to reduce contention.
These algorithms are not linearizable and only satisfy the weaker correctness criteria.

In his recent paper [19], Shavit proposes quiescent consistency as a promising cor-
rectness condition for concurrent data structures in the multi-core age. Stated infor-
mally, quiescent consistency requires (1) operations to appear in a one-at-a-time se-
quential order, and (2) operations separated by a period of quiescence (i.e., a period in
which no operation is executing) to appear to take effect in their real-time order. Hence,
whenever an object becomes quiescent, its execution thus far must be equivalent to
some sequential execution [13]. However, despite this simple formulation there appears
to be no formal definition in the literature, let alone proof methodology to verify that an
algorithm is quiescent consistent. This paper addresses this shortcoming, and our aim is
to give the first formal definition of quiescent consistency and provide a proof technique
for it based on coupled simulations.

Coupled simulations [11] are a proof methodology used in refinement - developed
as an approach to non-atomic refinement in state-based systems [8], where the atomic
abstract operations are implemented via a non-atomic decomposition. Refinement tech-
niques have already proved useful in the verification of linearizability, see [10]. Here,
we employ coupled simulations to derive a methodology for showing that fine-grained
atomic concurrent algorithms are quiescent consistent, and apply it to prove quiescent
consistency of a concurrent queue implementation. Moreover, the latter proof is fully
mechanized using the interactive prover KIV [16].

The structure of this paper is as follows. In Section 2 we illustrate quiescent consis-
tency via two versions of a concurrent queue implementation, and in Section 3 we give
its formal definition. Background to the refinement and coupled simulation methodol-
ogy is provided in Section 4, and this is applied to prove quiescent consistency of one
of the queue versions in Section 5. Finally we conclude in Section 6.

2 Background

Quiescent consistency is a consistency requirement on concurrent data structures that is
weaker than linearizability, and therefore allows more optimizations via reduced con-
tention on the shared variables. In this section we present two queue implementations:
a non-blocking and a blocking queue, each of which is based on the architecture of
diffracting trees. We use these examples to illustrate linearizability and quiescent con-
sistency and the difference between these conditions.



The architecture of diffracting trees uses the following principle (adapted from
counting networks [4]): elements called balancers are arranged in a binary tree (with
an arbitrary depth). Each balancer contains one bit, which determines the direction in
which the tree is traversed; a balancer value of 0 causes a traversal up and a value 1
causes a traversal down. The leaves of the tree point to a concurrent data structure. Op-
erations on the tree (and hence data structures) start at the root of the tree and traverse
the tree based on the balancer values. Each traversal is coupled with a bit flip, so that the
next traversal occurs along the other branch. Upon reaching a leaf, the process performs
a corresponding operation on the data structure at the leaf.

The running example used for the rest of this paper is an implementation of a queue
made up of two balancers and two queues, i.e., two diffracting trees with just one level,
one for dequeue and one for enqueue operations (see Figure 1). Enqueue and dequeues
share the two queues at the leaves of the trees.

1

0

1

0

ebit

queue[1]

queue[0]

dbit

Fig. 1. A queue composed of two diffraction trees of level 1 and two queues

The two operations enqueue and dequeue are implemented as follows (where Enq and
Deq are used to denote an atomic enqueue and dequeue):

enqueue(el:T) dequeue
E1: do lbit:=ebit; D1: do lbit:=dbit;
E2: until D2: until

CAS(ebit,lbit,1-lbit) CAS(dbit,lbit,1-lbit)
E3: Enq(queue[lbit],el) D3: return Deq(queue[lbit])

Here, the semantics of CAS (Compare-And-Swap) is that of an atomic comparison of
the stored local value with the shared variable followed by an assignment to the variable
if the values are still equal:

CAS(var,old,new) = atomic{if var=old then var:=new;return true
else return false}

In the implementation both operations read their corresponding bit and try to flip it.
When they succeed, they enqueue (or dequeue) the queue of their local bit. The two
queues work in FIFO order. There are two versions of the dequeue operation: a non-
blocking version, which returns empty when the Dequeue operation is executed on an
empty queue, and a blocking version, where the Deq waits until an element is found in
the queue. We will see that the former is not quiescent consistent while the latter is.

Now we take a look at the correctness conditions. We expect this structure to be-
have like a queue, i.e., operate in FIFO order and, of course, never return a value by
a dequeue which has not been enqueued before. Consistency conditions for concurrent
data structures capture such expectations.



The general set up is as follows. Consistency requirements are usually defined via
a comparison of the histories of concurrent implementations and an atomic abstract
specification of the data structure. Histories are sequences of events, which can be invo-
cations and returns of particular operations (out of some set I) by particular processes
from a set P. Thus we define:

Event ::= inv〈〈P× I × IN〉〉 | ret〈〈P× I × OUT〉〉

Here, IN and OUT are the domains for inputs and outputs (which include a null el-
ement), respectively. Operation calls by concurrent processes may overlap, but those
by a single process are sequential. An operation call is pending if it has been invoked
but has not yet returned. An object (data structure) is quiescent if it has no pending
operation calls. Two operation calls are ordered if the return of the first operation call
precedes the invocation of the second.

Example 1. If we let P = IN, I = {enq, deq} and IN = OUT = {a, b, c, . . .}, a possible
history for the blocking concurrent queue implementation is the following:

h1 =̂ 〈inv(1, deq, ), inv(2, enq, a), ret(2, enq, ), inv(3, enq, b), ret(3, enq, ),
inv(4, deq, ), ret(4, deq, b), inv(5, deq, ), ret(5, deq, a),
inv(6, enq, c), ret(6, enq, ), ret(1, deq, c)〉

There is not much concurrency in this run: only the first dequeue is running concurrently
with the rest of the operations. Once started this dequeue is always pending until the
end of the history, so the history is quiescent initially and at the end only. Note that the
first dequeue must have already flipped the dbit when it starts. Thus the second dequeue
returns the element in the lower queue which is b. 2

The essential question of correctness is then to ask: Is this history a correct queue be-
haviour? Two different ways of answering it are the following (first given informally).

Linearizability: Operation calls should appear to take effect in their order.

Quiescent consistency: Operation calls separated by a period of quiescence
should appear to take effect in their order.

Thus, linearizability provides the illusion that each operation applied by concurrent pro-
cesses takes effect instantaneously at some point between its invocation and its return.
For quiescent consistency this requirement is relaxed. A “meaningful” explanation of a
history must only be defined when the concurrent data structure in question is quiescent.

For example, history h1 is not linearizable: the first two enqueues start and finish
before the second and third dequeue, yet the dequeues return the elements in the reverse
order. This is because the first dequeue has already flipped the dbit. The linearizability
criterion therefore cannot be met. However, it turns out that the blocking implemen-
tation, and in particular h1, is quiescent consistent: none of the intermediate states of
h1 are quiescent, and thus the consistency condition is not imposing any constraints on
orderings. So we can indeed find an appropriate sequential history which has the same
outcome as h1, namely for instance the following one:



h2 = 〈inv(3, enq, b), ret(3, enq, ), inv(2, enq, a), ret(2, enq, ),
inv(4, deq, ), ret(4, deq, b), inv(5, deq, ), ret(5, deq, a),
inv(6, enq, c), ret(6, enq, ), inv(1, deq, ), ret(1, deq, c)〉

Formally, one uses a matching function to relate each concurrent history (e.g., h1) to a
consistent sequential history (e.g., h2) that “explains” the behaviour of the concurrent
data structure with respect to a sequential execution. The requirements on the matching
function are dependent on the consistency condition under consideration.

The non-blocking version of the algorithm (in which dequeue returns empty on
empty queues) is not even quiescent consistent. This can be seen by the following his-
tory of the non-blocking queue:

h3 =̂ 〈inv(1, deq, ), ret(1, deq, empty), inv(2, enq, a), ret(2, enq),
inv(3, deq, ), ret(3, deq, empty)〉

In h3 we find lots of quiescent states, which necessitate keeping the order of operations.
The second dequeue does, however, not return the a which – due to the prior enqueue
– should be the result. Nevertheless, the blocking version of the queue is quiescent
consistent, and in the following we will precisely define what this means and how we
can prove it.

3 Quiescent consistency

In this section, we formalise both linearizability and quiescent consistency with their
informal definitions in mind. Both notions of consistency compare a (possibly highly
concurrent) implementation with an abstract sequential specification S. In S, operations
(like enqueue and dequeue) are executed atomically. The consistency conditions then
compare the histories of the implementation and specification, and reorder the imple-
mentation’s histories in some way so that it matches the specification. Each consistency
condition formalises the allowed reorderings within the histories.

First of all, not all sequences of events are correct histories. Thus we need the notion
of a legal history: one that consists of matching pairs of invoke and return events plus
possibly some pending invocations, where an operation has started but not yet finished.

To formalise this we need some notation. We let History denote the set of all his-
tories. For a history h, #h is the length of the sequence, and h(n) its nth element (for
n : 1..#h). We use predicates inv?(e) and ret?(e) to check whether an event e ∈ Event
is an invoke or a return, and we let Ret! be the set of return events. We let e.p ∈ P be the
process executing the event e and e.i ∈ I the index of the abstract operation to which
the event belongs. We can then define a legal history:

Definition 1. Let h : seq Event be a sequence of events. Two positions m, n in h form a
matching pair, denoted mp(m, n, h) if

0 < m < n ≤ #h ∧ h(m).p = h(n).p ∧ h(m).i = h(n).i ∧
∀k • m < k < n⇒ h(k).p 6= h(m).p



A position n in h is a pending invocation, denoted pi(n, h), if

1 ≤ n ≤ #h ∧ inv?(h(n)) ∧ ∀m • n < m ≤ #h⇒ h(m).p 6= h(n).p

h is legal, denoted legal(h), if

∀n : 1..#h • if inv?(h(n)) then pi(n, h) ∨ ∃m : 1..#h • mp(n,m, h)
else ∃m : 1..#h • mp(m, n, h) 2

A history is sequential if all invoke operations are immediately followed by their match-
ing returns. In the examples above, history h1 is not sequential, whereas h2 and h3 are,
and all are legal. Having defined the notion of pending invocation, we can now fix what
we mean by a quiescent state, or more precisely, quiescent history.

Definition 2. A legal history h is quiescent, written qu(h), if ¬∃n • pi(n, h). 2

Both the definition of linearizability and quiescent consistency are given by comparing
the histories generated by concurrent implementations with the sequential histories of
some given abstract atomic specification. For the moment, we just assume legal histories
to be given; in the next section we will precisely define these for our queue.

Definition 3 (Quiescent consistency). Let h be a quiescent, concurrent history, hs a
sequential history. The history h is said to be quiescent consistent with hs, denoted
qcons(h, hs), if
∃ bijective f : 1..#h�→ 1..#hs •

(∀n : 1..#h : h(n) = hs(f (n))) ∧ (∀m, n : mp(m, n, h)⇒ f (m) + 1 = f (n))
∧ ∀m, n, k : m < n ∧ m ≤ k ≤ n ∧ qu(h[1..k]) ∧ ret?(h(m)) ∧ inv?(h(n))

⇒ f (m) < f (n)

An implementation I is quiescent consistent wrt. a specification S if for all quiescent
histories h of I there is a sequential history hs of S such that qcons(h, hs). 2

Our definition allows operations of a quiescent history h (represented as matching pairs)
to be reordered arbitrarily between quiescent states. However, each individual matching
pair must be preserved according to the second conjunct of the definition of qcons.

For quiescent consistency we look at quiescent histories. Linearizability considers
all histories of the implementation and first brings each non-quiescent history into a
”reasonable” quiescent one. To this end, it extends the history with the return events
of those operations which ”have taken effect”, and afterwards it removes the remaining
pending invokes using a function complete.

Definition 4 (Linearizability). Let h be a history, hs a sequential history. The history
h is said to be in lin-relation with hs, denoted lin(h, hs), if
∃ bijective f : 1..#h�→ 1..#hs •

(∀n : 1..#h • h(n) = hs(f (n))) ∧ (∀m, n : mp(m, n, h)⇒ f (m) + 1 = f (n))
∧ ∀m, n,m′, n′ : 1..#h • n < m′ ∧ mp(m, n, h) ∧ mp(m′, n′, h)⇒ f (n) < f (m′)

A concurrent history h is linearizable with respect to some sequential history hs, denoted
linearizable(h, hs), if



∃h0 : seq Ret! • legal(ha h0) ∧ lin(complete(ha h0), hs)

An implementation I is linearizable with a specification S if for all histories h of I there
is a sequential history hs of S such that linearizable(h, hs). 2

It is easy to see that linearizability is the stronger notion.

Proposition 1. Let h be a quiescent, hs a sequential history. Then
lin(h, hs)⇒ qcons(h, hs) 2

4 Coupled simulations - a proof methodology

Before presenting a proof technique for quiescent consistency, we need to fix the im-
plementation and abstract specification. Both are given as abstract data types of the
form: S = (State, Init, (Opp,i)p∈P,i∈I), consisting of a state, an initialisation condition,
a collection of operations. (Because each process can execute each operation, they are
indexed by the process id.) As we will use techniques from the area of refinement, the
abstract sequential specification will be called A (abstract) while the implementation is
the concrete level and thus named C. We formalise the data types within Z.

AState
queueA : seq T

AInit
AState′

queueA′ = 〈 〉

AEnqp

∆AState
el? : T

queueA′ = queueAa 〈el?〉

ADeqp

∆AState
el! : T

queueA = 〈el!〉a queueA′

Note that this specifies a blocking queue: the dequeue operation can only be executed
if the queue can be divided into one element and the rest.

The implementation based on diffraction trees needs a bit more explanation. In gen-
eral, we need to distinguish in all such concurrent data structures the global state (here,
the two balancers and the two queues) and the local variables of the processes (here,
the input parameter el for the enqueue, the local bit lbit plus a program counter). Re-
call that P is the set of all process identifiers. For the program counters, the values
will be the line numbers plus one value N standing for a process being idle: PC =
{N,E1,E2,E3,D1,D2,D3}.

CState
ebit : B, dbit : B
queueC : B→ seq T
lbit : P→ B
el : P→ T
pc : P→ PC

CInit
CState′

ebit′ = dbit′ = 0
queueC′(0) = 〈 〉
queueC′(1) = 〈 〉
∀p ∈ P • pc′(p) = N



For every line in the algorithm and every process possibly executing it, we now define
one operation in the concrete implementation data type. We refrain from giving all of
them here, and just give two examples. We use the Object-Z convention that all variables
which are not named in the schema remain the same.

enq2Cp

∆CState

pc(p) = E2
lbit(p) = ebit⇒

ebit′ = 1− lbit(p) ∧ pc′(p) = E3
lbit(p) 6= ebit⇒

ebit′ = ebit ∧ pc′(p) = E1

deq3Cp

∆CState
el! : T

pc(p) = D3
queueC(lbit(p)) =
〈el!〉a queue′(lbit(p))

pc′(p) = N

The basic idea for a proof method for quiescent consistency is to compare abstract
specification and concrete implementation data type with respect to some notion of re-
finement [7]. The standard proof strategy for refinement proceeds via simulations which
come in two forms (which are sound and jointly complete), forward and backward sim-
ulation [6]. Here, we first of all aim at a sound proof technique for quiescent consistency
and thus use just one, namely forward simulation (a complete technique would probably
need backward simulations as well). We furthermore can elide the condition of applica-
bility since quiescent consistency is a safety property rather than a general refinement
property where one would need to ensure progress of the concrete system.

Definition 5 (Forward simulation).
Let A = (AState,AInit, (AOpp,i)p∈P,i∈I) and C = (CState,CInit, (COpp,i)p∈P,i∈I)

be two data types. A relation R : AState×CState is a forward simulation from A to C if
the following two conditions hold:

– Initialization: ∀ci : CInit • ∃ai : AInit • R(ai, ci),
– Correctness:
∀as : AState, cs : CState, cs′ : CState, in : IN, out : OUT, p : P, i : I •

R(as, cs) ∧ COpp,i(in, cs, cs′, out)⇒
(∃as′ : AState • R(as′, cs′) ∧ AOpp,i(in, as, as′, out)) 2

The two conditions state that (a) every initial concrete state needs to have a matching
(via the relation R - known as a retrieve relation) initial abstract state and (b) all the
steps of the concrete data type need to be matched by corresponding abstract steps.
Here, the assumption is that the granularity of data types is the same: every concrete
operation has exactly one corresponding abstract operation. This assumption needs to be
relaxed for our application; in fact for all applications which carry out some sort of non-
atomic refinement where an abstract operations is implemented by a whole sequence
of concrete operations. Thus, we assume the operations of the abstract data type A are
indexed by (process names plus) elements from some set I, and operations of C indexed
by elements from some set J (plus again process names), and an abstraction function
abs : J → I is given.

For the queue, all concrete enqp’s are related to AEnqp and similar for dequeue. For
a non-atomic refinement, we furthermore need to know what the operations are which



start (invoke) an implementation sequence, which end (return from an invocation of) a
sequence and which are internal. For the former two we use the predicates inv? and ret?
defined in the last section, for the latter we use a similar predicate int?.

quiescent quiescent

COpp,a COpq,a COpq,b COpp,b

R〈 〉R〈 〉

C :

A :

RH1 RH3RH2

AOpp,1
o
9 AOpq,1

H1 = 〈inv(p,AOp1, )〉
H2 = H1

a 〈inv(q,AOp1, )〉
H3 = H2

a 〈ret(q,AOp1, )〉

Fig. 2. Coupled simulation for some example run

The basic idea of the non-atomic, or coupled, simulation which we use in the follow-
ing, is to match only the return steps of a sequence with the abstract operations, and
(abstractly) view all other steps as “skip” steps. In addition, the matching of return
steps only takes place when we have arrived at a quiescent consistent history again. To
keep track of the progress of the concrete operation, we extend the retrieve relation R
with histories H, thus getting a family of retrieve relations RH . When we finally reach
a quiescent history (by executing a return operation), we need to match up with all ab-
stract operations occuring in H. However, quiescent consistency allows us to look for
just some sequential order, not necessarily in the order of them appearing in H.

Figure 2 shows an example of this where the abstract operation AOpp,1 is imple-
mented as COpp,a

o
9 COpp,b, i.e., abs : a 7→ 1, b 7→ 1. The diagram shows some steps

of the concrete system in which processes p and q are running (i.e., COpp,a is the ex-
ecution of operation COpa by process p and so on), and how this would be simulated
in the abstract. Only when we reach a quiescent state again, we need to match up with
the abstract. During non-quiescent concrete states the retrieve relation RH relates the
concrete states to the “previous” abstract state.
We are now going to formally define this type of simulation. We write h ' hs for two
histories h, hs iff they are permutation equivalent and matching pairs are preserved. We
let AOP denote the set of all abstract operations. For a sequential history hs and abstract
states as, as′ we define

hs(as, as′) =̂ ∃aops : AOP∗ • aops(as, as′) ∧ hist(aops) = hs,

where hist makes a proper history out of a sequence of abstract operations,

hist(〈AOpp1,1(in1, out1), . . . ,AOppn,n(inn, outn)〉) =
〈inv(p1,AOp1, in1), ret(p1,AOp1, out1), . . . , inv(pn,AOpn, inn), ret(pn,AOpn, outn)〉.

Definition 6 (Coupled simulation). Let A = (AState,AInit, (AOpp,i)p∈P,i∈I) be an ab-
stract data type and C = (CState,CInit, (COpp,j)p∈P,j∈J) a concrete data type, related



via abstraction function abs : J → I. A family of relations RH ⊆ AState× CState, H a
history of C, is a coupled simulation relation from A to C if the following holds:

– Initialization: ∀ci : CInit • ∃ai : AInit • R〈 〉(ai, ci),
– Correctness:

1. Invocation: ∀as : AState, cs : CState, cs′ : CState, in : IN, p : P, j : J •
RH(as, cs)∧COpp,j(in, cs, cs′)∧ inv?(COpp,j)⇒ RHa〈inv(p,AOpabs(j),in)〉(as, cs′),

2. Internal: ∀as : AState, cs : CState, cs′ : CState, p : P, j : J •
RH(as, cs) ∧ COpp,j(cs, cs′) ∧ int?(COpp,j)⇒ RH(as, cs′),

3. Return to quiescent:
∀as : AState, cs : CState, cs′ : CState, out : OUT, p : P, j : J •
RH(as, cs)∧COpp,j(cs, cs′, out)∧ret?(COpp,j)∧qu(Ha〈ret(p,AOpabs(j), out)〉)⇒
∃as′ : AState • R〈 〉(as′, cs′) ∧

∃ sequential hs • hs ' Ha 〈ret(p,AOpabs(j), out)〉 ∧ hs(as, as′),
4. Return to non-quiescent:
∀as : AState, cs : CState, cs′ : CState, out : OUT, p : P, j : J •
RH(as, cs)∧COpp,j(cs, cs′, out)∧ret?(COpp,j)∧¬qu(Ha〈ret(p,AOpabs(j), out)〉)

⇒ RHa〈ret(p,AOpabs(j),out)〉(as, cs′). 2

It can be shown that coupled simulation is a sound proof technique for quiescent con-
sistency (the proof of this follows easily from the definition.):

Theorem 1. Let A = (AState,AInit, (AOpp,i)p∈P,i∈I) be an abstract data type and C =
(CState,CInit, (COpp,j)p∈P,j∈J) a concrete data type. If there is a coupled simulation
RH from A to C, then C is quiescent consistent wrt. A. 2

Moreover, the two simulation types – forward and coupled simulation – can safely be
combined.

Proposition 2. For some abstract data types A = (AState,AInit, (AOpp,i)p∈P,i∈I), B =
(BState,BInit, (BOpp,j)p∈P,j∈J) and C = (CState,CInit, (COpp,j)p∈P,j∈J) related via
abs : J → I. If there is a coupled simulation RH from A to B and a forward simulation
S from B to C, then we have a coupled simulation relation from A to C.

Proof: Define a coupled simulation from A to C by SH = RH o
9 S. 2

In the next section, we will make use of coupled simulations and their combination with
forward simulations to show quiescent consistency of the blocking queue.

5 Quiescent consistency of the blocking queue

To prove quiescent consistency of the blocking queue implementation, we proceed in
two steps. Instead of directly constructing a coupled simulation relation between A and
C, we introduce an intermediary data type (called B), and then show the existence of



a coupled simulation between A and B, and a (trivial) forward simulation from B to C.
The coupled simulation proofs have been mechanized with the interactive prover KIV.1

The abstract data type B includes all of C’s state plus some auxiliary information to
help us in the proof. First, it records the values of queueC(i), ebit and dbit from the
last quiescent state as lastq(i), lastEbit and lastDbit (for i = 0, 1). It also records the
processes which have done enqueues and dequeues since then in enqs(i) and deqs(i).
Two auxiliary queues auxq(i) store lastq(i) plus all the enqueued elements since the
last quiescent state. Dequeued elements are not removed from auxq(i).

BState
CState
lastq, auxq : B→ seq T
enqs, deqs : B→ seq P
lastEbit, lastDbit : B

BInit
BState′

CInit
lastEbit′ = lastDbit′ = 0
∀i : {0, 1} • auxq′(i) = lastq′(i) = 〈 〉

∧ enqs′(i) = deqs′(i) = 〈 〉

All operations on C are extended to operations on state B. For all but the last oper-
ations deq3Cp and enq3Cp of each algorithm the extension leaves the auxiliary state
unchanged. Formally, e.g., deq2Bp = deq2Cp ∧ Ξ(BState \ CState), where Ξ(S) de-
notes the identity relation on S.

Operations deq3Cp and enq3Cp get extended twice. First they must modify auxq,
enqs and deqs appropriately. For enqueue, the new element is appended to the auxil-
iary queue and the process id to the sequence of enqueues (operation weakenq3Bp).
Operation weakdeq3Bp is similar, except that dequeues are not applied to auxq.

weakenq3Bp

∆BState

enq3Cp

auxq′(lbit(p)) = auxq(lbit(p))a el(p)
enqs′(lbit(p)) = enqs(lbit(p))a 〈p〉

weakdeq3Bp

∆BState
el! : T

deq3Cp

deqs′(lbit(p)) = deqs(lbit(p))a 〈p〉

resetB
∆BState

ΞCState
if ∀p : P • pc(p) = N
then auxq′ = lastq′ = queueC ∧ lastEbit′ = ebit ∧ lastDbit′ = dbit
else Ξ(BState \ CState)

Furthermore, when the step brings B into a quiescent state, we have to appropriately
reset the auxiliary information. This is done by sequentially composing with resetB, i.e.

enq3Bp = weakenq3Bp
o
9 resetB deq3Bp = weakdeq3Bp

o
9 resetB

1 See https://swt.informatik.uni-augsburg.de/swt/projects/QC-queue.html for a description of
the KIV proofs.



A number of invariants are valid for the reachable part of this data type, for instance
∀i ∈ {0, 1} • #enqs(i) ≤ #auxq(i) ∧#deqs(i) ≤ #auxq(i). The queues are related
in the following way:

lastq(i) = auxq(i)[1..(#auxq(i)−#enqs(i))]

queueC(i) = auxq(i)[(#deqs(i) + 1)..#auxq(i)]

For the proof of coupled simulation, we need one rather important invariant stating
a connection between the sizes of the two queues, the number of already enqueued and
dequeued elements, the number of pending enqueues and dequeues and the two bits.
For this, we define pending enqueues and dequeues to be the following.

PE(i) = {p ∈ P | pc(p) = E3 ∧ lbit(p) = i}
PD(i) = {p ∈ P | pc(p) = D3 ∧ lbit(p) = i}

The invariant states a balancing property:

Proposition 3. Let bs : BState a reachable state of the abstract data type B. Then the
following invariant INV holds:

#queueC(0) + #PE(0)−#PD(0) + dbit =
#queueC(1) + #PE(1)−#PD(1) + ebit .

Proof sketch: By induction on the number of steps needed to reach the state. Initially,
the invariant holds as all sequences are empty and dbit and ebit are both 0. For the
induction step there are a number of cases to consider. As one example: assume the
next operation is from process p, moving from E2 to E3 thereby increasing the size
of PE(lbit(p)) by one. If lbit(p) = 0 (enqueue to upper queue), this furthermore sets
ebit from 0 to 1 thereby keeping the sums of both sides equal. If on the other hand
lbit(p) = 1 (enqueue going to lower queue), ebit is set from 1 to 0 thereby keeping the
sum on the right hand side of the equation the same. 2

Note that for quiescent states the equation reduces to #queueC(0) + dbit = # queueC(1)
+ ebit, i.e., the two queues are balanced: in quiescent states they can differ in size by at
most one, and the two bits specify the allowed difference.

Next we go to the central part of our proof, the abstraction relation for the coupled
simulation RH . It should relate states of A and B with particular histories H. First of all,
we consider the case when H is empty, i.e., and in a quiescent state. In this case, we
just need to determine the contents of the abstract queue from the two concrete queues
queueC(0) and queueC(1) by shuffling their contents, starting with queueC(dbit) (since
this is where dequeueing processes start). As the above invariant INV tells us, in size the
two queues can be just one element apart. Therefore the following recursive definition
of shuffle (which leaves, e.g., (shuffle(0, 〈 〉, q) for nonempty q unspecified) is sufficient:

shuffle(0, 〈 〉, 〈 〉) = 〈 〉 shuffle(1, 〈 〉, 〈 〉) = 〈 〉
shuffle(0, 〈a〉a q1, q2) = 〈a〉a shuffle(1, q1, q2)

shuffle(1, q1, 〈a〉a q2) = 〈a〉a shuffle(0, q1, q2)



For quiescent states queueA = shuffle(dbit, queueC(0), queueC(1)). For non-quiescent
states, we need to link up with the abstract queue which was represented in the last
quiescent state (see the simulation diagram in Figure 2). Thus, we then simply use
queueA = shuffle(lastDbit, lastq(0), lastq(1)). In quiescent states, lastDbit and dbit
as well as queueC(i) and lastq(i) coincide; thus the last expression is valid both for
quiescent and non-quiescent states.

Now to the history H: It accumulates the invocation and return events which have
happened since the last quiescent state. The order is in fact irrelevant as we seek to
find a matching sequential history which is just a permutation (') of H. However, the
events inside H have to be consistent with the auxiliary information of BState: for every
process in enqs(i) there has to be an invoke and a return event in H (plus similiar for
processes in deqs(i)) and if there is a currently running enqueue (dequeue, respectively)
there furthermore has to be an invoke event for it.

To formalize this, we construct a sequence of events from enqs(i) and deqs(i). The
necessary information about enqueued / dequeued elements is found in auxq(i):

evts(enqs(i)) = aj=1..#enqs(i)〈inv(p, enq, a), ret(p, enq, ) •
p = enqs(i)(j) ∧ a = auxq(i)(#lastq(i) + j)〉

evts(deqs(i)) = aj=1..#deqs(i)〈inv(p, deq, ), ret(p, deq, a) •
p = deqs(i)(j) ∧ a = auxq(i)(j)〉

Last, we let invevts(bs) be the invoke events of currently running enqueues and de-
queues in state bs (the order is irrelevant), i.e.,

invevts(bs) = 〈inv(p, enq, a) • pc(p) ∈ {E1,E2,E3} ∧ el(p) = a〉a
〈inv(p, deq, ) • pc(p) ∈ {D1,D2,D3}〉

With these definitions at hand, we can state the second theorem.

Theorem 2. Let A and B be the abstract data types defined above. Then
RH =̂ queueA = shuffle(lastDbit, lastq(0), lastq(1))∧

H ' evts(enqs(0)) a evts(enqs(1)) a

evts(deqs(0))a evts(deqs(0))a invevts(bs)

is a coupled simulation from A to B.

Proof: Since the abstraction function only changes when the resulting state is qui-
escent (when the positive case of resetB is executed), the critical proof obligation is
the case “Return to quiescent” in Def. 6. It requires constructing a suitable sequential
history hs. This history consists of two halves. The first half executes the enqueues
of shuffle(¬ebit, evts(enqs(0), evts(enqs(1)) in reverse order2 resulting in the abstract
queue shuffle(lastDbit, auxq(0), auxq(1)). The second part executes the dequeues of
shuffle(lastDbit, evts(deqs(0), evts(deqs(1)) to get to the current abstract queue. The
proof is inductive over the lengths of the enq and deq lists. 2

This completes the part of the proof relating data types A and B. The second step is now
the one from B to C for which we have a forward simulation.

2 The KIV proof combines evts, shuffling and reversing into one function eshuffle.



Proposition 4. Let B and C be the abstract data types defined above. Then there is a
forward simulation from B to C.

Proof: Directly follows from the fact that B is just an extension of C, or seen the other
way round, C’s operations being a projection of B’s operations onto CState. 2

This finally implies the correctness of the blocking queue implementation.

Corollary 1. The data type C, i.e., the queue implementation with blocking dequeue
operations, is quiescent consistent with respect to the abstract data type A.

Proof: Follows from Theorems 1 and 2 together with Propositions 2 and 4. 2

6 Conclusion

In this paper, we have given a formal definition of, and a proof methodology for, quies-
cent consistency. We have demonstrated the technique by proving quiescent consistency
of a concurrent, non-linearizable queue implementation. To the best of our knowledge,
this is the first formal proof of quiescent consistency of an algorithm.

We have chosen to formalise quiescent consistency in a way that matches the in-
formal definition as closely as possible, however, since we are formalising an informal
description there might be valid alternatives to our definition above. In particular, our
formalisation has some specific consequences, since it embodies the idea that quiescent
consistency does not necessarily preserve program order. This means that one is even
allowed to reorder the operations of a single process. So the following history (not oc-
curing for our queue example):
〈inv(1, enq, a), inv(2, deq, ), ret(2, deq, b), inv(2, enq, b), ret(2, enq, ), ret(1, enq, )〉

where the b is visibly dequeued before being enqueued, is accepted, since it can be re-
ordered to the sequential history:
〈inv(2, enq, b), ret(2, enq, ), inv(2, deq, ), ret(2, deq, b), inv(1, enq, a), ret(1, enq, )〉.

However strange this may seem, it appears that most informal discussions on quiescent
consistency view this as a consequence of the definition.

There are also other alternatives to quiescent consistency or linearizability for con-
current object correctness. For example, eventual consistency [18] states that all obser-
vations on a system will agree if there are no more updates to the system. Although
this is a weaker condition than sequential consistency, there is no relation between it
and quiescent consistency. In a similar way quasi-linearizability [2], or k-linearizability
[12] and quiescent consistency are incomparable.

It is worth noting that although both quasi-linearizability and k-linearizability have
been formally defined, neither condition has an associated proof method. Our aim here
was to provide a proof method for quiescent consistency, which we did via the use of
coupled simulations, and furthermore, show how these proofs can be mechanised. In
particular we provided a full mechanisation of the coupled simulation proofs for the
queue using KIV.



References

1. Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based
on elimination-diffraction trees. In P. D’Ambra, M. Rosario Guarracino, and D. Talia, editors,
Euro-Par (2), volume 6272 of LNCS, pages 151–162. Springer, 2010.

2. Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In OPODIS, volume 6490 of LNCS, pages 395–410. Springer, 2010.

3. D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction
for verifying linearizability. In CAV, pages 477–490, 2007.

4. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM, 41(5):1020–
1048, September 1994.

5. R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data structures by simulation.
ENTCS, 137:93–110, 2005.

6. W. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and their
Comparison, volume 47 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

7. J. Derrick and E. Boiten. Refinement in Z and Object-Z: Foundations and Advanced Appli-
cations. Springer, May 2001.

8. J. Derrick and E. A. Boiten. Non-atomic refinement in Z. In J. M. Wing, J. Woodcock,
and J. Davies, editors, World Congress on Formal Methods, volume 1709 of LNCS, pages
1477–1496. Springer, 1999.

9. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanizing a correctness proof for a lock-free
concurrent stack. In FMOODS 2008, volume 5051 of LNCS, pages 78–95. Springer, 2008.

10. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for
linearizability. ACM Trans. Program. Lang. Syst., 33(1):4, 2011.

11. J. Derrick and H. Wehrheim. Using coupled simulations in non-atomic refinement. In
D. Bert, J. P. Bowen, S. King, and M. A. Waldén, editors, ZB, volume 2651 of LNCS, pages
127–147. Springer, 2003.

12. T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation
of concurrent data structures. In POPL, pages 317–328. ACM, 2013.

13. M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

14. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS, 12(3):463–492, 1990.

15. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979.

16. W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and interactive
proofs with KIV. In Automated Deduction—A Basis for Applications, volume II, chapter 1:
Interactive Theorem Proving, pages 13 – 39. Kluwer, 1998.

17. G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In
P. Madhusudan and S.A. Seshia, editors, CAV 2012, USA, 2012 Proceedings, volume 7358
of Lecture Notes in Computer Science, pages 243–259. Springer, 2012.

18. M. Shapiro and B. Kemme. Eventual consistency. In L. Liu and M. T. Özsu, editors, Ency-
clopedia of Database Systems, pages 1071–1072. Springer US, 2009.

19. N. Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84, 2011.
20. B. Tofan, G. Schellhorn, and W. Reif. Formal verification of a lock-free stack with hazard

pointers. In Proc. ICTAC, pages 239–255. Springer LNCS 6916, 2011.
21. V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-concurrent

linearisable objects. In PPoPP ’06, pages 129–136. ACM, 2006.


