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Abstract

This paper is concerned with the finite-horizon estimation problem of randomly occurring faults for a class of nonlinear
systems whose parameters are all time-varying. The faults are assumed to occur in a random way governed by two sets of
Bernoulli distributed white sequences. The stochastic nonlinearities entering the system are described by statistical means
that can cover several classes of well-studied nonlinearities. The aim of the problem is to estimate the random faults, over a
finite horizon, such that the influence from the exogenous disturbances onto the estimation errors is attenuated at the given
level quantified by a H∞-norm in the mean square sense. By using the completing squares method and stochastic analysis
techniques, necessary and sufficient conditions are established for the existence of the desired finite-horizon H∞ fault estimator
whose parameters are then obtained by solving coupled backward recursive Riccati difference equations (RDEs). A simulation
example is utilized to illustrate the effectiveness of the proposed fault estimation method.

Key words: Fault estimation; Randomly occurring faults; Time-varying systems; Nonlinear stochastic systems; Recursive
Riccati difference equations.

1 Introduction

Over the past decades, fault detection has been an ac-
tive research topic because of the growing demand for
higher performance, higher safety and stricter reliabil-
ity standards in a highly automated industrial system,
and a variety of important results have been reported in
the literature, see e.g. [2–4, 7, 14, 16, 20, 22, 25, 28]. Fault
detection itself, however, is insufficient to guarantee the
reliability especially for systems with critical safety re-
quirements such as aircraft flight control systems. Fault
estimation, on the other hand, is capable of providing
accurate size and shape of the fault, thereby helping re-
construct the fault signals. As such, fault estimation is
further needed for the purpose of active fault tolerant
control. Up to date, considerable research attention has
been devoted to the theoretical research on the fault esti-
mation problem, and a great number of fault estimation
approaches have been proposed in existing literature, see
e.g. [6,11–13,15,17,19,27,30] and the references therein.
For example, in [11, 12, 19, 29], the problems of fault es-
timation have been investigated by applying adaptive
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fault diagnosis observers that can improve the rapidity
of fault estimation. In [13,27], the sliding mode observer-
based fault estimation method has been presented to
realize fault reconstruction. A fault estimator has been
developed in [6] based on a descriptor system formula-
tion for the sensor fault estimation problem, which can
estimate the states and the sensor fault signal simulta-
neously.

In reality, almost all real-time systems have certain time-
varying parameters and, for such time-varying systems,
one would be more interested in their transient perfor-
mances over a finite period than the traditional steady-
state behaviors over the infinite-horizon. When it comes
to the fault estimation issue, finite-horizon fault estima-
tors for time-varying systems are of particular engineer-
ing significance especially when the noise inputs are non-
stationary [17, 30]. It should be pointed out that, com-
pared to the fruitful results on infinite-horizon fault es-
timation problems for time-invariant systems, the corre-
sponding results on finite-horizon fault estimation prob-
lems are still in its early stages due probably to themath-
ematical/computational complexities. Very recently, in
[17], the finite-horizonH∞ fault estimation problem has
been investigated for a class of uncertain linear discrete
time-varying systems with known inputs, where all the
estimator parameters have been derived simultaneously
in terms of an explicit solution to a matrix equation.
In [30], with the aid of the parity-space method, a fault
estimator for linear discrete time-varying systems has
been designed. Furthermore, the H∞ fault estimation
problem has been investigated in [31] by using the Krein-
space theory. However, in almost all existing results con-
cerning finite-horizon fault estimation problems, it has
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been implicitly assumed that the system is linear and
the occurred fault signals are instantaneous.

Recently, as the network scale increases, the randomly
occurring phenomena (ROP) have become an emerging
research topic that has drawn some initial research at-
tention. ROP refer to those phenomena that appear in-
termittently in a random way based on certain probabil-
ity law [5]. If not properly coped with, the ROP would
unavoidably deteriorate the operating efficiency or even
cause the instability of the plant. So far, a series of results
have been reported in the literature concerning the fil-
tering and control problems in the presence of ROP, for
example, randomly occurring nonlinearities [4, 18], ran-
domly occurring uncertainties [10], randomly occurring
sensor delays [4] and randomly occurring sensor satura-
tions [23]. Nevertheless, an important class of network-
induced phenomena, namely, randomly occurring faults
(ROFs), have been largely overlooked despite their prac-
tical significance in networked control systems. In fact,
due to bandwidth limitation of the shared links and un-
predictable variation of the network conditions, severe
packet loss, data collision or data quantization could be
regarded as a kind of faults when the reliability becomes
a concern. The network-induced faults may also stem
from issues concerning the aging, disturbances, electro-
magnetic interference, temporary failure of the sensors
or actuators. Such faults typically occur in a probabilis-
tic way and it would make practical sense to consider
the ROFs where the occurrence probability can be esti-
mated via statistical tests. So far, the ROF-based fault
estimation problem has not received adequate research
attention yet, not to mention the case when nonlinear
and time-varying natures are also taken into account. It
is, therefore, the main purpose of this paper to shorten
such a gap by addressing the finite-horizon estimation
problem of ROFs for a class of nonlinear discrete time-
varying systems.

Motivated by the above discussions, in this paper, we
aim to investigate the finite-horizon estimation problem
of randomly occurring faults for a class of nonlinear sys-
tems whose parameters are all time-varying. The main
contributions of this paper are highlighted as follows. 1)
The concept of randomly occurring faults is proposed to
better reflect the random nature of the occurrences of sen-
sor and actuator failures induced by networks. 2) Neces-
sary and sufficient conditions are obtained for the exis-
tence of the desired fault estimator by applying the com-
pleting squares method and stochastic analysis technol-
ogy. 3) A novel coupled Riccati difference equation ap-
proach is developed to solve the finite-horizon H∞ fault
estimation problem.

The rest of this paper is outlined as follows. In Section
2, the discrete time-varying nonlinear stochastic system
with randomly occurring faults is introduced and the
problem under consideration is formulated. In Section 3,
the design problem of finite-horizonH∞ fault estimators
is solved and a simulation example is given in Section
4 to demonstrate the main results obtained. Finally, we
conclude the paper in Section 5.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn and R

n×m denote, re-
spectively, the n-dimensional Euclidean space and the
set of all n × m real matrices. l2[0,∞) is the space of

square summable sequences. The notation X ≥ Y (re-
spectively, X > Y ), where X and Y are real symmetric
matrices, means thatX−Y is positive semi-definite (re-
spectively, positive definite). MT represents the trans-
pose of the matrix M and M † ∈ R

n×m denotes the
Moore-Penrose pseudo inverse of M ∈ R

m×n. We may
fix a probability space (Ω,F ,Prob), where Prob, the
probability measure, has total mass 1. E{x} stands for
the expectation of the stochastic variable x with re-
spect to the given probability measure Prob. 0 and I de-
note, respectively, the zero matrix of compatible dimen-
sions and the identity matrix of compatible dimensions.
diag{· · · } stands for a block-diagonal matrix. tr(A) rep-
resents the trace of a matrixA. Matrices, if not explicitly
specified, are assumed to have compatible dimensions.

2 Problem Formulation

Consider the following class of discrete time-varying non-
linear stochastic systems defined on k ∈ [0, N ]:































x(k + 1) = A(k)x(k) + g(k, x(k)) +Bd(k)d(k)

+ α1(k)Bf (k)f(k)

y(k) = C(k)x(k) + h(k, x(k)) + α2(k)Df (k)f(k)

+Dd(k)v(k)

x(0) = x0

(1)
where x(k) ∈ R

nx represents the state vector; y(k) ∈
R

ny is the measurement signal; d(k) ∈ R
nw , v(k) ∈ R

nv

and f(k) ∈ R
nl are, respectively, the disturbance input,

the measurement noises, and the fault signal. Moreover,
it is assumed that d(k), v(k) and f(k) belong to l2[0,∞);
and x0 is an initial value that is unknown. A(k), Bf (k),
Bd(k), C(k), Df (k) and Dd(k) are known, real, time-
varying matrices with appropriate dimensions.

We assume that the functions g(k, x(k)) and h(k, x(k))
with g(k, 0) = 0 and h(k, 0) = 0 are stochastic nonlinear
functions described by their statistical characteristics as
follows

E

{[

g(k, x(k))

h(k, x(k))

]
∣

∣

∣

∣

∣

x(k)

}

= 0, (2)

E

{[

g(k, x(k))

h(k, x(k))

]

[

gT(j, x(j)) hT(j, x(j))
]

∣

∣

∣

∣

∣

x(k)

}

= 0,

k 6= j (3)

and

E

{[

g(k, x(k))

h(k, x(k))

]

[

gT(k, x(k)) hT(k, x(k))
]

∣

∣

∣

∣

∣

x(k)

}

=

q
∑

i=1

πiπ
T
i E{x

T(k)Γix(k)}

:=

q
∑

i=1

Θ̂iE{x
T(k)Γix(k)}, (4)

where Θ̂i and Γi are known matrices with appropriate
dimensions, and q is the number of independent state
components.
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Remark 1 As pointed out in [21, 26], the nonlinearity
description in (2)-(4) covers many well-studied nonlin-
earities in stochastic systems such as 1) linear system
with state- and control-dependent multiplicative noise; 2)
nonlinear systems with random vectors dependent on the
norms of states and control input; and 3) nonlinear sys-
tems with a random sequence dependent on the sign of a
nonlinear function of states and control inputs.
It is assumed that the dynamic characteristics of the
fault vector f(k) are described as follows:

f(k + 1) = Af (k)f(k) (5)

where Af (k) is a known matrix with appropriate dimen-
sions. Note that the fault becomes a constant one when
Af (k) ≡ I.

The variables α1(k) and α2(k) in (1), which govern the
random nature of the occurred faults, are Bernoulli dis-
tributed white sequences taking values on 0 or 1 with
Prob{α1(k) = 1} = ᾱ1,Prob{α1(k) = 0} = 1− ᾱ1,

Prob{α2(k) = 1} = ᾱ2,Prob{α2(k) = 0} = 1− ᾱ2, (6)

where ᾱ1 ∈ [0, 1] and ᾱ2 ∈ [0, 1] are known constants. It
is assumed that α1(k), α2(k), g(k, x(k)) and h(k, x(k))
are unrelated each other.
Remark 2 The proposed fault modeled by (5) may oc-
cur in a probabilistic way based on an individual prob-
ability distribution that can be specified a prior through
statistical tests. The ROFs concept is to reflect the ran-
dom fashion of the occurred faults in a networked envi-
ronment and therefore render more practical significance
for the time-varying systems (1). The statistical infor-
mation of the ROF is used throughout the design of the
fault estimators.
We are now ready to state the fault estimation problem
under consideration as follows: given a positive scalar γ,

find the fault estimation f̂(k) (k = 0, 1, . . . , N − 1) such
that

ζ(N) :=
E

{

∑N−1
k=0 ‖f̂(k)− f(k)‖2

}

V0(k) + V1(k)
< γ2,

∀({d(k)}, {v(k)}, x(0)) 6= 0 (7)

holds, where V0(k) = E

{

(x(0)−x̂(0))TPA(x(0)−x̂(0))
}

,

V1(k) =
∑N−1

k=0

(

dT (k)PBd(k)+ vT (k)PCv(k)
)

, PA, PB

and PC are known positive definite weighting matrices,
and x̂(0) is the estimate of initial state x(0).Without loss
of generality, the initial state estimate x̂(0) is assumed
to be zero.
Defining x̄(k) = [xT (k) fT (k)]T and z(k) = f(k), we
rewrite (1) and (5) into the following augmented system:










































x̄(k + 1) = (Ā(k) + α̃1(k)B̄f (k))x̄(k) +Hg(k, x(k))

+ B̄d(k)d(k)

y(k) = (C̄(k) + α̃2(k)D̄f (k))x̄(k) + h(k, x(k))

+Dd(k)v(k)

z(k) = L(k)x̄(k)

x̄(0) = x̄0

(8)

where

Ā(k) =

[

A(k) ᾱ1(k)Bf (k)

0 Af (k)

]

, B̄f (k) =

[

0 Bf (k)

0 0

]

,

B̄d(k) =
[

BT
d (k) 0

]T

, C̄(k) =
[

C(k) ᾱ2(k)Df (k)
]

,

L(k) =
[

0 I

]

, H =
[

I 0
]T

, D̄f (k) =
[

0 Df(k)
]

,

α̃1(k) = α1(k)− ᾱ1(k), α̃2(k) = α2(k)− ᾱ2(k).

In this paper, the following fault estimator is adopted
for the augmented system (8):

{

ˆ̄x(k + 1) = F (k)ˆ̄x(k) +G(k)y(k)

ẑ(k) = L(k)ˆ̄x(k)
(9)

where ˆ̄x(k) ∈ R
nx+nl is the estimate of the state x̄(k).

We assume that ˆ̄x(0) = 0. Subsequently, the fault esti-
mation problem can be reformulated as to find F (k) and
G(k) such that (7) is satisfied.

Letting e(k) = x̄(k)− ˆ̄x(k), we have

e(k + 1)=
(

Ā(k)− F (k)−G(k)C̄(k)
)

x̄(k) + F (k)e(k)

+
(

α̃1(k)B̄f (k)− α̃2(k)G(k)D̄f (k)
)

x̄(k)

+B̄d(k)d(k)−G(k)Dd(k)v(k)

+Hg(k, x(k))−G(k)h(k, x(k)) (10)

Denoting η(k) :=
[

x̄T (k) eT (k)
]T

, z̃(k) := z(k)− ẑ(k)

and w(k) :=
[

dT (k) vT (k)
]T

, we have the following
system to be investigated:










η(k + 1) =
(

A(k) + α̃1(k)Bf (k) + α̃2(k)Df (k)
)

η(k)

+H(k)F(k, x(k)) + G(k)w(k)

z̃(k) = L(k)η(k)

where

A(k) =

[

Ā(k) 0

Ā(k)− F (k)−G(k)C̄(k) F (k)

]

,

Bf(k) =

[

B̄f (k) 0

B̄f (k) 0

]

, Df (k) =

[

0 0

−G(k)D̄f (k) 0

]

,

H(k) =

[

H 0

H −G(k)

]

, F(k, x(k)) =

[

g(k, x(k))

h(k, x(k))

]

,

G(k) =

[

B̄d(k) 0

B̄d(k) −G(k)Dd(k)

]

, L(k) =
[

0 L(k)
]

.

Furthermore, the performance requirement (7) is rewrit-
ten as

JN :=

N−1
∑

k=0

(

E
{

‖z̃(k)‖2
}

− γ2wT (k)PΨw(k)

)

− γ2ηT (0)Rη(0) < 0, ∀({w(k)}, η(0)) 6= 0 (11)
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where R = diag{0, P̄A}, P̄A = diag{PA, 0} and PΨ =
diag{PB, PC}.
Our objective of this paper is to find the sequence of pa-
rameter matrices, F (k) andG(k), such that the dynamic
system (11) satisfies the performance requirement (11).

3 Main results

Lemma 1 [1] Let matrices G, M and Γ be given with
appropriate sizes. Then the following matrix equation

GXM = Γ (12)

has a solution X if and only if GG†ΓM †M = Γ. More-
over, any solution to (12) is represented by

X = G†ΓM † + Y −G†GYMM †

where Y is a matrix with an appropriate size.
Theorem 1 Consider the time-varying nonlinear
stochastic system described by (1)–(5). For a given dis-
turbance attenuation level γ > 0 and the positive definite
matrices PB > 0, PC > 0 and R > 0, the fault estima-

tor f̂(k) (k = 0, 1, . . . , N − 1) satisfies the performance
criterion (7) if and only if the following discrete Riccati
difference equation

P (k) = AT (k)P (k + 1)A(k) + g21(k)B
T
f (k)P (k + 1)

× Bf(k) + g22(k)D
T
f (k)P (k + 1)Df (k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)P (k + 1)H(k)Θ̂i

]

+ LT (k)L(k) +AT (k)P (k + 1)G(k)

× Φ−1(k)GT (k)P (k + 1)A(k) (13)

with
P (N) = 0

has a solution (P (k), F (k), G(k)) satisfying
{

Φ(k) = γ2PΨ − GT (k)P (k + 1)G(k) > 0

P (0) < γ2R
(14)

where Γ̂i =

[

Γ̄i 0

0 0

]

, g1(k) =
√

ᾱ1(k)(1 − ᾱ1(k)), Γ̄i =

[

Γi 0

0 0

]

, g2(k) =
√

ᾱ2(k)(1 − ᾱ2(k)) and PΨ is defined

in (11).

Proof : Sufficiency. Define J(k) = ηT (k + 1)P (k +
1)η(k + 1) − ηT (k)P (k)η(k). Noticing (11) and taking
mathematical expectation as follows, we have
E{J(k)}

=E

{(

(

A(k) + α̃1(k)Bf (k) + α̃2(k)Df (k)
)

η(k) +H(k)

×F(k, x(k)) + G(k)w(k)

)T

P (k + 1)

(

(

A(k) + α̃1(k)

× Bf(k) + α̃2(k)Df (k)
)

η(k) +H(k)F(k, x(k))

+ G(k)w(k)

)

− ηT (k)P (k)η(k)

}

(15)

Taking (4) into consideration, we have

E
{

FT (k, x(k))HT (k)P (k + 1)H(k)F(k, x(k))
}

=E

{

ηT (k)

q
∑

i=1

Γ̂i · tr
[

HT (k)P (k + 1)H(k)Θ̂i

]

η(k)

}

.

(16)

Adding the following zero term

‖z̃(k)‖2 − γ2wT (k)PΨw(k)− ‖z̃(k)‖2 + γ2wT (k)PΨw(k)

to the right side of (15) results in

E{J(k)}

=E

{

ηT (k)

(

AT (k)P (k + 1)A(k) + g21(k)B
T
f (k)P (k + 1)

× Bf(k) + g22(k)D
T
f (k)P (k + 1)Df (k) + LT (k)L(k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)P (k + 1)H(k)Θ̂i

]

− P (k)

)

η(k)

+ 2ηT (k)AT (k)P (k + 1)G(k)w(k) − wT (k)Φ(k)w(k)

−

(

‖z̃(k)‖2 − γ2wT (k)PΨw(k)

)}

. (17)

By the completing squares method, it is not difficult to
see that

E{J(k)}

=E

{

ηT (k)

(

AT (k)P (k + 1)A(k) + g21(k)B
T
f (k)P (k + 1)

× Bf(k) + g22(k)D
T
f (k)P (k + 1)Df (k) + LT (k)L(k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)P (k + 1)H(k)Θ̂i

]

+AT (k)

× P (k + 1)G(k)Φ−1(k)GT (k)P (k + 1)A(k)

)

η(k)

− P (k)

}

− E
{

(w(k) − w∗(k))TΦ(k)(w(k) − w∗(k))
}

− E

{

‖z̃(k)‖2 − γ2wT (k)PΨw(k)

}

(18)

where

w∗(k) = Φ−1(k)GT (k)P (k + 1)A(k)η(k). (19)

Taking the sum on both sides of (18) from 0 to N − 1,
we obtain

E

{N−1
∑

k=0

J(k)

}

=−
N−1
∑

k=0

E

{

(w(k)− w∗(k))TΦ(k)(w(k) − w∗(k))

}

−
N−1
∑

k=0

E

{

‖z̃(k)‖2 − γ2wT (k)PΨw(k)

}

(20)
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By noticing Φ(k) > 0, P (0)− γ2R < 0, the final condi-
tion P (N) = 0 and η(0) 6= 0, we obtain

JN :=E

{N−1
∑

k=0

(

‖z̃(k)‖2 − γ2wT (k)PΨw(k)

)}

− γ2
E
{

ηT (0)Rη(0)
}

=E
{

ηT (0)(P (0)− γ2R)η(0)
}

−
N−1
∑

k=0

E

{

(w(k)

− w∗(k))TΦ(k)(w(k) − w∗(k))

}

< 0 (21)

which is equivalent to (11). Hence we finish completing
the proof of sufficiency.

Necessity: The proof follows directly from that of The-
orem 1 in [24] and is therefore omitted.

Remark 3 So far, a necessary and sufficient condi-
tion has been obtained in Theorem 1 for the existence
of the fault estimation performance of the dynamic sys-
tem (11). That is, if there exists a solution P (k) to
(13) such that Φ(k) > 0 and P (0) < γ2R, then the

fault estimation f̂(k) (k = 0, 1, . . . , N − 1) satisfies
the performance criterion (7). Moreover, according to
(21), the worst-case disturbance can be expressed as
w∗(k) = Φ−1(k)GT (k)P (k + 1)A(k)η(k), and the per-
formance objective JN = ηT (0)(P (0) − γ2R)η(0). In
the main results, the occurring probability of the random
faults is reflected. For probability 1, our results reduce
to those for the traditional deterministic fault estima-
tion problem and, in the case of probability 0, the fault
estimation problem is no longer valid and our developed
approach applies to the state estimation problem only.
In the case that all the time-varying parameters become
time-invariant (constant), (13)-(14) would become a
rather standard Riccati difference equation whose feasi-
bility has been widely investigated in the literature, see
e.g. [32].

In what follows, we aim to determine the gain matrices
F (k) and G(k) of the desired fault estimator under the
situation of the worst-case disturbance w∗(k).

Theorem 2 Consider the time-varying nonlinear
stochastic system described by (1)–(5). Let a disturbance
attenuation level γ > 0 and the positive definite ma-
trices PB > 0, PC > 0 and R > 0 be given. For each
k = 0, 1, . . . , N − 1, assume that the discrete Riccati dif-
ference equation (13) has a solution (P (k), F (k), G(k))
satisfying (14) and the following discrete Riccati differ-
ence equation:

Q(k) =AT
G(k)Q(k + 1)AG(k) + g21(k)B

T
f (k)Q(k + 1)

× Bf (k) + g22(k)D
T
f (k)Q(k + 1)Df (k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)Q(k + 1)H(k)Θ̂i

]

+ LT (k)L(k)−AT
G(k)Q(k + 1)Ω−1(k)

×Q(k + 1)AG(k) (22)

with
Q(N) = 0, N (k) = N (k)C†(k)C(k)

has a solution (Q(k),K(k)) satisfying

Ω(k) = Q(k + 1) + I > 0 (23)

where

N (k) =−L̄Ω−1(k)Q(k + 1)AG(k),

C(k) =

[

−I I

−C̄(k) 0

]

, Ā(k) =

[

Ā(k) 0

Ā(k) 0

]

,

AG(k) = Ā(k) + G(k)Φ−1(k)GT (k)P (k + 1)A(k),

K(k) =
[

F (k) G(k)
]

. (24)

Then, we can conclude that the fault estimation f̂(k)
(k = 0, 1, . . . , N − 1) satisfies the performance criterion
(7) and the gain matrices of the fault estimator are given
by

K(k) =
[

F (k) G(k)
]

=N (k)C†(k) + Y (k)− Y (k)C(k)C†(k),

Y (k) ∈ R
nx+nl×(nx+nl+ny), k = 1, 2, . . . , N − 1. (25)

Proof : We define a cost function as follows:

JN (w∗) = E

{

N−1
∑

k=0

(‖z̃(k)‖2 + ‖Υ(k)‖2)

}

(26)

where Υ(k) = K(k)C(k)η(k). Therefore, the original sys-
tem (11) with the worst-case disturbance w∗(k) can be
rewritten as follows:










ηk+1 =
(

AG(k) + α̃1(k)Bf (k) + α̃2(k)Df (k)
)

η(k)

+H(k)F(k, x(k)) + Υ̃(k)

z̃(k) =L(k)η(k)

where Υ̃(k) = [0 Υ(k)T ]T .

In order to obtain the parametric expression of K(k), we
define

Jw(k) = ηT (k + 1)Q(k + 1)η(k + 1)− ηT (k)Q(k)η(k).
(27)

It follows from (27) that
E{Jw(k)}

=E

{(

(

AG(k) + α̃1(k)Bf (k) + α̃2(k)Df (k)
)

η(k)

+H(k)F(k, x(k)) + Υ̃(k)

)T

Q(k + 1)

(

(

AG(k)

+ α̃1(k)Bf(k) + α̃2(k)Df (k)
)

η(k) +H(k)F(k, x(k))

+ Υ̃(k)

)

− ηT (k)Q(k)η(k)

}

+ E{‖z̃(k)‖2 + ‖Υ(k)‖2

− ‖z̃(k)‖2 − ‖Υ(k)‖2}. (28)
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By applying completing squares method again, we have

E{Jw(k)}

=E

{

ηT (k)

(

AT
G(k)Q(k + 1)AG(k) + g21(k)B

T
f (k)

×Q(k + 1)Bf (k) + g22(k)D
T
f (k)Q(k + 1)Df (k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)Q(k + 1)H(k)Θ̂i

]

+ LT (k)L(k)

−Q(k)−AT
G(k)Q(k + 1)Ω−1(k)Q(k + 1)AG(k)

)

× η(k) + (Υ̃(k)− Υ̃∗(k))TΩ(k)(Υ̃(k)− Υ̃∗(k))

}

− E

{

‖z̃(k)‖2 + ‖Υ(k)‖2
}

(29)

where Υ̃∗(k) := −Ω−1(k)Q(k+1)AG(k)η(k). Therefore,
it is true that

JN (w∗)

=E

{

N−1
∑

k=0

(‖z̃(k)‖2 + ‖Υ(k)‖2)

}

=E

{N−1
∑

k=0

(Υ̃(k)− Υ̃∗(k))TΩ(k)(Υ̃(k)− Υ̃∗(k))

+ ηT (0)Q(0)η(0)− ηT (N)Q(N)η(N) +

N−1
∑

k=0

ηT (k)

×

(

AT
G(k)Q(k + 1)AG(k) + g21(k)B

T
f (k)Q(k + 1)Bf(k)

+ g22(k)D
T
f (k)Q(k + 1)Df (k) + LT (k)L(k)−Q(k)

+

q
∑

i=1

Γ̂i · tr
[

HT (k)Q(k + 1)H(k)Θ̂i

]

−AT
G(k)Q(k + 1)

× Ω−1(k)Q(k + 1)AG(k)

)

η(k)

}

(30)

Under the zero final condition of Q(N), in order to min-
imize the cost of JN (w∗), the best choice of K(k) is to
satisfy the following condition:











































Q(k) = AT
G(k)Q(k + 1)AG(k) + g21(k)B

T
f (k)Q(k + 1)

× Bf(k) + g22(k)D
T
f (k)Q(k + 1)Df (k) + LT (k)

× L(k) +

q
∑

i=1

Γ̂i · tr
[

HT (k)Q(k + 1)H(k)Θ̂i

]

−AT
G(k)Q(k + 1)Ω−1(k)Q(k + 1)AG(k)

K(k)C(k) = −L̄Ω−1(k)Q(k + 1)AG(k)

where L̄ =
[

0 I
]

. According to Lemma 1, it can be
observed that the existence of a solution K(k) (k =

0, 1, . . . , N − 1) is equivalent to the feasibility of

− L̄Ω−1(k)Q(k + 1)AG(k)C
†(k)C(k)

=− L̄Ω−1(k)Q(k + 1)AG(k) (31)

whose general solution is given by

Kk =− L̄Ω−1(k)Q(k + 1)AG(k)C
†(k) + Y (k)

− Y (k)C(k)C†(k) (32)

where Y (k) is any matrix with dimension nx + nl × (nx

+nl + ny). The proof of this theorem is now complete.

By means of Theorem 2, we can summarize the Finite-
Horizon Fault Estimator Design (FHFED) algorithm as
follows:

Algorithm FHFED

Step 1: Given the disturbance attenuation level γ, the
positive definite matrices PB > 0, PC > 0 and R > 0,
set k = N − 1.

Step 2: Calculate Φ(k), Ω(k) and N (k) with known
P (k+1) and Q(k+1) via the first equation of (14) and
equations (23) and (24), respectively. Furthermore, the
fault estimation gain matrix K(k) can be obtained by
equation (25).

Step 3: If N (k) = N (k)C†(k)C(k), then solve the first
equation of (13) and (22) to get P (k) and Q(k), respec-
tively, and go to the next step, else this algorithm is in-
feasible, stop.

Step 4: If k 6= 0, Φ(k) > 0 and Ω(k) > 0, set k = k − 1
and go to Step 2, else go to the next step.

Step 5: If P (0) ≥ r2R or Φ(k) ≤ 0 or Ω(k) ≤ 0, then
this algorithm is infeasible, stop.

Remark 4 In this paper, a coupled Riccati difference
equation (RDE) approach is proposed to solve the esti-
mation problem of the randomly occurring faults over a
finite-horizon. The faults are allowed to occur dynami-
cally governed by random variables with given probability
laws. It can be observed from Algorithm FHFED that, in
the estimator design procedure, all the important factors
contributing to the system complexity have been reflected
which include 1) the time-varying systems parameters;
2) the occurrence probabilities of the random faults; 3)
statistics information about the stochastic nonlinearities;
and 4) the prescribed disturbance attenuation level. The
coupled RDE algorithm is backward recursive and there-
fore suitable for online application. The main theoretical
contribution would be the establishment of the necessary
and sufficient conditions for the existence of the desired
finite-horizon H∞ fault estimator.

4 An Illustrative Example

In this section, we present a simulation example to il-
lustrate the effectiveness of the proposed finite-horizon
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estimation of randomly occurring faults for a class of
nonlinear time-varying systems.

Consider a discrete time-varying system described by
(1)–(5) with the following parameters over the finite
time-horizon [0, 50]:

A(k) =

[

0 −0.7

0.1 + 0.2 sin(3k) −0.53

]

, Bf (k) =

[

0.4

0.2

]

,

C(k) =

[

−0.2 + 0.1 sin(5k) 0.5

0.1 1

]

, Dd(k) =
[

0.2 0.5
]T

,

Df (k) =
[

1 1
]T

, Bd(k) =
[

0.2 0.5
]T

, L(k) =
[

0 I
]

,

g(k, x(k)) =

[

0.1

0.3

]

×
(

0.2x1(k)ξ1(k) + 0.3x2(k)ξ2(k)
)

,

h(k, x(k)) =

[

0.1

0.1

]

×
(

0.2x1(k)ξ1(k) + 0.3x2(k)ξ2(k)
)

,

where xi(k) (i = 1, 2) is the ith element of x(k), and
ξi(k) (i = 1, 2) are zero mean, uncorrelated Gaussian
white noise processes with unity variances that is also
uncorrelated with d(k) and v(k). It can be easily checked
that the above class of stochastic nonlinearities satisfies

E

{[

g(k, x(k))

h(k, x(k))

]

∣

∣

∣

∣

x(k)

}

= 0,

E

{[

g(k, x(k))

h(k, x(k))

]

[

gT (k, x(k)) hT (k, x(k))
]

∣

∣

∣

∣

x(k)

}

=













0.1

0.3

0.1

0.1

























0.1

0.3

0.1

0.1













T

E

{

xT (k)

[

0.04 0

0 0.09

]

x(k)

}

.

The H∞ performance level γ, the positive definite ma-
tricesPB , PC andR are chosen as γ = 1, PB = I, PC = I
and R = diag{0, 0, 0, 2, 2, 0}, respectively. Let ᾱ1 = 0.9
and ᾱ2 = 0.8. Using the developed computational algo-
rithm and Matlab (with the YALMIP 3.0), we can check
the feasibility of the coupled recursive RDEs and obtain
the desired fault estimate parameters which are listed in
table 1 from the time k = 0 to k = 4. In the simulation,

the initial values of the states are x̄(0) =
[

0.2 −0.6 0
]T

and ˆ̄x(0) =
[

0 0 0
]T

, the exogenous disturbance input

is selected as d(k) = 0.2 cos(k) and the measure noise is
v(k) = 0.3 sin(k).

First, let the matrixAf (k) = I.We assume that the fault
to be estimated is f(k) = 2. Fig. 1 plots the simulation
result on the fault signal and its estimate. Fig. 2 shows
the evolution of the actual fault estimation performance
in terms of the index ζ(N) in (7), from which it can be
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Fig. 1. Fault signal and its estimate
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Fig. 2. Fault estimation performance (ζ(k))
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Fig. 3. Fault signal and its estimate

seen that the index ζ(N) (N = 1, 2, ..., 50) is always less
than the prescribed upper bound 1. Next, in order to
examine the effects of the fault estimation over different
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Table 1
Fault estimate parameters

k 1 2 3 4

F (k)







0.3331 0 0

0 0.2220 0

0 0 0













0.011 0 0

0 0.2220 0.02

0.509 0.001 0













0.0061 0.0032 0.0011

0.0032 0.0107 0

0.0011 0 0.021













0.0011 0 −0.2

0.0026 0.0118 0.021

0 0.1001 0.001







G(k)







0.0000 0.0000

0.0000 0.0000

20000 −1.0000













0.0155 −0.0001

−0.0001 0.0153

−0.0046 0.0023













0.0037 −0.0002

−0.0000 0.0031

−1.0100 2.0252













−0.0046 −0.0001

−0.0001 0.0050

2.0212 −1.0001
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Fig. 4. Fault estimation performance (ζ(k))

time-intervals, we choose the matrix Af (k) as follows:

Af (k) =































I 0 ≤ k ≤ 9

2I k = 10

I 11 ≤ k ≤ 19

−0.5I k = 20

I else

(33)

The fault to be estimated is f(k) = 1. Fig. 3 plots the
fault signal and its estimate. The actual fault estimation
performance is depicted in Fig. 4. It can be seen that the
developed approach provides the desired performance
for the addressed fault estimation problem.

5 Conclusion

In this paper, we have dealt with the finite-horizon fault
estimation problem for a class of nonlinear stochastic
time-varying systems with randomly occurring faults.
All the system parameters are time-varying and the
stochastic nonlinearities under consideration could
cover several classes of well-studied nonlinearities. The
failures occur in a random way, and two sets of Bernoulli
distributed white sequences have been introduced to
govern the fault occurrence probability. The solvabil-
ity of the addressed fault estimation problem has been
dealt with by using the completing squares method and
stochastic analysis techniques. The time-varying pa-
rameters of the fault estimator have been obtained by
solving coupled backward recursive Riccati difference
equations. An illustrative example has been used to

highlight the effectiveness of the proposed fault estima-
tion technology presented in this paper. It should be
noted that one of the future research topics would be to
investigate the problems of fault estimation and fault-
tolerant control for nonlinear polynomial systems [8, 9]
over a finite-horizon.
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