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Abstract. Precocious diagnosis  increases the survival time and patient quality 
of life. It is a binary classification, exhaustively studied in the literature. This 
paper innovates proposing the application of genetic programming to obtain a 
discriminate function. This function contains the disease dynamics  used to 
classify the patients  with as little  false negative diagnosis  as possible. If its 
value is greater than zero then it  means that the patient is ill, otherwise healthy. 
A graphical representation is proposed to show the influence of each dataset 
attribute in the discriminate function. The experiment deals with Breast Cancer 
and Thrombosis & Collagen diseases diagnosis. The main conclusion is  that the 
discriminate function is able to classify the patient using numerical clinical 
data, and the graphical representation displays patterns that allow understanding 
of the model. 

Introduction 

Britain has the worst survival rates for cancer of any nation in the western world. 
The five-year survival rate for breast cancer, if diagnosed early, is 78% in the UK, 
compared with 97% in America and 93% in the rest of the Europe [1]. The study 
found many British patients were diagnosed only when their cancer was at an 
advanced stage and that was more difficult to treat. Early diagnosis  increases the 
survival chances. 

One way to improve early diagnosis  is to develop modeling techniques able to 
identify imperceptible patterns from datasets and support decision making. In 
practice, what has to be done is to input the patient records into the model and obtain 
a forecast of the diagnosis . 

Extensive work has already been carried out in this area (see Table 1). The adopted 
paradigms adapt parameters and threshold values in a pre defined fixed mathematical 
structure. 

Analysis of existing approaches (Table 1) show two main drawbacks: (1) the 
created model of the knowledge does not take into account false negative events. (2) 
the adaptation of a previous defined model structure (such as If-then-else, or Neural 
Network with back propagation, etc) to the problem. The first drawback is that false 
negative and false positives have the same weight in the obtainment of the model. 
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While false positive is a safe condition to the patient because new clinical analysis 
will be carried on, false negative is a dangerous postponing of the diagnosis and 
decreases survival chances. The consequence of a second bottleneck is that some 
problems will not have the best model, e.g. they will have an approximate solution 
using the structure. This approximation masks the dynamics of the disease. 

 
Table 1. Knowledge representation for medical diagnosis (KR – knowledge representation, 

NN – Neural Network, SVM - Support Vector Machin es, EA – Evolutionary algorithm, DT – 
Decision Trees, FZ – Fuzzy, GP – Genetic Programming). 

Author Algorithm Description 
Kononenko 2001 
[2] 

naïve Bayesian 
classifier, NN and 
DT 

KR: statistical parameters, parameter adaptation, and rules  
Only decision tree builders are able to select the appropriate 
characteristics (performance, transparency, explanation, 
reduction, and missing data handling). 

West  2000 [3] NN KR: parameter adaptation 
Several different neural networks were applied and will be used 
as reference to compare with our approach 

Setiono 1996 [4], 
2000 [5] 

rules from NN KR: rules to represent the parametric  model 
Extraction of rules from a trained NN to overcome its black box 
concept 

Flach 2001 [6] 
Joachins[7] 

 SVM  KR: Geometrical approach. 
Optimum margin classifier + kernel. Training examples are 
linearly separable and try to obtain a hyper plane with maximum 
margin from positive and negative points 

Land Jr 2002 [8] EA to configure 
SVM 

KR: optimal hyper planes geometry   
Improvement of the specificity by 45.3% at 100% (missing no 
cancer) when compared with iterative method 

Pendharkar 1999 
[9] 

machine learning  KR: rules 
Rules and the observation of patterns and knowledge acquisition 
for various knowledge base systems.  The application in breast 
cancer diagnosis shows that the method is a viable tool 

Nauck 1999 [10] FZ KR: linguistic rules  
Fuzzy rule based classifier with simple linguistically 
interpretable rules 

Freitas 2002 [11]  EA KR: rules coded in the chromosome. 
Chromosome codes rules If-Then-Else with the attributes and 
the classification can be understood 

Pena-Reyes 1999 
[12] 

EA + FZ KR: rules with optimal transition values. 
Breast cancer diagnosis with high performance 

Proposed method EA(GP) KR: mathematical model of the disease. 
Obtain the discriminate function for the disease to classify the 
patients.  

Our approach differs from all previous approaches because it generates a 
mathematical algebraic model (discriminate function) used to classify the patient data. 
We define the operators that should be used in the model assembly, which results in 
an enormous degree of freedom. Any type of model can be obtained by Genetic 
Programming (GP). 

Discriminate function maps the original multi dimensional space in a one-
dimensional real number image. The output space has a threshold with separate 
diagnostic classes. In this paper the origin was adopted as a threshold: positive values 
mean an ill patient and negative values a healthy patient. 
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A multiplicative weight (termed punishment) is introduced to give more priority to 
false negatives. It guarantees minimal false negatives, which costs accuracy in true 
negative values. Again, this is a safe condition for the patient. 

The experimental results prove the reliability of the proposed approach. However, 
more than 95% accuracy is not enough if the user is not able to understand how the 
algorithm works and what they have learned. To overcome this difficulty, a new 
graphical representation is proposed to analyze the discriminate function and show the 
contribution of each attribute in the fitness function.    

The experimental results used two datasets to evaluate the method: one is the 
Wisconsin Breast Cancer dataset and the other is the Collagen Disease and 
Thrombosis  dataset.  

Genetic Programming 

GP is an optimization algorithm which mimics the evolution and improvement of 
life through reproduction. Each individual contributes with its own genetic 
information to the building of new ones (offspring) adapted to the environment with 
higher chances of surviving. This is the basis of genetic algorithms and programming 
[13], [14], [15], [16]. Specialized Markov Chains underline the theoretical bases of 
this algorithm, changes of states and searching procedures.  

The software we have developed is an adaptation of LilGP [17], where GP is 
structured in a pre-compiled library, with other artificial intelligence procedures, such 
as NN, FZ, adaptive algorithms, etc. Outputs are written in Excel XLS format direct 
from the program, to generate an accessible and functional Human-Computer 
Interface (HCI).  

Chromosome representation. The chromosome represents the model of the 
problem solution using trees. A tree is a model representation that contains nodes and 
leaves.  

Nodes are mathematical operators. We have used multiplication, addition, 
subtraction, and division. Leaves are terminals (the attributes of the dataset and 
numbers). The discriminate function in a GP context is a tree using operators (or so 
called Functions) and leaves (or so called Terminals).  Let us consider the following 
discriminate function:  

X1+3.14 ·  X2+5.3 / X3 
In the tree representation it can be rewritten as following: 

(+ X1 (+ (·  3.14  X2) (/ 5.3  X3))) 
where X1, X2, and X3 are the attributes of the clinical data, and multiplication(· ), 
addition(+), subtraction (-), and division(/) are the operators. Replacing the values of 
the clinical data in the equation results in a number which should be positive (the 
patient is ill) or negative (the patient is healthy). 
Genetic operators. Trees are manipulated through genetic operators. The crossover 
operator points a tree branch and exchanges it with another branch and obtains new 
trees. The mutation operator changes the branch for a random new branch. The length 
of the chromosome is variable.  
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The probability of crossover is 60% and the probability of mutation is 20%. We 
adopt a high value of the mutation probability to spread the population over all 
solution space. 
Fitness function. Fitness function defines the quality of chromosome as a solution to 
the problem. It is a numerical positive value. The dataset is divided in two parts: one 
is for training and the second is for validation. The training dataset is used to obtain 
the model and the validation dataset is used to measure the accuracy of the model 
with data that was not used in training. 

The fitness function evaluates how good the diagnostic model coded in 
chromosome is , over all training dataset using Receiver Operating Characteristics 
(ROC) [18]. 

ROC criterion value is sliding in the output projection and the number of true 
negative (NTN), true positive (NTP), false negative (NFN), and false positive (NFP):  
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where á is the Sensitivity, and â is the Specificity. Sensitivity is the probability that a 
test result will be positive when the disease is present (true positive rate, expressed as 
a percentage). Specificity is  the probability that a test result will be negative when the 
disease is not present (true negative rate, expressed as a percentage).    

The fitness function F used in the disease diagnostic is the accuracy of the model, 
with a weight over false negatives predictions: 
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where ó is the overprice for false negative (high risk condition), or punishment 
weight, Nok is the number of correct forecast, NFP  is the number of false positives and 
NFN is the number of false negatives. 

Diagnosis of severe diseases using discriminate function 

To analyze the knowledge represented in the discriminate function, the separation 
between positive and negative cases and the influence of each variable, we introduced 
a graph of the partial derivative with respect to a variable by the difference in the 
discriminate function if this variable is set to zero. Each axis  of the function is defined 
as: 
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where 2· ä is the step of the numerical derivative in axis X; x,y,… are attributes of the 
dataset and z is the discriminate function. On the Y axis, the value of the attribute less 
itself set to null is used to evaluate its effects in the total value of the discriminate 
function.   

The X axis shows the behavior of the patient, if he is better (negative values) or 
worse (positive values). The Y axis shows the contribution of the variable to the 
improvement of the patient condition (negative value) or to aggravate their condition 
(positive values). The ideal conditions are both negative values, and the sickly 
conditions are both positive values.  

We termed this graphic as Disease Pathway Graphic - DPG, because it reproduces 
the pathway the patients follow during their recovery in the plane defined by the 
transformation in Eq. 3. 

Experimental results 

The following subsections present the experimental results for breast cancer from 
Wisconsin University [19], [20] and Collagen Disease and Thrombosis from Chiba 
Hospital [21], [22]. In both cases, GP was applied to obtain the discriminate function 
with the training dataset and the test is done applying a validation dataset to evaluate 
its effectiveness. 

Breast-cancer testing is an important application because it is crucial to develop a 
reliable but inexpensive test to identify women with high risk for a more expensive 
and accurate clinical procedure.    

Collagen diseases are auto-immune diseases. Patients generate antibodies attacking 
their own bodies. For example, if a patient generates antibodies in lungs, he/she will 
chronically lose the respiratory function and finally lose life. The disease mechanisms 
are only partially known and their classification is still fuzzy. Some patients may 
generate many kinds of antibodies and their manifestations may include all the 
characteristics of collagen diseases. 
Experiment 1: Breast cancer diagnostic. The Wisconsin Diagnostic Breast Cancer 
[19], [20] contains 679 events (236 ill and 443 healthy records) without any missing 
values. The dataset contains the following attributes: Clump Thickness (clth), 
Uniformity of Cell Size(uncz), Uniformity of Cell Shape (uncs), Marginal Adhesion 
(mara), Single Epithelial Cell Size (sepc), Bare Nuclei (barn), Bland Chromatin 
(blac), Normal Nucleoli (norn), Mitoses (mito), Class (2 benign 4 malignant). Each 
attribute is an integer between 1 and 10. 

An input routine reads the data and stores it in memory and fitness function 
evaluates the accuracy of the discriminate function of each individual. The 
discriminate function is checked against the type of tumor (benign or malign) to find 
the fitness function (Eq. 2).  

The first study was the effect of punishment factor in the sensitivity. The complete 
dataset is modeled using GP to obtain the discriminate function with different values 
of punishment in the fitness function (Eq. 2). The results shown in Table 2 present the 
effect of different values of punishment weight in sensitivity and specificity. 
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The highest value of sensitivity (with lower false negative) is obtained when 
punishment is equal to 10 (see bold values in Table 1). The occurrence of false 
negatives decays for values greater than or equal to 5, and oscillates around 4 false 
negative values, without vanishing for 500 generations of 100 individuals. 

 

Table 2. Study of punishment value (column Punishment) for breast cancer modelling. Bold 
value point to the highest sensitivity value (á is the sensitivity and â is the specificity). 

Punishment  NTN NFP NTP NFN á â 
1 425 18 226 10 95.7 95.9 
3 417 26 227 9 96.1 94.1 
5 412 31 231 5 97.8 93.0 
10 420 23 234 2 99.1 94.8 
15 402 41 231 5 97.8 90.7 
20 406 37 233 3 98.7 91.6 

Punishment equal to 10 is used in a run to obtain the model where the number of 
false negatives is null. This  experiment will be used to generate the Disease Pathway 
Graphic. The maximum number of generations was 2000, and the best solution was 
obtained after 543 generations. The discriminate function was: 

(barn + uncs) (-34.72 + barn + clth + barn clth - barn sepc + norn / uncs + clth * clth  / 
((85.53/ blac - 2 blac + mara - mito + blac sepc) (sepc + uncs)) + blac (sepc + uncs) +  

barn uncz + (mara - uncs)/ (sepc/norn + uncz)) 

(4) 

The number of true negatives is  426, false positives is  17, and true positives is  236. 
The accuracy is 97.5%. 

Breast cancer was studied by many authors and is a benchmark. We will follow the 
same methodology of West [3] to compare the results and accuracy. To obtain the 
discriminate function for diagnostics proposes  the original data is divided into 10 
blocks, using each block to test while the rest are used to train the algorithms. The 10 
test blocks form all original databases used in the test stage.  

Table 3. Different approaches to cancer diagnosis  [3]  

Method OK (%) % False negative  % False positive  
Multilayer perceptron 0.957206 0.087448 0.018594 
General regression 0.967647 0.054393 0.020408 
Radial basis function 0.970441 0.030126 0.029252 
Mixture of experts 0.962941 0.062762 0.023129 
Logistic regression 0.9633968 0.0711297 0.018018 
Logistic 0.972182 0.029289 0.027027 
K search neighbor 0.967789 0.033473 0.031532 
Kernel 0.95022 0.117155 0.013514 
GP (proposed) 0.963235 0.008368 0.05180 
The software should run until a model is found without fals e negative. However, it 

is not a guarantee that new data will be modeled without false negatives. In this 
experiment we used the same parameters of the study of punishment weight (100 
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individuals , 500 generations, 60% crossover probability and 20% mutation 
probability). This will give an idea of the usual level of false negatives.  

The comparison with several techniques from [3] shows that all these techniques 
have more false negatives than the discriminate function using GP.  Table 3 shows the 
different results for different data mining techniques. 

The occurrence of false negative is the least value of available approaches without 
compromis e of the total accuracy, paying the price of a greater false positive than the 
other approaches. For example, the average false negative of the other methods is 
0.60%. If the method were applied in London (9 million people) there were 543,000 
patients false negative against “only” 74,700 using our method. Let us consider that 
the algorithm can be improved for a null false negative model. 

This experiment shows a good level of accuracy with low false negatives. The 
algorithm can model the disease with an algebraic equation which reproduces the 
dynamics of the disease. However, the model (Eq. 4) does not allow the user to 
understand the importance of each attribute in the diagnostic, and the effect it causes 
in the model.  
Analysis of the disease model. To study the disease dynamics model of breast 
cancer, we use all true negative events  and all true positive events  to draw the 
graphics of disease pathway (transformed with Eq. 3) in Fig. 3 obtained with Eq. 4. 
There is a different pattern for ill and health patients. 

Healthy patients are clustered close to the origin, while ill patients are spread under 
a pattern over the first quadrant. The end of the scale is fixed to the same value to all 
variables to show the comparative behavior. 

The attributes “Marginal Adhesion (mara)” and “Normal Nucleoli (norn)” are 
distributed around the origin and do not influence the diagnosis  at all. The dataset fail 
to provide a history of each patient, to plot its temporal evolution. However, this can 
be analyzed using the thrombosis dataset, if the missing values problem were solved. 
In this case all 57,545 records would be used in the experiment, and not only 261 or 
1988 records.  
Experiment 2: Collagen disease and Thrombosis diagnostic. The purpose of this 
experiment is  to apply the method to a more complex dataset [21], [22]. There are 
three degrees of disease diagnostic: mild, severe and most severe. The dataset differs 
from breast cancer because it contains missing values, few elements for positive 
diagnosis, more than one degree of disease, and noisy data. 

Our approach has been applied to the dataset available with information on 
concentration compounds in the blood exam (lab – 57,545 records - and antibody – 
773 records - exams). To train the software, the same examination date and patient 
was selected from both datasets  forming a dataset with 261 records (231 none and 30 
yes).  

GP used 11,072 generations to find the best solution (the limit was 40,000 
generations), with a population  of 100 individual, 60% crossing over probability, and 
20% mutation probability.  In this experiment the punishment weight for false 
negative is 20. 

To test the dis criminate function (validation) with data that was not used in 
training, we accept records where Lab and antibody date exams differs into one 
month totalizing 1988 records (1564 none and 424 yes).  
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Attribute Negative (Health) Positive (ill) 
Clump 
Thickness 
(clth) 

  
Uniformity 
of Cell 
Size 
(uncz) 

  
Uniformity 
of Cell 
Shape 
(uncs) 

  
Single 
Epithelial 
Cell Size 
(sepc) 

  
Bare 
Nuclei 
(barn) 

  
Bland 
Chromatin 
(blac) 

  
Mitoses 
(mito) 

  
Fig. 1. Different behavio r of the variables in the disease pathway graphics. 

This dataset contains missing values and undefined values such as < 3.0. Missing 
values were filled with the average of each missing attribute. Undefined values were 
replaced by the threshold value.  

Table 4 shows that there is consistency between the training and validation sets, 
but it is possible to see that the “none” events pay the price of the punishment into the 
false negative case.  
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Table 4. Discriminate function for Collagen Disease.Total number of events (NTot), number of 
correct predictions (NCP) and percentage of correct prediction over total number (% NCP ) for 
each disease degree in training and validation datasets runs. GP parameters are population size 
(λ), number of generations (Ngen), crossover probability (p c), and mutation probability (pm). 

 Training Validation GP parameters 
Diagnostic NTot NCP % NCP NTot NCP % NCP 

λ 100 None 231 172 74 1564 968 61 
Ngen 3924 Mild 1 1 100 1 1 100 
pc 60 % Severe 11 10 90 250 231 92 
pm 20 % Most severe 18 18 100 173 168 97 
In validation results, the number of false negative is 24 (1.2%), with represent risk 

for the patient. The accuracy of the method is 76% for training and 68% for 
validation.  

There are two possible explanations for these results: the effect of missing values 
and the use of average values; the low number of diseases in the training dataset (only 
11% of the cases are ill patients) and the low number in the training dataset (261 
records). 

However, the method was able to obtain a model for the disease with low false 
negative.  

Summary and Conclusion. 

This paper presents an approach for classification using a mathematical 
discriminate function. To reduce false negative, different punishment values were 
tested. It shows that its value is critical below a threshold and does not affect the 
result accuracy after this point. 

With the punishment value, we obtained the discriminate function for breast cancer 
and collagen disease with good accuracy, showing that the method can be applied to 
model diseases using an algebraic equation of the attributes. To extract information 
from the model, we proposed a graphical representation of the discriminate function 
that allows visualization of each attribute and its effects in the discriminate function. 
The graphical presentation of each variable gave a better understanding of each 
attribute contribution and would help to clarify the knowledge acquire by the model. 
Due to the capability to predict the disease, the model contains the dynamics of the 
disease under study and this approach can contribute to the improvement of diseases 
treatment. Thanks to Susan McCracken and Owen Parry for proof reading in this 
paper. 
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