
Implementation relations for testing

through asynchronous channels

Robert M. Hierons

Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex,
UB8 3PH

Email: rob.hierons@brunel.ac.uk

This paper concerns testing from an input output transition system (IOTS) model
of a system under test that interacts with its environment through asynchronous
first in first out (FIFO) channels. It explores methods for analysing an IOTS
without modelling the channels. If IOTS M produces sequence σ then, since
communications are asynchronous, output can be delayed and so a different
sequence might be observed. Thus M defines a language Tr(M) of sequences
that can be observed when interacting with M through FIFO channels. We define
implementation relations and equivalences in terms of Tr(M): an implementation
relation says how IOTS N must relate to IOTS M in order for N to be a correct
implementation of M . It is important to use an appropriate implementation
relation since otherwise the verdict from a test run might be incorrect and because
it influences test generation. It is undecidable whether IOTS N conforms to IOTS
M and so also whether there is a test case that can distinguish between two IOTSs.
We also investigate the situation in which we have a finite automaton P and either
wish to know whether Tr(M) ∩ L(P ) is empty or whether Tr(M) ∩ Tr(P ) is empty
and prove that these are undecidable. In addition, we give conditions under which

conformance and intersection are decidable.
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1. INTRODUCTION

This paper relates to an approach to software testing
called model based testing (MBT), in which testing
is based on a model of the required behaviour of
the system under test (SUT) or some aspect of this.
One of the benefits of MBT is that several of the
testing activities can be automated, specifically those of
generating test cases, running test cases, and returning
a verdict (checking whether the behaviour observed was
consistent with the model). This has led to significant
interest in MBT, with there being industrial evidence
of its benefits [1].

An approach to MBT will use an implementation
relation, which specifies what it means for an SUT to
conform to the model M . The implementation relation
is required in order to determine the verdict of a test
run (whether it is pass or fail) but also influences test
generation since it defines what potential behaviours are
faulty. An implementation relation is usually defined
as a required relationship between two models: the
(specification) model M and an unknown model N that
models the SUT. It is normal to assume that the SUT
can be represented using the modelling notation use
for M . Most MBT approaches are based on models
expressed as either finite state machines (FSMs) or

input output transition systems (IOTSs); while the
tester might write a model in a higher-level language,
tools will normally convert the model into an FSM or
an IOTS. There has therefore been much interest in
testing from an FSM or an IOTS (see, for example,
[2, 3, 4, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13]).

IOTSs are labelled transition systems in which we
distinguish between input and output and are more
general than FSMs since, for example, they do not
require that input and output alternate. An IOTS is
essentially defined by a set of states and transitions
between states: each transition is labelled with either an
input or an output. The distinction between input and
output, made in IOTSs, is important for testing since
there is an asymmetry: the tester controls the input
and the SUT controls the output. Work on testing from
an IOTS often assumes that it is possible to determine
whether the SUT is in a state from which it cannot
produce an output; this is called quiescence and is
represented by δ. It is also normal to assume that the
SUT can always receive input (it is input-enabled) and
in this context the standard implementation relation is
ioco [12].

Most work on testing of state-based systems assumes
that these systems interact with their environment
through synchronous communication (see, for example,
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[14, 1, 12, 13]). This paper is instead concerned
with systems that communicate with their environment
through asynchronous first in first out (FIFO) channels.
This situation is relatively common since many systems
interact with users or other systems through networks.
In this context there may be a single channel or two
channels but we focus on the problem, introduced
by such a situation, that there can be a (possibly
unpredictable) delay introduced by the network and so
the times at which events are observed by the SUT
and the test tool are different. An alternative notion
of interactions being asynchronous is where the test
generation tool cannot process outputs as fast as they
are produced by the SUT. This alternative notion of
asynchronous interaction causes fewer problems: most
test tools have an adapter that connects the tool
to the SUT and the adapter can buffer the outputs
produced by the SUT. However, such buffers do not
overcome problems caused by communicating with an
SUT through a network where communications are
asynchronous.

There are alternative sources of the problem
considered in this paper. For example, the order in
which outputs are observed might be affected by the
unpredictable behaviour of a thread scheduler. The
order of outputs might also not be specified since,
for example, the order in which particular values are
observed or received at the user interface may not
matter. While we focus on the situation in which
reordering of events is caused by message latency, it
seems likely that the work in this paper can be extended
to scenarios such these, possibly by introducing ideas
developed in the context of distributed testing (see, for
example, [15, 16]).

Asynchronous communications introduces significant
challenges since a sequence of events observed need not
be that produced by the system: input is received by
the system after it has been sent by the environment
and output is observed by the environment after it has
been produced. Let us suppose, for example, that a
system initially sends output !o, then receives input
?i and sends output !o′ in response. Then the system
produced the sequence !o?i!o′ but, since output can be
delayed, the environment might observe ?i!o!o′. If we
use implementation relations defined for synchronous
communications and !o?i!o′ is a behaviour of the
specification and ?i!o!o′ is not, then the observation of
?i!o!o′ would lead to the verdict fail even though the
SUT behaved in a manner allowed. Note, however,
that we assume that communications are FIFO and thus
sequence ?i!o′!o cannot be observed if the SUT produces
!o?i!o′ since this would require output !o′ to ‘overtake’
output !o.

In this paper we assume that we have a model M of
a system, written as an IOTS, and that the interaction
of the system with the environment will be through
FIFO channels. Most approaches to MBT, where the
SUT interacts with the tester through asynchronous

channels, augment the specification M with models of
the channels (see, for example, [17, 18, 19]), although
the problem of deciding whether an observation is
consistent with the specification has been investigated
[20]. Since the addition of these channels can lead to
an infinite state space, or an exponential increase if
there are bounded channels, testing is usually on the
fly: parts of the state space are only explored when
required. However, in deciding whether one IOTS N

conforms to another IOTS M we have to explore the
entire behaviour of N . We also have to consider the
entire behaviour of N if we are looking for test cases that
distinguish a potential (faulty) implementation that
behaves like N from a specification M . This is highly
relevant if we have a fault domain: a set F of models
with the property that the tester believes that the SUT
behaves like an unknown member of F . If such a set F
is finite then there is the potential to produce a finite
test suite that is guaranteed to determine correctness,
subject to the SUT actually behaving like an element
of F .

There has been work that has defined equivalences
for systems that interact with their environment
through FIFO channels and that does so without
introducing models of the channels [21, 22, 23]. Three
equivalences have been studied [21]. One equivalence,
∼Q corresponds to some approaches that compose
the IOTS with models of the queues. One potential
problem with ∼Q is that it requires the environment
to be able to determine when the system is quiescent
(when it cannot change state or produce output without
receiving input) and this may be problematic when
communicating through asynchronous channels unless
we have information regarding message latency. In a
second equivalence, ∼io, an input sequence is applied
and the resultant output sequence is recorded but the
overall sequence of inputs and outputs is not observed.
Thus, ∼io is a weak equivalence: it would not note,
for example, that the observation of output !o before
input ?i is not consistent with a specification in which
!o should be produced after ?i. It transpires that both
of these equivalences are undecidable [21]. Under a
third equivalence, ∼ioblock, sequences of pairs of input
and output sequences are observed. While this is a
stronger equivalence than ∼io, we will see that there
is still some loss of relevant information regarding the
order in which inputs and outputs are observed. In
addition, both ∼io and ∼ioblock make observations in
quiescent states: this both means that there is an
implicit requirement to be able to observe quiescence
but also that these equivalences may not be suitable
when considering systems that can fail to reach a
quiescent state. Simple examples of systems that can
fail to reach a quiescent state are a clock that outputs
‘tick’ repeatedly and a screen saver. In this paper we
define new implementation relations and equivalences
that do not require us to observe quiescence.

In this paper we define the language Tr(N) for an



Implementation relations for testing through asynchronous channels 3

IOTS N . This is the set of sequences that can be
formed from sequences of N through ‘delaying’ output
and thus through sequences of transformations of the
form !o?i →?i!o for input ?i and output !o. Thus, Tr(N)
models the fact that an output is observed after it is
sent by the process N being considered. This leads to
the implementation relation under which N conforms
to M if and only if Tr(N) ⊆ Tr(M). However, it is
also possible that a sequence observed is formed from
a sequence of N through two additional factors: input
has been sent (and so observed by the environment) but
has not been received by N and output has been sent by
N but has not yet been observed by the environment.
We let Trp(N) denote the set of such sequences. The
sequences in Trp(N) that are not in Tr(N) can be seen
as being partial observations. However, unless we have
bounds on the latency caused by message transmission,
in observing a system we cannot know whether an
observed sequence from Trp(N) is in Tr(N). Thus,
we obtain an addition implementation relation under
which N conforms to M if and only if Trp(N) ⊆
Trp(M). Interestingly, it transpires that these two
implementation relations are equivalent: Trp(N) ⊆
Trp(M) if and only if Tr(N) ⊆ Tr(M).

Having defined an implementation relation, we
investigate two problems. First, we consider the
situation in which M is a specification of how a
system should behave, we have another IOTS model
N , and we want to know whether N is a suitable
implementation or design of M . This reduces to
determining whether Tr(N) ⊆ Tr(M). In the context
of software testing, this problem also corresponds to
that of asking whether there is any test case that
is capable of distinguishing between N and M when
communicating through FIFO channels, a problem that
is particularly relevant if M is a specification and N

models a potential (possibly faulty) implementation.
We prove that the problem of determining whether
Tr(N) ⊆ Tr(M) is generally undecidable but that it is
decidable in low-order polynomial time for alternating
IOTSs, a type of model and system that has been widely
studied (see, for example, [24, 25, 26]).

The result, that Tr(N) ⊆ Tr(M) is generally
undecidable, has consequences for testing as well as
verification. One approach to reasoning about test
effectiveness is to use a fault domain F , which is a
set of models that describes the possible behaviours
of the system under test (SUT) (see, for example,
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). Given such a fault
domain F and a test suite T , we can ask whether T
distinguishes all faulty elements of F from M . Fault
domains have received particular attention in testing
from an FSM, the standard fault domains for FSMs
placing upper bounds on the number of states of the
(unknown) FSM that represents the SUT. As originally
noted by Moore [11], it is then possible to produce a test
suite that distinguishes each faulty element of F from
the specification, since conformance is decidable and F

is finite. While it generally is not feasible to produce
test suites by separately considering the elements of the
fault domain, this observation led to the development
of techniques for generating test suites with guaranteed
fault detection (see, for example, [27, 3, 4, 5, 9, 10]).
The result regarding Tr(N) ⊆ Tr(M) suggests that
it will be difficult to extend this approach to testing
from an IOTS when there are asynchronous FIFO
communications since it is undecidable whether an
element of a fault domain conforms to the specification.

We can represent the problem of deciding whether
Tr(N) ⊆ Tr(M) in terms of semi-commutations. A
semi-commutation is defined by a possibly asymmetric
independence relation I over the alphabet Σ. Having
(a, b) ∈ I denotes the possibility of rewriting ab to form
ba. Semi-commutations are a generalisation of partial
commutations, in which I is required to be symmetric.
Since inclusion is known to be undecidable for rational
partial commutations1, it is also undecidable for
rational semi-commutations. However, the problem
we investigate in this paper has an anti-symmetric
independence relation I = O × I in which I and
O partition the alphabet and so is a class of semi-
commutations in which I cannot be symmetric. Thus,
decidability results regarding partial commutations do
not apply. In proving that the implementation relations
are undecidable we therefore also prove that inclusion is
undecidable for rational semi-commutations where the
independence relation is of the form Σ1×Σ2 for Σ1 and
Σ2 that partition the alphabet Σ.

In addition to conformance, we consider the situation
in which we have an IOTS model M and a finite
automaton P that defines a property of interest.
We assume that we wish to know whether there is
a sequence of observations that can be made when
interacting with M through FIFO channels that can
also be made when interacting with P through FIFO
channels. Thus, we wish to know whether Tr(M) ∩
Tr(P ) = ∅. This can be seen as a problem of deciding
whether there are observations that can be made of M
that are consistent with P , a problem that might be of
interest if P models some undesirable behaviours and
we wish to know whether the observations regarding
M can be consistent with such behaviours. Similar
problems have been considered for message sequence
charts [28, 29]. We then consider the situation in which
we wish to know whether there is any sequence of
observations, that can be made when interacting with
M , that is in the language defined by P . Thus, we
wish to know whether Tr(M) ∩ L(P ) = ∅, where L(P )
denotes the set of sequences in the regular language
defined by P . In this situation, the sequences in L(P )
might correspond to sequences that are undesirable
since, for example, M will interact through FIFO

1A rational partial commutation is defined by a finite
automaton A and an independence relation I. The language
defined by this is the set of sequences that can be formed from
sequences in L(A) through transformations based on by I.
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channels with another system M ′ and M ′ should not
receive such sequences. We prove that these problems
are generally undecidable but can be solved in low-order
polynomial time if the models are alternating.

This paper makes the following contributions.
First, it defines new implementation relations and
equivalences for IOTSs that model systems that
interact with their environment through asynchronous
FIFO channels. Unlike previous approaches, these
implementation relations and equivalences do not
require the observation of quiescence and do not require
us to explicitly model the communications channels.
It also proves that conformance and equivalence are
generally undecidable but can be decided in low-order
polynomial time for alternating models. An additional
consequence of the results is that it is undecidable
whether there is a test case that distinguishes two
IOTSs M and N when communicating through
asynchronous FIFO channels. In proving these results
we also proved that inclusion and equivalence are
undecidable for rational semi-commutations in which
the independence relation is of the form Σ1 × Σ2

where Σ1 and Σ2 partition the alphabet. Given finite
automaton P we also consider the problems of deciding
whether Tr(M)∩L(P ) is empty and whether Tr(M)∩
Tr(P ) is empty, proving that these are undecidable in
general but can be solved in low-order polynomial time
for alternating models.

The paper is structured as follows. Section 2
describes preliminary material. In Section 3 we define
implementation relations and in Section 4 we explore
the decidability of these: we prove that they are
generally undecidable but are decidable in low-order
polynomial time for alternating models. Section 5 then
considers the problem where we want to know whether
any elements of Tr(M) are in a language defined by
a finite automaton and proves that the two forms of
this problem are undecidable. Finally, Section 6 draws
conclusions and discusses possible future work.

2. PRELIMINARIES

In this section we start by describing IOTSs and give
associated definitions and we then move on to discuss
asynchronous communications.

2.1. Input Output Transition Systems

We will be concerned with systems that interact
with their environment through asynchronous FIFO
channels. Throughout the paper we use I to denote
the input alphabet of the system and O to denote its
output alphabet. We let Act = I ∪ O denote the set
of events. We use the normal convention in which the
name of an input is preceded by ? and the name of an
output is preceded by !.

An Input Output Transition System (IOTS) is
defined by a set of states with transitions between them,

with each transition having a label that is either an
input or an output2. We restrict attention to IOTSs
that have finite sets of states, inputs and outputs
since we are concerned with decidability and complexity
issues.

Definition 2.1. An IOTS M is defined by a tuple
(S, s0, I, O, h) in which S is a finite set of states; s0 ∈ S

is the initial state; I is the finite input alphabet; O is the
finite output alphabet; and h is the transition relation
of type S × Act ↔ S. For s ∈ S and a ∈ Act, h(s, a)
denotes the set of s′ ∈ S such that (s, a) and s′ are
related under h. If s′ ∈ h(s, a) then M can move from
state s to state s′ through a ∈ Act and this defines the
transition (s, a, s′) with starting state s, ending state
s′, and label a. A transition with the same starting
and ending states is a self-loop transition. An IOTS
is input-enabled if for every state and input there is at
least one associated transition: for all s ∈ S and ?i ∈ I,
h(s, ?i) 6= ∅.

Equivalences have been defined for IOTSs that are
not input-enabled and communications is asynchronous
[21] but these correspond to defining equivalences on
input-enabled IOTSs formed by completing the process
in the following way: add an error state se and self-loops
labelled with inputs in se and for each (s, a) ∈ S ×Act

such that h(s, a) = ∅, add the transition (s, a, se).
Thus, we can instead transform IOTSs to make them
input-enabled and define equivalences on the resultant
IOTSs. Since this process adds only one state to an
IOTS, and considering input-enabled IOTSs simplifies
the exposition, we assume that all IOTSs considered are
input-enabled.

Definition 2.2. Given an IOTS M , a path ρ =
(s1, a1, s2) . . . (sk, ak, sk+1) is a sequence of consecutive
transitions. We say that s1 is the starting state of ρ,
sk+1 is the ending state of ρ, and a1 . . . ak is the label
of ρ. Given IOTS M we let L(M) denote the set of
labels of paths of M that have starting state s0. We use
ǫ to represent an empty sequence. A path is a cycle if
it has the same starting and ending states.

Work on testing from an IOTS through synchronous
channels often assumes that we can observe quiescence:
the situation in which the system cannot progress
(change state and/or produce output) without receiving
additional input [12]. However, this may be problematic
when interacting with a system through asynchronous
channels, since message latency can be unpredictable,
and so we do not include quiescence in our set of
observations.

We will also consider finite automata (FA).

Definition 2.3. A FA P is defined by a tuple
(S, s0, A, h, F ) in which S is a finite set of states; s0 ∈ S

2Sometimes internal actions, with label τ , are allowed.
However, to simplify the exposition we do not consider internal
actions.
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is the initial state; A is the finite alphabet; h is the
transition relation of type S × A ↔ S; and F ⊆ S is
the set of final states. Given FA P , we let L(P ) denote
the set of labels of paths of P that have starting state s0
and ending state in F .

Since FA can be considered to be IOTS in which we
have a set of final states and we do not differentiate
between input and output, we reuse notation and terms
defined for IOTSs when discussing FA.

Finally, we will consider a special type of model in
which input and output alternate, a condition that has
received some attention [24, 25, 26]. In an alternating
IOTS (AIOTS) the state set S is partitioned into
subsets SI and SO such that the initial state is in SI ,
all transitions from states in SI are labelled with inputs
and reach states in SO, and all transitions from states
in SO are labelled with outputs and reach states in SI .
Clearly, an AIOTS cannot be input-enabled as defined
for IOTSs. Thus, we say that an AIOTS is input-
enabled if all inputs are possible in each input state and
we assume that any AIOTS considered is input-enabled.
We can similarly define alternating FA.

2.2. Asynchronous observation and semi-

commutation

In interacting through asynchronous (FIFO) channels
with a system, that behaves like an IOTS M , the
sequence σ observed need not be one from L(M)
since output is observed by the environment after it is
produced by the system. Thus, a sequence σ might be
observed if there is some σ′ ∈ L(M) such that we can
produce σ from σ′ by delaying output. The delaying
of output can be represented by transformations of the
form σ1!o?iσ2 → σ1?i!oσ2 for input ?i and output !o
and we can produce σ from σ′ by delaying output if
we can transform σ′ into σ using a sequence of such
transformation steps.

Example 1. Consider sequence σ =!o?i!o produced
by the SUT. Since output can be delayed, !o might not
be observed until after ?i is sent by the tester and so
the tester might observe the sequence σ′ =?i!o!o. By
definition, σ → σ′. However, this is the only sequence
other than σ that can be observed in interacting with
an SUT through FIFO channels if σ is produced by the
SUT and so, for example, the observation !o!o?i could
not occur if the SUT produces σ.

Given an alphabet Σ, a partial commutation is
defined by a symmetric and anti-reflexive independence
relation I ∈ Σ × Σ, where (a, b) ∈ I implies that
ab and ba are equivalent. The complement of I,
D = (Σ × Σ) \ I, is the dependence relation. The
independence relation defines an equivalence relation
on sequences: σ and σ′ from Σ∗ are equivalent given
I if we can transform σ into σ′ using a sequence
of transformations of the form σ1abσ2 → σ1baσ2 for
(a, b) ∈ I. An equivalence class under this relation is

said to be a trace and the study of such traces is often
called Mazurkiewicz trace theory [30, 31].

When considering asynchronous communication, the
notion of independence is not symmetric since we have
rules of the form σ1!o?iσ2 → σ1?i!oσ2 but no rules of the
form σ1?i!oσ2 → σ1!o?iσ2. It therefore corresponds to a
semi-commutations rather than a partial commutation,
a semi-commutation having an independence relation
I that need not be symmetric [32]. As before, given
a sequence σ ∈ Σ, we have a class [σ〉 of sequences
that can be formed through applying transformations
defined by I to σ. However, since I need not be
symmetric, [σ〉 need not be an equivalence class.

Example 2. Consider the sequence σ =!o!o?i!o
produced by the SUT and the sequence σ′ =?i!o!o!o. It
is straightforward to see that σ cannot be transformed
into σ′ through one transformation of the form
σ1!o?iσ2 → σ1?i!oσ2. However, !o!o?i!o →!o?i!o!o →
?i!o!o!o and so σ′ ∈ [σ〉. In contrast, σ 6∈ [σ′〉.

We can now express the set of observations, that
can be made when communicating with IOTS M

through asynchronous FIFO channels, in terms of
a semi-commutation. This semi-commutation has
independence relation I = O × I, since output can be
delayed but the channels are FIFO, and dependence
relation D = (I×O)∪ (I × I)∪ (O×O). Note also that
this is a restriction on the notion of semi-commutations
since I is anti-symmetric and not just asymmetric and
also because I and O partition Act.

Definition 2.4. Given IOTS M we let Tr(M)
denote the set of sequences that are in classes defined by
elements of L(M). Thus, Tr(M) =

⋃
σ∈L(M)[σ〉. This

is the set of sequences that can be formed from sequences
in L(M) through delaying output. If σ′ ∈ [σ〉 then we
write σ  σ′.

Implementation relations will be defined in terms of
Tr(M).

3. IMPLEMENTATION RELATIONS AND

EQUIVALENCES

In this section we explore possible implementation
relations for testing from an IOTS model when we
communicate with the SUT through asynchronous
channels. In Section 4 we explore the problem of
deciding whether one model conforms to another under
such an implementation relation. Recall that an
implementation relation defines the situations in which
one model conforms to another and is required in order
to determine the verdict of testing: the use of the wrong
implementation relation could either lead to failures
being missed (verdict fail should be produced but is
not) or unsound testing (a fail verdict is produced even
though the behaviour observed should be one allowed).
The implementation relation used also influences test
generation since it defines what constitutes a faulty
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implementation.

Recent work has discussed three equivalences for
asynchronous testing [21]. One equivalence, ∼Q,
corresponds to some approaches that compose the IOTS
with models of the queues. However, ∼Q requires the
environment to be able to observe quiescence. Since we
do not make this assumption, ∼Q is not suitable for our
purposes. In a second equivalence, ∼io, an observation
is a pair (u, v) in which u is an input sequence and v

is an output sequence: the overall sequence of inputs
and outputs is not considered. It is required that the
sequences u and v are projections of a sequence from
Act∗ that takes the process to a quiescent state but
otherwise there is no need to observe quiescence. As
noted earlier, ∼io is a weak equivalence since it would
consider !o?i to be acceptable if ?i!o is a behaviour of
the specification even if !o?i is not. The observation of
separate sequences of inputs and outputs is consistent
with some work on testing [33] but typically we instead
observe a sequence of inputs and outputs since this can
provide additional information.

Under a third equivalence, ∼ioblock, sequences of pairs
of input and output sequences are observed. When con-
sidering IOTS M , such a sequence (u1, v1) . . . (uk, vk)
must have the property that there is a sequence σ =
σ1 . . . σk ∈ L(M) such that σ labels a path ρ of M from
the initial state of M where for all 1 ≤ i ≤ k we have
that ui and vi are projections of σi onto I and O respec-
tively and also that the prefix of ρ with label σ1 . . . σi

reaches a quiescent state. Again there is a potential
loss of information since this may not give all of the
relevant information regarding the order in which in-
puts and outputs are observed (see Example 3 below).
It transpires that ∼ioblock is decidable when consider-
ing well-formed IOTSs (WIOTSs) [21]. An IOTS is a
WIOTS if the set S of states can be partitioned into a
set of input states (SI) and a set of output states (SO).
All transitions from states in SI are labelled with inputs
and all transitions from states in SO are labelled with
outputs. However, it was left open whether ∼ioblock is
decidable in general. Since the previously defined equiv-
alences all have some limitations, and all either explic-
itly or implicitly require the observation of quiescence,
we now explore implementation relations and equiva-
lences based on semi-commutations. Similar to ∼io and
∼ioblock we define these in terms of IOTSs without com-
posing them with models of queues. In this paper we
assume that sequences of inputs and outputs are ob-
served. The following shows that ∼io and ∼ioblock are
too weak.

Example 3. Consider the IOTSs M1 and N1 shown
in Figure 1. Here states are represented by circles, with
the initial states being represented by the circles at the
top, and an arc with label a represents a transition with
label a. For each IOTS there are only two quiescent
states: the states where all outgoing transitions are self-
loops. An observation under ∼io is a pair containing
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FIGURE 1. IOTSs M1 and N1

an input sequence and an output sequence. Thus, for
example, the observations of N1 include pairs such as
(?i, !o!o!o) and (ǫ, !o!o!o) but (ǫ, !o) is not an observation
since there is no path of N1 that reaches a quiescent
state and has these projections. Both IOTSs give two
types of possible observation under ∼io and ∼ioblock:
the pairs (ǫ, !o!o!o) and (?i, !o!o!o′) with arbitrarily
many instances of ?i added due to the self-loops. Thus,
M1 and N1 are equivalent under ∼io and ∼ioblock.
However, if M1 is the specification then there is a
possible observation that can be made regarding N1

that cannot be made with M1: the sequence !o!o?i!o′.
While !o?i!o!o′ ∈ L(M), the sequence !o!o?i!o′ cannot
be observed when interacting with M1 since this would
require an input to be delayed or, equivalently, for an
output to be observed before it is produced. This
suggests that N1 should not be considered to be a good
implementation of M1 and thus that ∼io and ∼ioblock

are too weak.

However, the use of asynchronous communications
does affect our ability to distinguish between IOTSs in
testing.

Example 4. Consider again the specification M1 in
Figure 1 but now let us suppose that the SUT behaves
like N ′

1 given in Figure 2. It is clear that N ′

1 does not
conform to M1 if testing is synchronous since we can
observe σ =?i!o!o!o′ when interacting with N ′

1 and this
is not in L(M1). However, σ and its extensions by input
sequences are the only elements of L(N ′

1) that are not in
L(M1) and σ can be formed by delaying the first output
in σ′ =!o?i!o!o′ ∈ L(M1). Thus, in asynchronous testing
we cannot distinguish N ′

1 from M1.

As discussed earlier, the other problem regarding
requiring observations to be made in quiescent states
is that there may be behaviours that are not prefixes of
observations that end in quiescence and such behaviours
are not considered.
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FIGURE 2. IOTS N
′

1 that conforms to M1

Example 5. Consider processes M2 and N2 defined
by the following:

• M2 has only one state, in which there are self-loop
transitions labelled with all of the inputs and also
the output !o.
• N2 has only one state, in which there are self-loop
transitions labelled with all of the inputs and also
the output !o′ 6=!o.

Clearly, N2 can produce the output !o′ and M2 cannot
and so N2 should not be considered to be a correct
implementation of M2. However, M2 and N2 have no
quiescent states and so are equivalent under both ∼io

and ∼ioblock.

In order to define alternative implementation
relations and equivalences we need to consider the
possible observations that might be made. This leads to
the following implementation relation and equivalence.

Definition 3.1. Given IOTSs N and M with the
same alphabets, we say that N ⊑ M , if Tr(N) ⊆
Tr(M). Further, N ≡ M if Tr(N) = Tr(M).

In addition, if Tr(N) is the set of observations that
might be made of N then it is possible to distinguish N

from M in testing through asynchronous FIFO channels
if and only if Tr(N) 6⊆ Tr(M). The idea here is
straightforward: the sequence σ can distinguish N from
M if σ is an observation that can be made regarding N

(σ ∈ Tr(N)) and σ is not an observation that can be
made regarding M (σ 6∈ Tr(M)).

A potential weakness of these relations is that we
might not know whether all of the inputs sent to the
system have been received and also whether all of the
outputs that have been produced have been observed.
One possible solution is to require that observations are
made in quiescent states only; an approach used for ∼io

and ∼ioblock. This leads to the following in which for
IOTS M we have that Lδ(M) denotes the set of labels

of paths of M that end in quiescent states and Trδ(M)
denotes the set of sequences that are either in Lδ(M)
or can be produced from a sequence in Lδ(M) through
delaying output (Trδ(M) = ∪σ∈Lδ(M)[σ〉). While this
requires us to be able to determine when the system is
quiescent, it is included for the sake of completeness.

Definition 3.2. Given IOTSs N and M with the
same alphabets, we say that N ⊑δ M , if Trδ(N) ⊆
Trδ(M). Further, N ≡δ M if Trδ(N) = Trδ(M).

A final alternative is, for a process M , to define
a language that represents sequences that might be
observed when interacting with M through FIFO
channels and where some messages may not have
arrived yet. Here, not only might output be delayed
but observed inputs might not have been received
by M yet and outputs produced by M might not
have been observed yet. Thus, this language can
be seen as representing possible ‘partial’ behaviours
of M that might be observed: without bounds on
message latency we could have to wait arbitrarily long
to observe further output. This leads to the following
definition of Trp(M), which is the set of sequences
that can be formed from sequences in L(M) through
transformations that either add input (that has not
been received yet), delete output (since it might not
have been observed yet), or delay output.

Definition 3.3. Given IOTS M , Trp(M) denotes
the set of sequences that can be formed from sequences
in L(M) through zero or more transformations of the
following types.

• σ1!o?iσ2 → σ1?i!oσ2 for input ?i and output !o.
• σ → σ?i for input ?i.
• σ1!oσ2 → σ1σ2 for output !o and sequence σ2 ∈
I∗.

If σ′ can be formed from σ through such transformations
then we write σ  p σ′.

Example 6. Consider the sequence σ =!o?i!o. Then
clearly σ  p?i!o!o since it is possible to delay output
under  p. However, under  p we can also add input
(that has not been received by the SUT) and so we also
have that σ  p!o?i!o?i. Finally, we can have failed to
observe some of the output produced and so σ  p!o?i
and also σ  p?i.

Note that it is sufficient to add an input to the end of
a sequence since further transformations can then move
outputs past it. We can now define an implementation
relation and an equivalence based on Trp(M).

Definition 3.4. Given IOTSs N and M with the
same alphabets, we say that N ⊑p M , if Trp(N) ⊆
Trp(M). Further, N ≡p M if Trp(N) = Trp(M).

However, implementation relations ⊑ and ⊑p are
equivalent.

Proposition 3.1. Given IOTSs N and M , N ⊑ M
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if and only if N ⊑p M .

Proof. First assume that N ⊑ M and we are required
to prove that N ⊑p M . Let σ be some sequence in
Trp(N) and it is sufficient to prove that σ ∈ Trp(M).
Since σ ∈ Trp(N) there is some sequence σ′ ∈ L(N)
such that σ′

 
p σ. But, since σ′ ∈ L(N) we have that

σ′ ∈ Tr(N) and so, since N ⊑ M , σ′ ∈ Tr(M). Thus,
since σ′

 
p σ, σ ∈ Trp(M) as required.

It is therefore sufficient to prove that N ⊑p M implies
that N ⊑ M . We assume that N ⊑p M and let σ

denote some element of Tr(N): it is sufficient to prove
that σ ∈ Tr(M).

Since N ⊑p M , σ ∈ Trp(M) and so there is some
sequence σ1 ∈ L(M) such that σ1  

p σ. Let σ2 denote
the longest prefix of σ1 such that σ2 and σ have the same
projections onto O and assume that σ has k outputs.
Since L(M) is prefix closed, σ2 ∈ L(M). Now define
the sequence σ3 that has the same projection onto I as
σ and that is formed from σ2 by adding inputs to the
end (σ2 is a prefix of σ3). Since M is input-enabled,
σ3 ∈ L(M).

By construction, σ3 and σ have the same input and
output projections. In addition, let us suppose that σ

has prefix σ′!o and σ3 has prefix σ′

3!o where both σ′

and σ′

3 contain exactly i − 1 outputs. Then, since σ3

is formed by adding inputs to the end of σ2, σ′

3!o is a
prefix of σ2 and so also of σ1. Further, we know that
σ1  

p σ. Thus, the input projection of σ′

3 must be a
prefix of the input projection of σ′.

To conclude, σ3 and σ have the same input and
output projections and for all 1 ≤ i ≤ k, the sequence
of inputs before the ith output in σ3 is a prefix of the
sequence of inputs before the ith output in σ. Thus,
σ3  σ and so σ ∈ Tr(M) as required.

4. DETERMINING CONFORMANCE

Section 3 defined three implementation relations, ⊑, ⊑δ,
and ⊑p for testing through asynchronous channels and
proved that ⊑ and ⊑p are equivalent. In testing we
might want to determine whether two models M and
N are related under these implementation relations,
possibly because M is the model from which we are
testing and N is a possible model of the SUT. We would
like to determine whether N would be a correct model
of the SUT; if it is not we would then like to produce
a test that can demonstrate that an SUT behaving like
N is faulty. In this section we therefore explore the
problem of deciding whether implementation relations
⊑ and ⊑δ and equivalences ≡δ and ≡ are decidable. In
Section 4.1 we prove that these are not decidable and
in Section 4.2 we give conditions under which they are
decidable. Since ⊑p and ⊑ are equivalent, we use Tr(N)
but not Trp(N) when exploring observations that might
be made regarding IOTS N .

4.1. The general problem

It is known that the problem of deciding inclusion
for rational partial commutations3 is undecidable (see,
for example, [30]). As a result, this problem is
also undecidable for rational semi-commutations, which
generalise partial commutations by not requiring that
I is symmetric. This may explain why there appears
to be no results regarding deciding language inclusion
for rational semi-commutations. However, we are
interested in a particular type of semi-commutation, in
which I = O × I and I, O partition Act. As explained
earlier, this class of semi-commutations does not include
the partial commutations, since I is anti-symmetric.
Thus, results regarding partial commutations do
not extend to such semi-commutations. Note that
an atomic semi-commutation [34, 35] has an anti-
symmetric independence relation. However, for an
atomic semi-commutation, while I must be in the
form of Σ1 × Σ2 for disjoint Σ1 and Σ2, these sets
need not partition Act. The problem of deciding
inclusion for atomic semi-commutations also appears
not to have been studied. We now show that it is
generally undecidable whether Tr(N) ⊆ Tr(M), and
thus also that inclusion and equivalence are undecidable
for rational semi-commutations of the type described
above.

We first define an IOTS MT that has a particular
relationship with a given Turing Machine T that halts
if it reaches the halt state with an empty tape. We will
define MT and another IOTS M such that MT ⊑ M if
and only if the Turing machine T does not halt on the
empty tape. Since the halting problem is undecidable,
this show that it is generally undecidable whether N ⊑
M for IOTSs N and M : if N ⊑ M was decidable then
we could use the corresponding algorithm to solve the
halting problem. The construction of MT is similar to
one used in Floyd’s proof that Post’s Correspondence
Problem is undecidable [36], as described by Davis and
Weyuker [37]. For the set Σ described below, which
includes the alphabet of T , MT will have an input set
that contains a copy ΣI of Σ and an output set that
contains a copy ΣO of Σ. We construct MT so that
there is a particular type of non-empty sequence σ in
Tr(MT ) with the same input and output projections ρ

(once decorating subscripts are removed) if and only if
ρ defines a halting computation of T when started with
an empty tape.

Let Σ denote the set formed by adding to the
alphabet of T the name of each state of T plus special
symbols #, γ, and ∆, with # being used to separate
configurations of T , γ being used to denote the end
of a computation, and ∆ representing a blank cell of
the tape. We use two copies of Σ, called ΣI and ΣO,
in which each element is decorated with a subscript of

3A rational partial commutation is a language defined by a
finite automaton and a symmetric independence relation on the
alphabet.
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I (for ΣI) or O (for ΣO). Given σ ∈ Σ∗ we let σI

and σO denote the sequences formed from σ by adding
subscripts I and O respectively to its letters. The IOTS
MT will have alphabet ΣC = ΣI ∪ ΣO in which ΣI is
the set of inputs and ΣO the set of outputs.

In constructing MT we represent possible configura-
tions of T using sequences from Σ∗

I or Σ∗

O. A configura-
tion of a Turing machine is defined by the tape contents,
the state, and the current location of the tape head. We
use the position of the state name, in a sequence defin-
ing a configuration, to indicate the location of the head
of T . Thus, a sequence of the form σ1qσ2 represents a
configuration in which the current state is q, the tape
contains σ1σ2 and the head of T is currently on the cell
represented by the first element of σ2. Configurations
are separated by copies of #.
MT will be formed so that its paths start with an

input sequence that represents the initial configuration
of T (followed by #I). We will be interested in paths
that have the same input and output projections and
these will represent possible sequences of configurations
for T . After the initial path, containing input that
represents the initial configuration of T , MT can loop in
a state s. In order for the input and output projections
of the label of a path to be the same, MT must follow
this prefix by a path whose output projection starts
with a representation of the initial configuration and we
define MT so that in forming this it must include input
that represents a configuration that can be reached from
the initial configuration.

The loops in state s represent possible changes in
configuration by them either having label aIaO for
some a ∈ Σ (representing a part of the configuration
that has not changed) or representing a change in
part of the configuration. The latter will start with
a representation of the ‘new’ part of the configuration
using inputs and follow this by a representation of
the ‘old’ part of the configuration using outputs.
Importantly, changes in the configuration are limited:
the most that can happen is that the contents of the
cell being read changes and the tape head moves one
place. Let us suppose, for example, that T can move
from q to q′ and move the head of the tape to the right
if the head is reading a and that this does not alter the
contents of the cell. This is represented by a loop with
label aIq

′

IqOaO. All such changes in configuration can
be represented by a finite set of such loops. Finally,
MT can follow a path from s whose label is output that
represents the halting configuration of T (T halting with
an empty tape) and this is followed by a path with label
γIγO.

Now let us suppose that MT has a path ρ whose label
is of the form σγIγO and has the same projections onto
ΣI and ΣO (once decorating subscripts are removed).
Then these projections of σ must both start with
a sequence that represents the initial configuration
of T and they must both end with sequences that
represent the unique halting configuration. Now

consider the suffix σ1 of σ that follows the sequence
of inputs representing the initial configuration. Then
the projection onto ΣO must start with the initial
configuration. In addition, assuming this initial
configuration is not the halting configuration, this is
formed by self-loops in state s. By construction, the
projection of σ1 onto ΣI must start with a configuration
that can be reached from the initial configuration
through one transition. We can now repeat this
reasoning, until finally the halting configurations are
included. Thus, the projections of σ onto ΣI and
ΣO must represent a computation of T that starts
with the initial configuration and ends with the halting
configuration. Finally, we complete MT by, for each
state s′ and input ?i such that there is no transition
from s with label ?i, adding a transition (s′, ?i, se)
to a new state se from which there are only self-loop
transitions whose labels are inputs.

The IOTS MT has some important properties that
are immediate from its definition. The first shows how
the language L(MT ) relates to halting computations of
T on an empty tape.

Lemma 4.1. Given Turing Machine T , there is a
sequence σ in L(MT ) that ends in γIγO and has input
and output projections ρIγI and ρOγO for some ρ ∈ Σ∗

if and only if ρ defines a halting computation of T when
started with an empty tape.

The following will be used to reason about the set of
elements in Tr(MT ) that are not in L(MT ).

Lemma 4.2. Given Turing Machine T and IOTS
MT , every sequence in L(MT ) that does not reach se
has at least as many inputs as outputs.

We now use these results to prove that conformance
is undecidable for the implementation relations ⊑ and
⊑δ by showing that for the halting problem for a Turing
machine T can be represented in terms of deciding ⊑ or
⊑δ.

Theorem 4.1. Let us suppose that M and N are
IOTSs with the same input and output alphabets. Then
the following are undecidable

1. N ⊑ M .
2. N ⊑δ M .

Proof. First consider the problem of deciding whether
N ⊑ M and so whether Tr(N) ⊆ Tr(M). We will
assume that we have been given a Turing machine T

and will use the IOTS MT defined above. We will define
an IOTS M such that Tr(MT ) 6⊆ Tr(M) if and only if
T halts on the empty tape.

We now define an IOTS M with input and output
alphabets ΣI and ΣO respectively. This IOTS is shown
in Figure 3 in which aI denotes all elements from
ΣI \ {γI} and aO denotes all element from ΣO \ {γO}.
Further, aIbO denotes sequences of the form aIbO in
which a 6= b and aIaO denotes such sequences in which
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FIGURE 3. Input Output Transition System M

a = b. In all cases where we have sequences with length
2, this represents a cycle of length 2. As with MT ,
we complete M so that it is input enabled by adding
transitions to a new state s′e from which there are only
self-loop transitions whose labels are inputs.

First, note that the set of σ ∈ L(M) that do not
contain γI includes all those in (ΣI ∪ ΣO \ {γI , γO})∗

in which input and output alternate, starting with an
input, until possibly some suffix that contains either
only inputs or only outputs. This is because if we stay
in s0 then the projections on ΣI and ΣO are the same
while if we leave s0 then we obtain all such sequences in
which the projections on ΣI and ΣO differ. Importantly,
if we consider the sequences that end in γIγO we find
that again (before γI) input and output alternate, until
possibly some suffix that contains either only inputs or
only outputs. Further, the sequences of L(M) that end
in γO are all sequences of the form σγIγO for some such
σ where σ has different projections on ΣI and ΣO.

Now consider the problem of deciding whether
Tr(MT ) ⊆ Tr(M) and let us suppose that σ is some
shortest sequence in Tr(MT )\Tr(M). Since M is input-
enabled, by the minimality of σ we must have that σ

is the label of a path of MT that does not reach se.
By Lemma 4.2 we know that every sequence in L(MT )
that does not reach se has at least as many inputs as
outputs. As a result, all sequences in L(MT ) that do
not contain γO and are labels of paths that do not reach
se must also be in Tr(M). Thus, since σ is the label
of a path that does not reach se, we must have that σ

ends in γO.
Assume that σ = σ′γIγO for some σ′. If the

projections σ′

I and σ′

O on ΣI and ΣO respectively (with
decorations I and O removed) are different then we can

find a sequence σ′′ in which input and output alternate
until possibly some final suffix that has only input or
only output and such that σ′ can be formed from σ′′

by delaying output. Thus, σ′ ∈ [σ′′〉. We also know
that σ′′ ∈ L(M) and so we have that σ′ ∈ Tr(M),
providing a contradiction. As a result, we must have
that the projections of σ′ on ΣI and ΣO are the same.
Observe that L(M) contains no sequences that end in
γO and have the same projections on ΣI and ΣO. In
addition, if a sequence in L(M) contains γO and reaches
state se then the input projection of this sequence either
does not end in γI or contains more than one γI . Thus,
Tr(M) contains no sequence that ends in γIγO and that
has the same input and output projections. As a result,
Tr(MT ) ⊆ Tr(M) if and only if L(MT ) has no sequence
ending in γIγO that has the same projections on ΣI and
ΣO. By Lemma 4.1 this is the case if and only if T does
not halt on the empty tape. The result thus follows
from the halting problem being undecidable for Turing
machines.

Now consider the second part, where we are only
concerned with sequences that label paths that end in
quiescent states. We can change M slightly to form
M ′ by, for each transition (s, a, s′) where s′ is not
quiescent and a 6∈ {γI , γO}, adding a transition (s, a, se)
to the state se from which there are only self-loop
transitions with input as labels. Then clearly we have
that Trδ(M

′) = Tr(M). Thus, the proof follows in the
same way as the first part except using M ′ rather than
M .

We also have that the corresponding equivalences are
undecidable.

Theorem 4.2. Let us suppose that M and N are
IOTSs with the same input and output alphabets. Then
the following are undecidable

1. N ≡ M .
2. N ≡δ M .

Proof. Given sets L1 and L2 we have that L1 ⊆ L2

if and only if L1 ∪ L2 = L2. We can define an IOTS
M ′ such that L(M ′) = L(M) ∪ L(N) and Lδ(M

′) =
Lδ(M) ∪ Lδ(N). Thus, N ⊑ M if and only if M ′ ≡ M

and N ⊑δ M if and only if M ′ ≡δ M . The result
therefore follows from Theorem 4.1.

Clearly, these results also show that language
inclusion is undecidable for rational semi-commutations
even if we restrict attention to those in which the
independence relation is of the form Σ1 × Σ2 for sets
Σ1 and Σ2 that partition the alphabet Σ. It also shows
that it is undecidable whether there is a test case that
can distinguish an IOTS N , that represents a possible
model of the SUT, from the specification IOTS M .

4.2. Decidable cases

We now consider conditions under which inclusion is
decidable. We say that a language L ⊆ Act∗ is closed
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under delay if for all σ ∈ L we have that [σ〉 ⊆ L. Then
the following is clear.

Proposition 4.1. Given σ ∈ Σ∗ and language L that
is closed under delay we have that [σ〉 ⊆ L if and only
if σ ∈ L.

For an IOTS M we have that Tr(M) and Trδ(M)
are closed under delay. The following are immediate
consequences of the above result.

Proposition 4.2. Given IOTSs N and M with the
same input and output alphabets we have that Tr(N) ⊆
Tr(M) if and only if L(N) ⊆ Tr(M). Further,
Trδ(N) ⊆ Trδ(M) if and only if Lδ(N) ⊆ Trδ(M).

Thus, if Tr(M) is regular and we can construct
a corresponding finite automaton then we can decide
whether Tr(N) ⊆ Tr(M). Given a dependence
relation D and a sequence ρ ∈ Σ∗, we can define
the corresponding directed graph G(D, ρ) in which the
vertices represent the elements of Σ that are in ρ and
there is an edge from the vertex representing a (that is
in ρ) to the vertex representing b (that is in ρ) if and
only if (a, b) ∈ D.

It has been proved that given a semi-commutation
with dependence relation D and finite automaton M ,
Tr(M) is regular if every cycle of M has a label ρ such
that the directed graph G(D, ρ) is strongly connected4

[32]. In addition, the proof of this results shows how
the finite automaton M ′ with L(M ′) = Tr(M) can be
constructed.

It is straightforward to see that since we have that
D = (I × O) ∪ (I × I) ∪ (O × O), G(D, ρ) is strongly
connected if and only if either ρ only contains inputs or
ρ only contains outputs.

This, combined with Proposition 4.2, leads to the
following result.

Proposition 4.3. Let us suppose that we have IOTS
M and N and every cycle of M has a label ρ such that
either ρ only contains inputs or ρ only contains outputs.
Then it is decidable whether Tr(N) ⊆ Tr(M).

Naturally, the corresponding result also holds for
deciding whether Trδ(N) ⊆ Trδ(M) since we can again
construct a finite automaton M ′ with L(M ′) = Trδ(M)
if every cycle of M has a label ρ such that G(D, ρ) is
strongly connected.

Note, however, that while this gives a condition
under which conformance is decidable (and thus, so is
equivalence), the construction of the finite automaton
M ′ need not operate in polynomial time. We now
consider an alternative condition under which the
problem can be solved in polynomial time.

Sometimes we consider AIOTSs rather than IOTSs.
This introduced two restrictions. First, input and
output alternate, with an input leading to an output

4A directed graph is strongly connected if for any two vertices
v and v′ it is possible to find a path from v to v′.

response. Second, the AIOTS cannot receive further
input between receiving x and sending y. For AIOTSs
we have the following result.

Proposition 4.4. Given AIOTSs M and N with the
same input and output alphabets, Tr(N) ⊆ Tr(M) if
and only if L(N) ⊆ L(M).

Proof. This follows from observing that every σ in L(N)
or L(M) is of the form ?i1!o1 . . .?ik!ok ∈ (IO)∗ or the
form ?i1!o1 . . .!ok−1?ik ∈ (IO)∗I and that σ can be
reconstructed from any element of [σ〉: if σ′ ∈ [σ1〉∩[σ2〉
for σ1, σ2 ∈ L(N) ∪ L(M) then σ1 = σ2.

We therefore obtain the following.

Proposition 4.5. Let us suppose that M and N are
AIOTSs with the same input and output alphabets and
that M has m states and N has n states. The problem
of determining whether Tr(N) ⊆ Tr(M) can be solved
in O(nm) time.

Proof. By Proposition 4.4 it is sufficient to decide
whether L(N) ⊆ L(M). In order to do this it is
sufficient to produce the produce machine in which
each state is of the form (s, s′), where s is a state
of N and s′ is a state of M . The transitions of
the product machine are defined by synchronising on
common actions except where an output in N is not
allowed from the corresponding state of M and then we
move to a special state sf . Clearly, L(N) ⊆ L(M) if
and only if sf is not reachable and since the product
machine has O(mn) states we can decide this in O(nm)
by using a depth-first search [38].

4.3. Summary

This section has shown that implementation relations
for asynchronous communications are undecidable.
There are several consequences of these results for
asynchronous testing. First, the results show that
it is undecidable whether there is a test case that
can distinguish between the specification IOTS M and
an IOTS N that represents a possible behaviour of
the SUT. This means that we cannot expect test
generation algorithms based on fault domains to extend
to asynchronous testing. In addition, some test
generation algorithms for state-based systems use test
cases that distinguish states of the specification in
order, for example, to check that the state after a
sequence in Act∗ is correct. Again, the result suggests
that these types of test generation algorithms cannot
be extended to asynchronous testing. However, we
also gave conditions under which the implementation
relations are decidable and it may well be possible
to extend test generation algorithms to asynchronous
testing under such conditions.
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5. CHECKING INTERSECTION

We have seen that conformance is undecidable for
implementation relations ⊑ and ⊑δ but have also given
conditions under which it is decidable. Sometimes we
are interested in knowing whether any behaviour of a
model M satisfies a given property P and this is the
problem we consider in this section. In this section
we therefore consider the situation in which we have
two models: an IOTS M representing the system and
a FA P that represents a property of interest. In this
section we consider two scenarios when communications
are asynchronous. In the first, given IOTS M and FA
P we want to know whether Tr(M)∩ Tr(P ) = ∅. This
asks whether any observation that might be made of
P , through asynchronous FIFO channels, might also be
made of M . We then consider the problem of deciding
whether Tr(M) ∩  L(P ) = ∅ and thus we are asking
whether any sequence in the regular language defined by
P is a possible observation of M when communicating
with M through asynchronous FIFO channels.

In the first case we are asking whether there are
observations that can be made of M that are consistent
with P , a problem that might be of interest if P

models some undesirable behaviours and we wish to
know whether the observations regarding M can be
consistent with such behaviours. In the second case,
the sequences in L(P ) might correspond to sequences
that are undesirable since, for example, M will interact
through FIFO channels with another system M ′ and
M ′ should not receive such sequences.

Since M is a model of a system, given as an IOTS,
L(M) is prefix closed. Thus, if we see M as a
finite automaton then all states of M are final states.
However, P will represent a set of behaviours in which
we are interested and thus L(P ) need not be prefix
closed. We therefore restrict attention to the case where
M is an IOTS and P is a FA. Naturally, we can also
consider the language Trδ(M).

We use Post’s Correspondence Problem to prove that
both problems are undecidable.

Definition 5.1. Given sequences α1, . . . , αm and
β1, . . . , βm over an alphabet Σ, Post’s Correspondence
Problem (PCP) is to decide whether there is a sequence
i1, . . . , ik of indices from [1,m] such that αi1 . . . αik =
βi1 . . . βik .

The following is known [39].

Theorem 5.1. Post’s Correspondence Problem is
undecidable.

We now prove that the first type of problem described
above is undecidable.

Theorem 5.2. Given IOTS M and FA P the
following problems are undecidable.

1. Tr(M) ∩ Tr(P ) = ∅
2. Trδ(M) ∩ Tr(P ) = ∅
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FIGURE 4. IOTS M and FA P

Proof. We start with the first result. We assume
that we have an instance of PCP given by sequences
α1, . . . , αm and β1, . . . , βm over alphabet Σ =
{a1, . . . , ak} and show how we can represent this in
terms of checking whether Tr(M) ∩ Tr(P ) = ∅ for an
IOTS M and finite automaton P .

We define copies ΣI and ΣO of Σ and use ΣI for
inputs and ΣO for outputs. As before, given σ ∈ Σ∗ we
let σI denote the sequence formed by replacing elements
of Σ by corresponding elements of ΣI and we let σO

denote the sequence formed by replacing elements of Σ
by corresponding elements of ΣO.
M and P have alphabet ΣI ∪ ΣO ∪ {xI , xO} (some

x 6∈ Σ), where xI is an input and xO is an output. We
define M such that L(M) is the set of sequences defined
by the regular expression (α1

Iβ
1
O + . . . + αm

I βm
O )∗xIxO

and all prefixes of such sequences. As before, we assume
M has been completed through the addition of state se
and corresponding transitions. Further, we let P be
such that L(P ) is the set of sequences defined by the
regular expression (a1Ia

1
O + . . . + akIa

k
O)+xIxO. The FA

M and P are illustrated in Figure 4.
Now consider the problem of deciding whether

Tr(M) ∩ Tr(P ) is empty. First note that all elements
of Tr(P ) contain at least one element of ΣI and at
least one element of ΣO, in addition to xIxO, and so
xIxO is not in Tr(M) ∩ Tr(P ). Thus, Tr(M) ∩ Tr(P )
is non-empty if and only if there is a sequence in
(α1

Iβ
1
O + . . . + αm

I βm
O )+xIxO that has projections on

ΣI and ΣO that correspond to the same sequence in Σ∗

and this is the case if and only if there is a solution to
this instance of the PCP. The result thus follows from
Theorem 5.1.

The second result follows similarly since all sequences
of L(M) that end in xO are labels of quiescent
paths.

As we have seen, if we cannot know when all inputs
and outputs of a sequence have been observed then we
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might instead reason about the language Trp(M) for
IOTS M . The following shows, however, that there is
no value in asking whether Trp(M) ∩ Trp(P ) 6= ∅.

Proposition 5.1. Given IOTS M and FA P , if
L(P ) is non-empty then Trp(M) ∩ Trp(P ) 6= ∅.

Proof. Assume that L(P ) is non-empty. First, consider
the case where there is a sequence in L(P ) that contain
one or more inputs. Then we must have a sequence
in Trp(P ) that contain only inputs and this must also
be in Trp(M) since M is input-enabled. Thus, if there
is a sequence in L(P ) that contains an input then we
must have that Trp(M) ∩ Trp(P ) 6= ∅. In addition, if
no sequence in L(P ) contains inputs then since L(P ) is
non-empty, L(P ) must contain sequences from O∗. As a
result, Trp(P ) must contain the empty sequence and so,
since L(M) is prefix closed, Trp(M) ∩ Tr(P ) 6= ∅.

We now prove that the second type of problem
described above is undecidable for the languages
Tr(M), Trp(M), and Trδ(M).

Theorem 5.3. Given IOTS M and FA P the
following problems are undecidable.

1. Tr(M) ∩ L(P ) = ∅
2. Trp(M) ∩ L(P ) = ∅
3. Trδ(M) ∩ L(P ) = ∅

Proof. We start with the first problem. We assume that
a Turing Machine T has been given and use the IOTS
M̄T which can be formed from the IOTS MT (defined in
Section 3) by switching input and output decorations.
Note that in forming M̄T we do not include copies of
the transitions from MT that were added to make MT

input-enabled since these would add output, instead
we add a state se and transitions to make M̄T input
enabled. Thus, from Lemma 4.1 we know that L(M̄T )
contains a sequence ρ that ends in γOγI and has the
same projections on ΣI and ΣO if and only if these
projections define a halting computation.

Let Σ = {a1, . . . , ak} and define P such that L(P ) =
(a1Oa

1
I + . . . akOa

k
I )∗γOγI . We know, from Lemma 4.2,

that all sequences in L(M̄T ) that end in γOγI contain
at least as many outputs as inputs. Thus, there is a
sequence ρ ∈ L(M̄T ) that ends in γOγI and has the
same projections on ΣI and ΣO if and only if Tr(M̄T )
contains such a sequence that starts with output and
in which output and input alternate, since we can form
such a sequence by delaying output. Thus, Tr(M̄T ) ∩
L(P ) 6= ∅ if and only if there is a sequence ρ ∈ L(M̄T )
that ends in γOγI and has the same projections on ΣI

and ΣO. By Lemma 4.1 this is the case if and only if T
has a halting computation and so the result follows.

For the second result we slightly change M̄T by
swapping the labels of the transitions in the path with
label γOγI to form M̄ ′

T . We also set define P ′ so that
L(P ′) = (a1Oa

1
I + . . . akOa

k
I )∗γIγO. Observe that all

elements of L(P ′) end in γIγO and contain γO and γI
exactly once each. For a sequence σ ∈ Trp(M̄ ′

T ) to be

of this form there must be some σ′ ∈ L(M̄ ′

T ) such that
σ′
 

p σ and σ′ ends in γIγO. In addition, since σ′ and
σ both end in γIγO and contain γI and γO exactly once,
we must have that σ′

 σ. Thus, Trp(M̄ ′

T )∩L(P ) 6= ∅
if and only if there is a sequence ρ ∈ L(M̄ ′

T ) that ends
in γOγI and has the same projections on ΣI and ΣO

and so the result follows.
For the third result it is sufficient to observe that

sequences of M̄T that end in γOγI reach a quiescent
state.

These problems are decidable under the conditions
considered previously. The proof of the following is
similar to that of Proposition 5.2: the conditions given
ensure that we can construct a finite automaton M ′

such that Tr(M) = L(M ′).

Proposition 5.2. Let us suppose that we have IOTS
M and finite automaton P and every cycle of M has
a label ρ such that either ρ only contains inputs or
ρ only contains outputs. Then it is decidable whether
Tr(M)∩  L(P ) = ∅. In addition, if every cycle of P has
a label ρ such that either ρ only contains inputs or ρ

only contains outputs, then it is also decidable whether
Tr(M) ∩ Tr(P ) = ∅.

The proof of the following is equivalent to that of
Proposition 4.4.

Proposition 5.3. Given AIOTS M and alternating
FA P with the same input and output alphabets,
Tr(M) ∩ Tr(P ) = ∅ if and only if L(M) ∩ L(P ) = ∅.

We therefore obtain the following.

Proposition 5.4. Let us suppose that M is an
AIOTS and P is an alternating FA with the same input
and output alphabets and let m be the number of states
of M and n the number of states of N . The problem of
determining whether Tr(M) ∩ Tr(P ) = ∅ can be solved
in O(mn) time.

Proof. By Proposition 5.3 it is sufficient to decide
whether L(M) ∩ L(P ) = ∅. But, this can be achieved
by forming the product automaton from M and P and
deciding whether it is possible to reach a state (s, s′)
such that s′ is a final state of P .

6. CONCLUSIONS

This paper has explored problems in the context
of analysing input output transition system (IOTS)
models for systems that interact with their environment
through asynchronous FIFO channels. The motivation
was testing and either we want to know whether one
model conforms to another or whether the languages
defined by two models intersect. While it is possible
to compose an IOTS with models of the channels,
even with bounded channels this can lead to a
state space explosion. We therefore investigated
alternative approaches based on defining a language
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that corresponds to the set of observations that might
be made regarding an IOTS. Given IOTS M this
language, Tr(M), is the set of sequences that can be
formed from sequences of M by delaying output.

Previous work has defined implementation relations
for testing through FIFO channels but these have
required that quiescence is observable. However, in
order to observe quiescence it is necessary to place
bounds on message latency and this appears not to fit
well with asynchronous communications. We therefore
did not assume that quiescence can be observed and
defined implementation relations, ⊑, ⊑p, and ⊑δ.
Under ⊑ we require that all sequences that might
be observed when interacting with N through FIFO
channels are also sequences that might be observed
when interacting with M through FIFO channels
(Tr(N) ⊆ Tr(M)). The implementation relation ⊑p

weakened this by allowing for the possibility that an
observation is partial: input sent to the SUT might
not have been received yet and output produced by the
SUT might not have been observed yet. Finally, ⊑δ

is similar to ⊑ except that it only considers sequences
that can lead to a quiescent state: one from which the
IOTS cannot change state or produce output without
receiving further input.

It transpired that for any IOTSs N and M we have
that N ⊑ M if and only if N ⊑p M . We proved
that given IOTSs N and M with finite sets of states
and actions, for each implementation relation it is
undecidable whether N conforms to M and whether
N is equivalent to M . In proving this, we also
proved that inclusion and equivalence are undecidable
for rational semi-commutations whose independence
relation is of the form Σ1 × Σ2 for Σ1 and Σ2 that
partition the alphabet Σ. This problem appears
not to have been previously considered, possibly
because semi-commutations are a generalisation of
partial commutations and inclusion is known to be
undecidable for partial commutations. However, the
class of semi-commutation we considered requires the
independence relation to be anti-symmetric while in a
partial commutation it is symmetric and so we do not
directly inherit the result from partial commutations.
We also proved that conformance and equivalence are
decidable in low order polynomial time for alternating
models, a type of model and system that has been
widely studied [24, 25, 26].

One consequence of the results is that given two
IOTSs M and N , where M might represent the
specification and N a (possible faulty) implementation,
it is undecidable whether there is a test case that can
distinguish N from M . This also has ramifications
for test generation based on a fault domain F .
Such test generation techniques, for synchronous
communications, return a test suite that distinguishes
between the specification M and all faulty elements of F
and so have a form of guaranteed fault detection power.
The results in this paper indicate that we cannot expect

to be able to extend such test generation methods to
asynchronous communications in general, but this may
be possible for some classes of IOTS.

We also considered the situation in which as well as
an IOTS model M of the system we have a property
represented by a finite automaton P and we want to
know whether any element of Tr(M) is consistent with
P . We defined two versions of this problem. In one, we
ask whether Tr(M)∩ Tr(P ) is non-empty for IOTS M

and finite automaton P that represents the property of
interest. In the second, we ask whether Tr(M)∩L(P ) is
non-empty. Similar problems have been considered for
message sequence charts [28, 29]. Both types of problem
are undecidable but, again, can be decided in low-order
polynomial time for alternating models.

There are several lines of future work. First, we
assumed that the communications channels are FIFO
and it would be interesting to investigate alternative
assumptions. Second, while we have given conditions
under which the problems considered are decidable,
there should be scope to weaken these. We have seen
that conformance is decidable for alternating models
and it would be interesting to extend this to conditions
under which the use of asynchronous channels does not
affect our implementation relations: such conditions
might be seen as testability conditions for systems
that interact with their environment through FIFO
channels. Potentially, this should relate to recent work
that investigated conditions under which a test case for
synchronous testing can be used in asynchronous testing
[40, 41]. Finally, there are conceptual similarities
between the issues addressed in this paper and partial
order reduction and it would be interesting to explore
these further.
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