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Summary

New expressions for asymptotically uniform Green’s functions for high-frequency wave
diffraction when a plane, cylindrical or point wave field is incident on an ideal wedge
are derived. They are useful for deriving a uniform asymptotic expression for the exact
solution in terms of the high-frequency diffracted and geometrical optics far field. The
present method is simple and consists of differentiating out the singularities of the
integral representations and using new representations for trigonometrical sums that
arise when the wedge angle is a rational multiple of π. The new results make explicit
the continuity of the fields across shadow and reflection boundaries.

1. Introduction

The geometrical theory of diffraction (GTD) was introduced by Keller (1) as an asymptotic
method for the solution of diffraction problems at high frequencies. Keller’s GTD has
proved to be very powerful in a wide variety of applications to physical problems. The
method uses the saddle point method to derive asymptotic approximations from the
exact solution of canonical wedge problems to derive so called ”diffraction coefficients”.
The method gives a useful physical representation of the total far-field in terms of the
geometrical optics and a diffracted field term. One drawback of Keller’s method is that it
breaks down at shadow and reflection boundaries where the diffracted term predicts infinite
fields. To overcome this defect, two uniform asymptotic techniques have been developed
recently, namely the uniform asymptotic theory (UAT) of edge diffraction and the uniform
geometrical theory of diffraction (UTD). A comparison of both these methods is given in
the work of Boersma (2) where it is shown that the two different methods of asymptotically
approximating integrals by pole subtraction or pole factorisation are equivalent if the
complete asymptotic expansions are used. These asymptotic expressions are derived from
integrals representing the exact solution. The starting point for our analysis is a particular
periodic Green’s function for the solution of of the ideal wedge problem Rawlins(3) . This
representation is related to the work of Sommerfeld, Carslaw, Macdonald and others at
the beginning of the last century, see Rawlins(4) for a detailed history. The Sommerfeld
approach was extended non-trivially to absorbing/impedance wedges by Mayuhzinets and
Williams in the 1950’s, see Babich et al (5) for a comprehensive up to date history
of general wedge problems solved by the so called Sommerfeld-Malyuzhinets technique.
In order to derive useful physical results from these exact solutions the disposition of
singularities and saddle points of integrals is crucial for getting accurate uniform results.
Oberhettinger (6), (7) used asymptotic methods to derive results for diffraction by ideal
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wedges. However his approach which involves adding and subtracting out singularities of
the integrand is quite complicated. There are various uniform asymptotic expressions that
have been derived for the general wedge angle but these suffer drawbacks. Jones (8), (9)
derived, by an ingenious method, uniform asymptotic expressions for the wedge diffraction
integral. However the result is strange in that the residue contribution gives rise to plane
waves that do not have the correct phase behavior away from the transition point.There
was also a uniform asymptotic result given for plane waves by Wait (10) which is based on
a work by Felsen (11) which does not agree with the present work and does not seem to be
uniformly valid. A general drawback of the previous methods is they break down when the
incident wave grazes the wedge faces. This is because there is a coalescence of the shadow
and specular reflection direction and the wedge boundary. Analytically this amounts to
a coalescing of poles of the integrand that also occurs at or near the saddle point. The
situation is even more complicated in the case of absorbing/impedance wedges where the
coalescing of geometrical optics boundary and surface wave poles may occur near the saddle
point. The uniform results of Babich et al (5) implicitly assume that such situations will not
arise. Ciarkowski et al (12), (13) have derived a rigorous approach using pole subtraction to
obtain uniform asymptotic results for plane wave diffraction by an ideal wedge of any angle;
and they show that in the limiting case of a half-plane the results reduce to the well known
Sommerfeld solution. However their result does not at the same time reduce to the well
known results for a right angled wedge given by Reiche (14). Their method would seem to
require special consideration of this case. In our approach we obtain a uniform asymptotic
results for any wedge which can be expressed as a rational multiple of π. Since the rational
numbers are dense in the real numbers we can approximate any wedge angle to a sufficient
accuracy by a rational wedge. In particular our result reduces to the Sommerfeld and Reiche
results as two special cases of an infinite number of rational wedge solutions. We also obtain
analogous results for cylindrical and spherical source diffraction by a rational wedge. The
asymptotic method we use here is a new approach that involves reformulating the integrand
and differentiating out the singularities of the integrand and then applying the standard
saddle point method on an integrand that has no poles. A further simplification is achieved
by using certain trigonometric identities. As an application of these theoretical results a
simple Mathematica programme is given that produces graphs of the uniform absolute value
of the scattered field for any hard or soft rational wedge for and any angle of incidence.
A numerical justification of the convergence of the rational approximations to any given
wedge angle is also carried out. Finally some new asymptotic results for plane-wave grazing
incidence on a corner are given.

Geometry of the diffraction problem and the Green’s functions

For the diffraction problems in wedge shaped regions we shall work in Euclidean space of
three dimensions with cylindrical polar coordinates (r, θ, z). In this space we shall assume
there is a wedge of open angle α with faces defined by the planes θ = 0, and θ = α where
0 < r < ∞,−∞ < z < ∞. For α = π it becomes a half space, and for α = 2π the
wedge becomes a semi-infinite plane. The geometry of the wedge diffraction problem that
we are going to analyse is shown in Figure 1. A source of waves at a point Q(r0, θ0, z0) in
space with time harmonic variation eiωt †, is incident on an ideal wedge. The total field

† We shall drop this factor in the rest of the paper
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u(P ) is observed at the point P (r, θ, z). In the region outside of the wedge defined by
0 < r <∞, 0 < θ < α < 2π,−∞ < z <∞ the total scalar field must satisfy the scalar wave
equation:

(∆ + k2)u(P ) = 0, 0 < r <∞, 0 < θ < α, P 6= Q; (1.1)

and appropriate edge and radiation conditions to ensure uniqueness. For an ideal wedge

P

θ
0

θ=0

θ

r

θ=α

Fig. 1 Geometry of diffraction by a wedge.

the field will be required to satisfy the Neumann boundary conditions(∂u∂θ = 0 for θ = 0
and θ = α), or the Dirichlet boundary conditions(u = 0 for θ = 0 and θ = α), or the Mixed
boundary conditions(∂u∂θ = 0 for θ = 0 and u = 0 for θ = α), for all 0 < r < ∞,−∞ < z <
∞. For an incident plane wave given for 0 < θ0 < α, by

u0(r, θ) = eikr cos(θ−θ0), (1.2)

then if by symmetry the field is independent of z, it has been shown in Rawlins(4) that the
periodic Greens function for diffraction by a wedge of angle α is given by

Gα(r, θ, θ0; k) =
1

2iα

∫

C

eikr cos ζ

[

sin(πζα )

cos(πζα ) − cos(π(θ−θ0)
α )

]

dζ, (1.3)
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where the open contour of integration C is such that the starting point of integration is given
by i∞+c1, and the termination point is given by i∞+c2, where −π < c1 < 0, π < c2 < 2π,
see Figure 2.

0

-π

π

c

s(0)
s(π)

Fig. 2 Contours of integration C, S(0) and S(π).

The Green’s function given above enables one to derive solutions to various diffraction
problems in ideal wedge shaped regions. The solution for the Neumann, Dirichlet and Mixed
problems are given by

uN = Gα(r, θ, θ0; k) +Gα(r, θ,−θ0; k), (1.4)

uD = Gα(r, θ, θ0; k) −Gα(r, θ,−θ0; k), (1.5)

uN,D = G2α(r, θ, θ0; k) +G2α(r, θ,−θ0; k) −G2α(r, θ,−2α+ θ0; k) −G2α(r, θ, 2α− θ0; k),
(1.6)

respectively. If the incident wave is a cylindrical line source;

u0 = H
(2)
0 [kR(θ − θ0)], R(ξ) =

√

r2 + r20 − 2rr0 cos(ξ); (1.7)
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or a spherical point source:

u0 = e[ikR(θ−θ0)]/R(θ − θ0),R(ξ) =
√

r2 + r20 + (z − z0)2 − 2rr0 cos(ξ); (1.8)

the Green’s functions in equations (1.4) to (1.6) are replaced by the cylindrical and
spherical Green’s functions. These cylindrical and spherical Green’s functions are given in
terms of the plane wave Green’s function by:

Gα(r, θ, θ0; k) =
1

iπ

∫ 0

∞+ia

e−i/2[t+k
2(r2+r2

0
)/t)]Gα(r, θ, θ0;

k2r0
t

)
dt

t
, (1.9)

and

Gα(r, θ, z, r0, θ0, z0; k) =
−keiπ

4

√
2π

∫ 0

∞+ia

e−i/2[t+k
2(r2+r2

0
+(z−z0)2)/t)]Gα(r, θ, θ0;

k2r0
t

)
dt

t3/2
,

(1.10)
respectively. The contour of integration for the integral occurring in the expressions (1.9)
and (1.10) is shown in the figure 3.

argk t-plane

a

Imt

Ret

Branch cut

Fig. 3 The complex contour of integration for the Greens function integrals (1.9)and (1.10).
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2. Uniform asymptotic representation for the Green’s functions for a rational

wedge.

If the wedge angle α is a rational multiple of π, that is α = pπ/q, where p and q are positive
integers, the expression (1.3) becomes

Gpπ/q(r, θ, θ0; k) =
1

2πip

∫

C

eikr cos ζ

[

q sin( qζp )

cos( qζp ) − cos( q(θ−θ0)p )

]

dζ. (2.1)

By using the identity

q sin(qζ/p)

cos(qζ/p) − cos(q(θ − θ0)/p)
=

q−1
∑

m=0

sin(ζ/p)

cos(ζ/p) − cos((θ − θ0)/p+ 2πm/q)
, (2.2)

we can rewrite (2.1)in the form

Gpπ/q(r, θ, θ0; k) =

q−1
∑

m=0

Ip(kr, θ − θ0 + 2πmp/q), (2.3)

where

Ip(kr, ψ) =
1

2πip

∫

C

eikr cos ζ

[

sin( ζp )

cos( ζp ) − cos(ψp )

]

dζ. (2.4)

We rewrite Ip in the form

Ip(kr, ψ) =
1

2πi

∫

C

eikr cos ζ

[

E(ζ, ψ, p)

cos ζ − cosψ

]

dζ, (2.5)

where

E(ζ, ψ, p) =
sin(ζ/p)(cos ζ − cosψ)

p
(

cos( ζp ) − cos(ψp )
) . (2.6)

We note that E(ζ, ψ, p) is continuous across ζ = ψ and that E(0, ψ, p) = 0. Multiplying
across equation (2.5) by e−ikr cosψ and then partially differentiating under the integral sign
with respects to kr gives:

∂

∂(kr)
[Ip(kr, ψ)e−ikr cosψ] =

e−ikr cosψ

2π

∫

C

eikr cos ζE(ζ, ψ, p)dζ. (2.7)

This operation is allowed since the integral is uniformly convergent before and after the
differentiation. We now distort C into the two connected paths of steepest descent S(0)
and S(π) through the saddle points ζ = 0 and ζ = π. Since E(ζ, ψ, p) has no singularities
in the region between C and S(0) + S(π) we have by Cauchy’s theorem that

∂

∂(kr)
[Ip(kr, ψ)e−ikr cosψ] =

e−ikr cosψ

2π

[

∫

S(0)

+

∫

S(π)

]

eikr cos ζE(ζ, ψ, p)dζ. (2.8)

We now let kr → ∞ and use the standard saddle point method, which means that the
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dominant contribution for the first integral comes from ζ = 0 and for the second from
ζ = π. Thus

∂

∂(kr)
[Ip(kr, ψ)e−ikr cosψ] =

e−ikr cosψE(0, ψ, p)

2π

∫

S(0)

eikr cos ζdζ

+
e−ikr cosψE(π, ψ, p)

2π

∫

S(π)

eikr cos ζdζ + O

[

e−ikr cosψ

(kr)3/2

]

,

=
e−ikr cosψE(π, ψ, p)√

2πkr
e−i(kr−π/4) + O

[

e−ikr cosψ

(kr)3/2

]

.

(2.9)

Hence

∂

∂(kr)
[Ip(kr, ψ)e−ikr cosψ] =

e−ikr(1+cosψ)E(π, ψ, p)√
2πkr

eiπ/4 + O

[

e−ikr cosψ

(kr)3/2

]

. (2.10)

Integrating the last expression from kr to ∞ gives

[Ip(kr, ψ)e−ikr cosψ] = lim
kr→∞

[Ip(kr, ψ)e−ikr cosψ]

+
eiπ/4√

2π
E(π, ψ, p)

∫ kr

∞

e−it(1+cosψ)

√
t

dt

+O

[

1

(kr)3/2

]

.

(2.11)

Notice that in carrying out this integration the order term in the last expression has changed
from the previous equation; this can be proved by an application of L’Hopitals rule. The
change of integration variable v =

√

t(1 + cosψ) > 0 in the last expression gives

[Ip(kr, ψ)e−ikr cosψ] = lim
kr→∞

[Ip(kr, ψ)e−ikr cosψ]

+

√
2E(π, ψ, p)

√

(1 + cosψ)

eiπ/4√
π

∫

√
kr(1+cosψ)

∞
e−iv

2

dv

+O

[

1

(kr)3/2

]

.

(2.12)

It has been shown in Rawlins(4) that

lim
kr→∞

[Ip(kr, ψ)e−ikr cosψ] =
∑

N

H [π − |ψ + 2πpN |]. (2.13)

Thus by using the Fresnel integral representation

F [z] =
eiπ/4√
π

∫ ∞

z

e−iv
2

dv, (2.14)
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we obtain from (2.12)

Ip(kr, ψ) =
∑

N

H [π − |ψ + 2πpN |]eikr cosψ

−eikr cosψ E(π, ψ, p)

| cos(ψ/2)|F [
√

2kr| cosψ/2|] + O

[

1

(kr)3/2

]

.

(2.15)

In the last expression the term E(π,ψ,p)
| cos(ψ/2)| is indeterminate when cos(ψ/2) = 0. This occurs

at reflection and shadow boundaries. The indeterminacy can be removed by using the
identity†:

sin(π/p) cosψ/2
(

cos(ψp ) − cos(πp )
) =

p−1
∑

n=1

sin
nπ

p
cos

(2n− p)ψ

2p
, (2.16)

where p is an integer greater than one. Thus we can rewrite the expression (2.15) as

Ip(kr, ψ) =
∑

N

H [π − |ψ + 2πpN |]eikr cosψ

−2

p
sign[cos(ψ/2)]

(

p−1
∑

n=1

sin
nπ

p
cos

(2n− p)ψ

2p

)

eikr cosψF [
√

2kr| cosψ/2|]

+O

[

1

(kr)3/2

]

;

(2.17)

which makes apparent the uniform asymptotic nature of the result. Substituting this last
result into the expression (2.3) gives the new Green’s function expression

Gpπ/q(r, θ,±θ0; k) =

q−1
∑

m=0

∑

N

H [π − |ψ±θ0
m + 2πpN |]eikr cosψ±θ0

m

−2

p

q−1
∑

m=0

sign[cos(ψ±θ0
m /2)]

(

p−1
∑

n=1

sin
nπ

p
cos

(2n− p)ψ±θ0
m

2p

)

eikr cosψ±θ0
m F [

√
2kr| cosψ±θ0

m /2|]

+O

[

1

(kr)3/2

]

,

(2.18)

where ψ±θ0
m = θ ∓ θ0 + 2πmp/q.

By using the representation (1.9) and the result (2.18) (combined with the result (8) and
the method of appendix C in Rawlins (15)) it is not difficult to show that for a line source

† This can be shown by writing the RHS as a sum of sines and then representing the sines as the imaginary

part of exponentials. The resulting geometrical series can be summed to give the LHS.
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incidence a new uniformly valid (in r, θ, θ0) asymptotic Green’s function is given by:

Gpπ/q(r, θ, θ0; k) =

q−1
∑

m=0

∑

N

H [π − |ψθ0m + 2πpN |]H(2)
0 [kR(ψθ0m )]

+
2i

πp

q−1
∑

m=0

sign[cos(ψθ0m /2)]

(

p−1
∑

n=1

sin
nπ

p
cos

(2n− p)ψθ0m
2p

)

∫ ξ(ψθ0
m

)

∞
e−ikR(ψθ0

m
)coshξdξ

+O

[

1

(kR)3/2

]

,

(2.19)

for kr → ∞, where ξ(ψ) = sinh−1[
2
√
rr0| cos(ψ/2)|
R(ψ) ].

Similarly for a point source given by (1.8) the appropriate uniformly valid(in
r, θ, z, r0, θ0, z0) asymptotic Green’s function is given by substituting the expression (2.18)
into (1.10) (and by using the result (8) and the method of appendix B of Rawlins (16)).
It can be shown that in this case

Gpπ/q(r, θ, z, r0, θ0, z0; k) =

q−1
∑

m=0

∑

N

H [π − |ψθ0m + 2πpN |]e
ikR(ψθ0

m
)

R(ψθ0m )

− ik
p

q−1
∑

m=0

sign[cos(ψθ0m/2)]

(

p−1
∑

n=1

sin
nπ

p
cos

(2n− p)ψθ0m
2p

)

∫ ζ(ψθ0
m

)

∞
H

(2)
1 [kR(ψθ0m ) cosh ζ]dζ

+O

[

1

(kR)3/2

]

,

(2.20)

for kr → ∞, where ζ(ψ) = sinh−1[
2
√
rr0| cos(ψ/2)|

R(ψ) ].

Numerical results.

Here we present some simple Mathematica results useful for the uniform numerical
computation of the absolute value of the scattered field for plane wave incidence on any
ideal wedge whose angle can be represented as a rational multiple of π. We also support,
by some direct numerical computations, that any wedge can be approximated by choosing
a sufficiently close rational approximation to the wedge angle. It is not difficult to show
that the Mathematica 7.0 coding for the Green’s function (2.18) for any rational angle is
given by:
H [t ]:=If[t==0, 1/2,HeavisideTheta[t]];
G[kr , θ , θ0 , p , q ]:=Sum[Exp[IkrCos[θ − θ0 + 2πmp/q]]Sum[H [π − Abs[θ − θ0 +
2πmp/q + 2πp N ]], {N,−100, 100}], {m, 0, q − 1}] − 1/pSum[Sign[Cos[(θ − θ0 +
2πmp/q)/2]]Exp[IkrCos[θ − θ0 + 2πmp/q]]Erfc[Exp[Iπ/4]Sqrt[2kr]Abs[Cos[(θ − θ0 +
2πmp/q)/2]]](Sum[Sin[nPi/p]Cos[(2n− p)(θ− θ0 +2πmp/q)/(2p)], {n, 0, p− 1}]), {m, 0, q−
1}];
From the above result combined with (1.4) and (1.5), the plot for a hard and soft right
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angled wedge for plane wave incidence at θ0 = π/4, with kr = 100, p = 3, q = 2 is given
respectively by PolarPlot[Abs[N [G[100, θ,Pi/4, 3, 2] + G[100, θ,−Pi/4, 3, 2]]], {θ, 0, 3Pi/2}]
and PolarPlot[Abs[N [G[100, θ,Pi/4, 3, 2] − G[100, θ,−Pi/4, 3, 2]]], {θ, 0, 3Pi/2}]. These
plots are shown in the figure 4 and the figure 5 respectively.

-1.0 -0.5 0.5 1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0

Fig. 4 The absolute value of the total field when a plane wave at 450 incidence is diffracted by a
hard corner with kr = 100.

It was not possible to show analytically that uniform asymptotic results for a given
arbitrary angled wedge can be obtained by approximating to the given wedge angle by
a sufficiently close rational angled wedge. To support this claim as being plausible we
carried out a numerical investigation. The rational wedge angles that were considered
were of the form α = (2np − 1)π/(2nq), and letting n → ∞, in this limit α →
pπ/q. A typical set of examples for a soft and hard corner are shown in figure 6 and
figure 7 respectively. The arbitrary wedge angle was taken to be 3π/2 and the rational
approximations 5π/4, 11π/8, 23π/16, 47π/32,and 95π/64 were used. The wedge angle
concerned is given from the graphs by the extreme right hand intercept of the horizontal
axis. To avoid unnecessary clutter from rapid oscillations kr was chosen to equal 10; similar
results where obtained for kr = 100. Further graphs with closer rational approximations
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Fig. 5 The absolute value of the total field when a plane wave at 450 incidence is diffracted by a
soft corner with kr = 100.

were indistinguishable from the graph for the wedge angle 3π/2. This numerical behaviour
was replicated for other wedge angle and various angles of incidence.
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1 2 3 4
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1.0
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Fig. 6 The absolute value of the total field |uN | against θ, when a plane wave at incidence 450 is
diffracted by a hard wedge with angles 5π/4, 11π/8, 23π/16, 47π/32, 95π/64 and 3π/2 with kr = 10.
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Fig. 7 The absolute value of the total field |uD| against θ, when a plane wave at incidence 450 is
diffracted by a soft wedge with angles 5π/4, 11π/8, 23π/16, 47π/32, 95π/64 and 3π/2 with kr = 10.
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Application to plane wave grazing incidence on a corner.

θ

θ=3π/2

P
r

Fig. 8 Diffraction of an incident Grazing wave by a corner where θ ≈ 0.

As an application of the previous analytical results we shall obtain some new expressions
for the asymptotic behaviour of the far wave field when a plane wave is incident along one
of the faces of an ideal corner and the observation is along the other. Thus for a wedge
angle α = 3π/2, p = 3, q = 2 with angle of observation θ → 0+ we shall obtain the Green’s
functions for angles of incidence θ0 = 0, π, 3π/2.These will enable us to derive expressions
for the far field at grazing incidence for an acoustically rigid and soft corner. From the
expression (2.18) we obtain for p = 3, q = 2, θ → 0+



diffraction by a rational wedge 15

G3π/2(r, θ,±θ0; k) = H [π − |θ ∓ θ0|]eikr cos(θ∓θ0)

− 2√
3

cos
(θ ∓ θ0)

6
sign[cos

(θ ∓ θ0)

2
]eikr cos(θ∓θ0)F [

√
2kr| cos

(θ ∓ θ0)

2
|]

+
2√
3

sin
(θ ∓ θ0)

6
sign[sin

(θ ∓ θ0)

2
]e−ikr cos(θ∓θ0)F [

√
2kr| sin (θ ∓ θ0)

2
|]

+O[(kr)−3/2].

(2.21)

Grazing case: θ0 = 0, θ → 0+.

For this case we obtain from the expression (2.18)

G3π/2(r, θ,±0; k) = eikr − 2√
3
eikrF [

√
2kr]+

θ

3
√

3
e−ikrF

[

θ

√

kr

2

]

+O[(kr)−3/2]+O[krθ2],

and by using the results:

F [
√

2kr] =
e−i(2kr+

π

4
)

2
√

2πkr
+ O[(kr)−3/2];F

[

θ

√

kr

2

]

=
1

2
− θ

√

2π

kr
ei

π

4 + O[krθ2]; (2.22)

valid for kr → ∞,
√

(kr)θ → 0+ we get:

G3π/2(r, θ,±0; k) = eikr − e−i(kr+
π

4
)

√
6πkr

+
θ

6
√

3
e−ikr + O[(kr)−3/2] + O[krθ2]. (2.23)

Thus the far field for a rigid and soft corner for θ0 = 0, θ → 0+ is given by

uh(r, θ) = 2eikr − 2e−i(kr+
π

4
)

√
6πkr

+
θ

3
√

3
e−ikr + O[(kr)−3/2] + O[krθ2], (2.24)

and

us(r, θ) = 0 + O[(kr)−3/2] + O[krθ2] (2.25)

Grazing case: θ0 = π, θ → 0+.

For this case we obtain from the expression (2.18)

G3π/2(r, θ,±π; k) = H [±1]e−ikr ∓ 2√
3

cos
(θ ∓ π)

6
e−ikrF

[

θ

√

kr

2

]

∓ 2√
3

sin
(θ ∓ π)

6
eikrF [

√
2kr] + O[(kr)−3/2] + O[krθ2],

(2.26)
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and by using the results (2.22) we get:

G3π/2(r, θ,±0; k) = H [±1]e−ikr ∓ 1

2
e−ikr − θe−ikr

12
√

3
+
e−i(kr+

π

4
)

2
√

6πkr

+O[(kr)−3/2] + O[θ(kr)−1/2] + O[krθ2].

(2.27)

Thus the far field for a rigid and soft corner for θ0 = π, θ → 0+ is given by

uh(r, θ) = e−ikr +
e−i(kr+

π

4
)

√
6πkr

− θ

6
√

3
e−ikr (2.28)

+O[(kr)−3/2] + O[krθ2] + O[θ(kr)−1/2],

and
us(r, θ) = 0 + O[(kr)−3/2] + O[krθ2] + O[θ(kr)−1/2]. (2.29)

Grazing case: θ0 = 3π/2, θ → 0+.

For this case we obtain from the expression (2.18)

G3π/2(r, θ,±3π/2; k) =

√

2

3
(1 ± θ

6
)(1 ∓ ikrθ)F

[√
kr
]

∓
√

2

3
(
θ

6
∓ 1)(1 ± ikrθ)F [

√
kr] + O[(kr)−3/2] + O[(kr)−1/2θ2],

= 2

√

2

3
F [

√
kr],

(2.30)

and by using the results (2.22) we get:

G3π/2(r, θ,±0; k) = 2
e−i(kr+

π

4
)

√
6πkr

+O[(kr)−3/2] + O[θ(kr)−1/2].

(2.31)

Thus the far field for a rigid and soft corner for θ0 = 3π/2, θ → 0+ is given by

uh(r, θ) = 4
e−i(kr+

π

4
)

√
6πkr

+ O[(kr)−3/2] + O[θ2(kr)−1/2],

and
us(r, θ) = 0 + O[(kr)−3/2] + O[θ2(kr)−1/2]. (2.32)

Finally we remark that the above situations where the values of θ and θ0 are interchanged
can be dealt with by an application of the reciprocity theorem.
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3. Conclusions

We have derived new uniformly valid high frequency approximate expressions for the Green’s
function needed to solve problems of diffraction by plane, cylindrical and spherical wave
sources by ideal rational wedges. The method used here can be extended to deal with
more complicated boundary conditions when the canonical solution is known as a complex
integral; for example the impedance wedge Rawlins(17). The method is a considerable
improvement on the existing uniform asymptotic methods in that it is more direct and less
complicated. It avoids having to produce a special pole addition or subtraction ansatz to
deal with each wedge-angle as a special case. As a check on the results some numerical runs
where made using Mathematica for the wedges with angle 3π/2 and α = (2n3− 1)π/(2n2),
for n=2,3,4,5 and 6. The results showed that convergence resulted as n increased; giving
support to the claim that the uniform results for a any wedge angle can be approximated
sufficiently closely by a rational wedge angle. An attempt was made to show this analytically
but this proved to be a far from trivial and is another problem altogether. We have also
shown how these results will be of use in the practical situations, for example for the
numerical computation of the uniform scattered far field; and to obtain uniform results for
the highly singular situation of grazing incidence.
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