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Abstract
In this paper we propose a simple extension to the panel case of the covariate-augmented
Dickey Fuller (CADF) test for unit roots developed in Hansen (1995). The panel test we
propose is based on a p values combination approach that takes into account cross-section
dependence. We show that the test has good size properties and gives power gains with
respect to other popular panel approaches. An empirical application is carried out for
illustration purposes on international data to test the PPP hypothesis.

I. Introduction

In order to obtain more powerful unit root tests, Hansen (1995) suggests using covariate
augmented Dickey-Fuller (CADF) tests, i.e. unit root tests that exploit stationary covari-
ates in an otherwise standard Dickey-Fuller framework. In this paper we extend Hansen’s
CADF test to small panels. Although the CADF test is not the covariate augmented point
optimal test in general, we decided to use it for three main reasons. First, simulations
reported in Elliott and Jansson (2003) show that the feasible point optimal test can give
power gains at the cost of inferior size performances: this is important in our framework,
because Hanck (2008) shows that size distortions tend to cumulate in panel tests of the
kind proposed here. Second, Hansen’s CADF test is based on the familiar ADF frame-
work, so that it can be more appealing to practitioners once the computational burden
related to the computation of the test p values is eased. Finally, we show that under
conditions considered as especially relevant for the panel unit root hypothesis, the CADF
test is based on the correct conditional model.

The panel CADF (pCADF, for short) test we propose is specifically designed for macro-
panels, where the time dimension T is large and the number of panel units N is typically
fairly small. The test is based on the inverse-normal p value combination advocated in
Choi (2001) and extended in Demetrescu et al. (2006) to cope with dependence across the
panel units. The advantages of this approach are fourfold. First, provided that we can
compute the p values of the CADF test, the extension to the panel case is straightforward.
Second, the asymptotics carries through for T → ∞, without requiring N → ∞. Third,
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we do not need balanced panels, so that individual time series may come in different
lengths and span different sample periods. Fourth, the test allows for the stochastic as
well as the non stochastic components to be different across individual time series. The
null hypothesis of the test is that all the series have a unit root, while the alternative is
that at least one time series is stationary. Some authors consider this as a disadvantage,
but we believe that the extent to which this is a real limitation depends on the specific
goal of the analysis. In fact, from the economist’s point of view there are instances in
which it is especially interesting to test for the presence of a unit root collectively over a
whole panel of time series precisely because the presence of a unit root in all the series
can be interpreted as a stylized fact that can give stronger support in favour (or against)
a particular economic interpretation.

Although developed independently, the results reported in the present paper are related
to other recent research on covariate augmented panel tests. Despite some similarities,
even in the name, the panel-CADF test presented here should not be confused with the
cross-sectionally augmented ADF (CADF) test advocated in Pesaran (2007). Chang and
Song (2009) also start from the observation that using stationary covariates can greatly
improve the power of unit root tests. However, their approach is completely different
from ours: while we use a simple p value combination approach, Chang and Song (2009)
propose a method based on non-linear IV estimation of the autoregressive coefficient.

The rest of the paper is organized as follows. Section II is devoted to a brief discussion
of the test proposed in Hansen (1995) and illustrates the method we use to obtain the
necessary p values. Section III offers a brief account of the inverse-normal combination
method and its modifications to deal with cross-dependent time series. In Section IV
an extensive Monte Carlo analysis of the pCADF test is carried out. For the purpose
of illustration, in Section V we apply our pCADF test to the PPP hypothesis. The last
Section concludes.

II. The CADF test and the p values approximation

Hansen (1995) assumes that the series yt to be tested for a unit root can be written as

yt = dt + st (1)

a(L)∆st = δst−1 + vt (2)

vt = b(L)′ (∆xt − µx) + et (3)

where dt is a deterministic term (usually a constant or a constant and a linear trend),
a(L) := (1 − a1L − a2L2 − . . . − apLp) is a polynomial in the lag operator L, xt ∼ I(1)
is an m-vector such that ∆xt ∼ I(0), µx := E(∆x), b(L) := (bq2L

−q2 + . . .+ bq1L
q1) is a

polynomial where both leads and lags are allowed. Furthermore, denote by ρ2 the long-run
squared correlation between vt and et. When ∆xt explains nearly all the zero-frequency
variability of vt, then ρ2 ≈ 0. On the contrary, when ∆xt has no explicative power on the
long-run movement of vt, then ρ2 ≈ 1. The case ρ2 = 0 is ruled out, which implies that yt
and xt cannot be cointegrated.

Similarly to the conventional ADF test, the CADF test is based on three different
models representing the “no-constant”, “with constant”, and “with constant and trend”
case, respectively

a0(L)∆yt = δ0yt−1 + b0(L)′∆xt + e0t (4)

aµ(L)∆yt = µµ + δµyt−1 + bµ(L)′∆xt + eµt (5)

aτ (L)∆yt = µτ + θτ t+ δτyt−1 + bτ (L)′∆xt + eτt (6)
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and is computed as the t-statistic for δm, t̂(δm) (with m ∈ {0, µ, τ}). Hansen (1995, p.
1154) proves that under the unit root null, if some mild regularity conditions are satisfied,

the asymptotic distribution of t̂(δ0) in (4) is

t̂(δ0)
w−→ ρ

∫ 1
0 W dW(∫ 1
0 W

2
)1/2 +

(
1− ρ2

)1/2
N(0, 1) (7)

where W is a standard Wiener process and N(0, 1) is a standard normal independent of
W . The mathematical expression remains unchanged if models (5) and (6) are considered,
except that demeaned and detrended Wiener processes are used instead of the standard
Wiener process W .

In order to extend Hansen’s CADF unit root test to the panel case using the approach
outlined in Choi (2001) and Demetrescu et al. (2006), we need to compute the p values of
the CADF unit root distribution (7). Notice that the asymptotic distribution (7) depends
on the nuisance parameter ρ2 but, provided ρ2 is given, it can be simulated using standard
techniques. Therefore, we first derive the quantiles of the asymptotic distribution for
different values of ρ2. Given that our goal is the computation of p values, we simulate the
distributions for 40 values of ρ2 (ρ2 = 0.025, 0.05, 0.0725, . . . , 1) using 100, 000 replications
for each value of ρ2 and T = 5, 000 as far as the Wiener functionals are concerned. From
the simulated values we derive 1, 005 estimated asymptotic quantiles, (0.00025, 0.00050,
0.00075, 0.001, 0.002, . . . , 0.998, 0.999, 0.99925, 0.99950, 0.99975). We then use the
asymptotic quantiles to compute the p values. To this aim, we follow MacKinnon (1996,
p. 610) that proposes using a local approximation of the kind

Φ−1(p) = γ0 + γ1 q̂(p) + γ2 q̂(p)
2

+ γ3 q̂(p)
3

+ νp (8)

where Φ−1(p) is the inverse of the cumulative standard normal distribution function eval-

uated at p and q̂(p) is the estimated quantile. Equation (8) is estimated only over a
relatively small number of points, in order to obtain a local approximation.

With respect to MacKinnon (1996), we have the extra difficulty that we have to deal
with the nuisance parameter ρ2. However, given that quantiles change fairly smoothly
with ρ2, we adopt a straightforward two-step procedure. In the first step we interpolate

the quantiles q̂(p) to obtain an approximation for the relevant value of ρ2. In practice we
use

q̂ρ(p) = β0 + β1 ρ
2 + β2 ρ

4 + β3 ρ
6 + ερ (9)

where we have used the subscript ρ in q̂ρ(p) to indicate the dependence of the quantiles on
ρ2. Finally we apply the procedure advocated in MacKinnon (1996) on the interpolated
quantiles to obtain the desired p values.1

III. The inverse-normal combination test

Once the goal of the computation of the p values for the distribution (7) is achieved, the
extension of Hansen’s test to the panel case is straightforward. Indeed, Choi (2001) shows
that under some fairly general regularity conditions, if the cross-section units i = 1, . . . , N
are independent, under the null the test statistic N−1/2

∑N
i=1 t̂i

w−→ N(0, 1), where the
t̂i’s are the probits t̂i := Φ−1(p̂i), with Φ(·) the standard normal cumulative distribution

1A more detailed description of the procedure is reported in Lupi (2009) and in the extended discussion
paper version of this article (Costantini and Lupi, 2011). As a by-product of our analysis, we can compute
a detailed table of asymptotic critical values of the CADF test: see Costantini and Lupi (2011, Table 1).
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function, and p̂i (i = 1, . . . , N) the estimated individual p values from standard ADF tests.
Convergence takes place as T → ∞, whereas N < ∞ is the number of individual time
series. The null hypothesis is that all the series have a unit root, while the alternative is
that at least one series is stationary. In the presence of cross-section dependence among
the time series Choi’s test statistic is no longer asymptotically standard normal, but
Hartung (1999) suggests that, under the assumption that the pairwise correlation among
the individual test statistics % is constant and that the probits are jointly multivariate
normal, an asymptotically standard normal combination test can be obtained as

t (%̂∗, κ) :=

∑N
i=1 λit̂i√∑N

1=1 λ
2
i +

[(∑N
i=1 λi

)2
−
∑N

i=1 λ
2
i

](
%̂∗ + κ

√
2

N+1(1− %̂∗)
) (10)

where %̂∗ is a consistent estimator of % and κ > 0 is a parameter that controls the small
sample actual significance level. Demetrescu et al. (2006) generalize Hartung’s results in
two directions. They first show that the pairwise correlation of the individual test statistics
need not be constant for Hartung’s results to hold. Furthermore, they show that the
necessary and sufficient condition for (10) to have a limiting standard normal distribution
is that the individual test statistics from which the probits are derived are such to have the
copula of a multivariate normal distribution. Despite the fact that the augmented Dickey-
Fuller test does not satisfy this condition, Demetrescu et al. (2006) suggest that correcting
for cross-dependence using (10) may still be a good practice because the presence of cross-
dependence is likely to have much stronger adverse effects on inference than deviations
from normality of the individual test statistics can have. Indeed, they show by simulation
that this is in fact the case.

In this paper we follow the approach suggested by Demetrescu et al. (2006) to com-
bine the p values of the individual CADF unit root tests in the presence of cross-section
dependence. We argue that, given that under the null Hansen’s distribution is a weighted
sum of a Dickey-Fuller and a standard normal distribution, the correction for cross-section
dependence in our case should be at least as effective as it is in the standard Dickey-Fuller
case explored by Demetrescu et al. (2006).

IV. Monte Carlo simulations

In this Section we compare the performance of the pCADF test to that of the tests proposed
by Demetrescu et al. (2006), Moon and Perron (2004), and Chang and Song (2009). For
the latter two tests we consider in particular the t∗a statistic (Moon and Perron, 2004,
p. 92) and the minimum-t version of the test (see Chang and Song, 2009, pp. 905–906),
respectively. All these tests share the same null and alternative hypothesis.

Structure of the DGP

In our simulations we consider the following DGP:

∆yt = α+Dyt−1 + ut (11)(
ut
ξt

)
=

(
B γ
0′ λ

)(
ut−1
ξt−1

)
+

(
ηt
εt

)
(12)(

ηt
εt

)
∼ N

[(
0
0

)
,

(
Σ11 σ12

σ′12 σ22

)]
(13)

where ∆ is the usual difference operator, yt := (y1t, . . . , yNt)
′, ut := (u1t, . . . , uNt)

′, α :=
(α1, . . . , αN )′, D := diag(δ1, . . . , δN ), B := diag(β1, . . . , βN ), γ := (γ1, . . . , γN )′ and ηt :=
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(η1t, . . . , ηNt)
′. Note that (12) defines a VAR(1) which is stationary as long as |βi| < 1 ∀i

and |λ| < 1.2 δi = 0 ∀i under the null, while under the alternative δi < 0 for some i.
We believe that the proposed DGP is especially interesting, because it can be viewed

as a panel extension of the DGP proposed in Hansen (1995, p. 1161) and at the same
time is also a generalization of two DGPs commonly used in the panel unit root literature.
The two DGPs that are special cases of ours share the same equation (11) for ∆yt when
α = 0, but differ as far as the simulation of the ut’s is concerned:

DGP1: uit = βiui,t−1 + νit (14)

DGP2: uit = βiui,t−1 + γiζt + νit (15)

where the N -vector νt is i.i.d. N(0,Σ11) with Σ11 6= I and ζt is a i.i.d. N(0, 1) common
factor independent of νt.

It can be seen that, even when α = 0, our DGP (11)–(13) is more general than both
(14) and (15): in fact, in our DGP the “common factor” ξt can be autocorrelated and
non-zero correlations between the innovations to ui,t and the innovations to ξt can be
introduced. As a result, the cross-dependence structure is stronger than in either DGP1
or DGP2. However, DGP2 can be derived as a special case from (11)–(13) when λ = 0
and σ12 = 0, while DGP1 is retrieved if in addition γ = 0. In both cases, in general
Σ11 6= I.

Using the DGP (11)–(13) we can determine the form of the model that should be used
to test for a unit root in each single yit. For simplicity, assume now α = 0. Then, denoting
the “past” by Zt−1, the correct conditional model for ∆yi,t is

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi)βi∆yi,t−1

+
(σ12)i
σ22

ξt +

(
γi −

(σ12)i
σ22

λ

)
ξt−1 (16)

with (σ12)i the i-th element of σ12. Note that (16) has the form of a CADF(1,1,0) model.
In fact, unless γ = 0 and σ12 = 0, the standard approach of using a panel combination
ADF test in a context where the DGP is supposed to be of the kind of (11)–(13) (which
is a fairly standard situation in the panel unit root literature) is bound to be inefficient,
because the correct models should include ξt and/or ξt−1 and the individual tests should
be CADF. Even if γi = 0 (i.e., when ξt does not Granger-cause ut), as far as (σ12)i 6= 0
the correct model has the form of a CADF(1,1,0).

Equation (16) is very similar to an expression derived in Caporale and Pittis (1999,
p. 586, eq. 11) and some special cases can be of interest. Under DGP2 (λ = 0 and σ12 = 0)
the correct conditional model becomes

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi)βi∆yi,t−1 + γiξt−1 (17)

and we should expect the pCADF test to have a better performance than the tests based
on the conventional ADF. Of course, the same conditional model (17) holds for the i-th
unit if only (σ12)i = 0, while if λ = 0 and (σ12)i 6= 0 we have

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi)βi∆yi,t−1

+
(σ12)i
σ22

ξt + γiξt−1 . (18)

On the other hand, under DGP1 (λ = 0, σ12 = 0, γ = 0), the correct conditional model
is simply

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi)βi∆yi,t−1 (19)

2See Costantini and Lupi (2011) for details.
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which has the form of an ordinary ADF(1) test equation, so that in this case the pCADF
test has no advantage on p values combination tests based on the ADF test.

The power of Hansen’s CADF test depends crucially on the nuisance parameter ρ2.
Therefore, the power of the pCADF tests will depend on the values of this parameter
for each unit in the panel, ρ2i . Using the DGP (11)–(13) we can derive analytically the
theoretical value of ρ2i under the DGP.

Consider the residual ei,t from the correct conditional model (16)

ei,t = ∆yi,t − δi (1− βi) yi,t−1 − (1 + δi)βi∆yi,t−1

−
(σ12)i
σ22

ξt −
(
γi −

(σ12)i
σ22

λ

)
ξt−1 . (20)

Given that ei,t is the residual from the correct conditional model, it must be an innovation
uncorrelated with ξt−k ∀k. As discussed in Hansen (1995, p. 1151), in this case ρ2i =
ω2
ei/ω

2
vi with ω2

h the long-run variance of h, that is the zero-frequency spectral density of
h (where h ∈ {ei, vi}). Given that ei,t is an innovation, its long-run variance is just the
variance of ei,t, apart from the normalizing factor (2π)−1.

Now consider

vi,t =
(σ12)i
σ22

ξt +

(
γi −

(σ12)i
σ22

λ

)
ξt−1 + ei,t . (21)

In order to compute the long-run variance of vi,t, ω
2
vi , from (12) note that ξt = (1 −

λL)−1εt and define ri := (σ12)i /σ22. Then, rewrite (21) as

vi,t = [ri + (γi − riλ)L] ξt + ei,t

=
ri + (γi − riλ)L

1− λL
εt + ei,t . (22)

The spectral density of vi,t at frequency ω is

fvi(ω) ∝
∣∣ri + (γi − riλ) e−iω

∣∣2
|1− λe−iω|2

σ2ε + σ2ei (23)

so that the long-run variance of vi,t, ω
2
vi , is

ω2
vi := fvi(0) ∝ [γi + (1− λ) ri]

2

(1− λ)2
σ2ε + σ2ei . (24)

Finally, ρ2i is given by

ρ2i =
ω2
ei

ω2
vi

=
σ2ei

[γi+(1−λ)ri]2

(1−λ)2 σ2ε + σ2ei

. (25)

The value of ρ2i is a nonlinear function of (σ12)i, σ22, γi and λ. Contrary to what is
suggested in Hansen (1995, p. 1161), we find that the value of λ is crucial in determining
the value of the nuisance parameter ρ2, even when the VAR(1) (12) is stationary. Of
course, when λ → 1, then ω2

vi → ∞ and ρ2 → 0: this is an expected result, because if
λ = 1, ξt has a unit root and is cointegrated with yi,t. Conversely, if γi = 0 and ri = 0,
then ρ2i = 1: in this case there would be no advantage in using individual CADF tests
instead of standard ADF tests. Under DGP2, given that λ = 0 and ri = 0, ρ2i simply
varies inversely with γi. Under DGP1, where it is also γi = 0 ∀i, then ρ2i = 1 ∀i and
the power of the pCADF test is substantially the same as the power of the test based on
Demetrescu et al. (2006), consistently with what already pointed out while discussing the
conditional model.

In (25) the larger are either λ, γi or ri, the smaller is ρ2i . Given that the power of the
CADF test is higher the smaller is the value of ρ2i , this in turn defines the regions where
the test is expected to perform better.
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Parameters setting and experimental design

Some care must be exerted in simulating the DGP (11)–(13), especially as far as the
simulation of (η′t, εt)

′ is concerned. From (13), (η′t, εt)
′ ∼ N (0,Σ), with

Σ =

(
Σ11 σ12

σ′12 σ22

)
. (26)

We assume diag(Σ) := ı, with ı := (1, . . . , 1) so that the generic element of σ12, (σ12)i,
coincides with ri. However, we have to distinguish two different settings forΣ11, depending
on σ12 = 0 or σ12 6= 0.

When σ12 = 0 (e.g. under DGP1 and DGP2), then we must generate the correlation
matrix Σ11 in a way that is as flexible and unrestricted as possible. At the same time we
want to introduce fairly strong dependence. Therefore, we start by generating a symmetric
matrix Σ∗ whose diagonal elements are equal to 1 and whose non-diagonal elements are
randomly drawn from U(0,0.8). Of course, although symmetric,Σ∗ is not in general positive

definite. Therefore, we find a positive definite symmetric matrix Σ† that is “close” to
Σ∗ by computing Σ† = V ∗Λ†V ∗′ where the matrix V ∗ is derived from the singular
value decomposition of Σ∗ and Λ† is the diagonal matrix of the eigenvalues of Σ∗, after
substituting the negative eigenvalues with very small but positive values. Finally, the
positive definite covariance matrix obtained in this way is transformed into the required
correlation matrix Σ11 by normalization. The resulting symmetric positive definite matrix
Σ11 is such that most of the simulated correlations are positive, as we probably would
expect in many empirical macro panel settings, and the average correlation is larger than
the one simulated using the method proposed e.g. by Chang and Song (2009).

On the other hand, when σ12 6= 0 the parameters ri := (σ12)i enter the expression for
ρ2i and are therefore important design parameters that we want to control precisely. In
this case we want to simulate a correlation matrix Σ whose last column is a given vector
(σ′12, 1)′. Furthermore, given the vector of correlations σ12, it is reasonable to consider
Σ11 6= I. However, Σ11 in this case must be consistent with the given σ12. Therefore, we
introduce a minimal structure in Σ11 by assuming that its generic off-diagonal element
is (Σ11)ij := (σ12)i (σ12)j (with i 6= j) and diag(Σ11) := ı. This structure essentially
states that the more ηit is correlated with εt and ηjt is correlated with εt, the more ηit is
correlated with ηjt, that is what we should expect in the usual case. Simulating such a Σ
is very easy: just draw the elements of σ12 from a specified distribution, U(rmin,rmax), say,
and compute S = σ12σ

′
12. Set diag(S) := ı and call Σ11 the resulting matrix. Then, build

the correlation matrix Σ as in (26). The matrix Σ simulated in this way is symmetric
positive definite.3

The other parameters of the DGP are generated as in Chang and Song (2009): in
particular, βi ∼ U(0.2,0.4) and γi ∼ U(0.5,3) (with i = 1, . . . , N). Under the null δi = 0 ∀i,
under the alternative δi ∼ U(−0.2,−0.01) for the stationary units. In order to highlight the
power of the tests when only a few series are stationary, the number of stationary units
under the alternative is fixed to 2 in all experiments dealing with power. Given that our
DGP allows for a non-zero drift αi, we run the experiments first using αi = 0 ∀i and then
using αi ∼ U(0.7,0.9).

The experiments are carried out using 2,500 replications with T ∈ {100, 300} and
N ∈ {10, 20} that are fairly typical values in macro-panel applications. Given that we
expect the nuisance parameter ρ2 to influence the performance of our test, we concentrate
on just a few experiments carefully selected in such a way that they differ in the underlying
value of ρ2 (see Table 1).

3See Costantini and Lupi (2011) for a proof.
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Table 1
Parameters setting. The values of ρ2 are computed using the means of the

Uniform distributions

Experiment λ γ r ρ2

1 0.0 0.0 0.0 1.000
2 0.0 U(0.7,0.9) 0.0 0.610

3 0.2 U(0.7,0.9) U(0.1,0.3) 0.410

4 0.5 U(0.1,0.3) U(0.7,0.9) 0.410

5 0.2 U(0.7,0.9) U(0.7,0.9) 0.236

6 0.5 U(0.7,0.9) U(0.7,0.9) 0.148

Since the use of the pCADF test implies a sequence of decisions, we use a pseudo-
real setting that aims at replicating the way these decisions might be taken in practice.
Therefore, the choice to correct for cross-unit dependence is based on a test for the presence
of cross-unit correlation (Pesaran, 2004): when the test rejects the absence of correlation,
the panel test is performed by using the modified weighted inverse-normal combination
(10), otherwise Choi’s standard inverse-normal combination is utilized. When (10) is used,
consistently with Hartung (1999) and Demetrescu et al. (2006), in our experiments we set
λi = 1 ∀i and κ = 0.2. The selection of the lags structure for the lagged differences
of both the dependent variable and the covariate in the pCADF test equations (4)-(6)
is based on the BIC separately for each time series. The choice of the variable to be
used as the stationary covariate in testing the unit root for the i-th series in the panel
is determined using three different criteria. First, ξt is used as the stationary covariate;
second, we consider as the stationary covariate the average of the other differenced series
∆yjt (∀j 6= i), as in Chang and Song (2009); third, we use the differenced first principal
component of ∆yt. A word of caution is in order here. It could be argued that selecting
the stationary covariate using the average of the other ∆yjt or the differences of the first
principal component of the series may overlook the problem that the derived covariate
might be non-invertible. However, for this to be the case it would be necessary that all
the series are I(0). In this instance the test would have high power anyway. Furthermore,
one could wonder if using a covariate different from ξt would ensure convergence of the
test statistic to the correct asymptotic distribution. In fact, in Hansen (1995) there is
no “true” covariate to be used, and convergence to (7) holds for any stationary covariate
satisfying Assumption 1 (Hansen, 1995, p. 1151), which in turn is more likely to be satisfied
if models (4)-(6) include appropriate lag polynomials. However, while the choice of the
stationary covariate(s) does not influence the size of the test (at least asymptotically),
it can nevertheless have a significant impact on its power so that the choice of “good”
covariates is essential to reach the potential power gains offered by the CADF and pCADF
tests.

As far as Demetrescu et al.’s panel-ADF test is is concerned, the number of lags
is selected also in this case by using the BIC and, differently from Demetrescu et al.
(2006), Hartung’s correction is applied after pre-testing for cross-dependence: if no cross-
dependence is detected, then the test is applied as in Choi (2001). For Moon and Perron’s
test we set the maximum number of factors to 4 and select the actual number of factors
to be used in the test by the BIC3 criterion (see Moon and Perron, 2004, p. 94). Finally,
as far as the test proposed by Chang and Song (2009) is concerned, for each time series in
the panel we select the lag orders of the differences and of the covariate by using the BIC;
the covariates are determined by selecting the ones that have the highest correlations with
the error processes (see, on this, Chang and Song, 2009, footnote 9).
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Figure 1. Size discrepancy plots of the pCADF test. The first row refers to experiments
1 to 3, the second to experiments 4 to 6. DGP with no drift, models with no trend.
T = 100, N = 10. Solid line, ξt as the stationary covariate; dashed, average ∆yjt (j 6= i)
as the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values

Simulation results

The simulation results are presented using the graphical approach proposed in Davidson
and MacKinnon (1998). Let’s denote by F̂ (xi) the estimated empirical distribution of the
p values at any point xi ∈ (0, 1). Under the null, the p values are uniformly distributed, so
that it should be true that F̂ (xi) ≈ xi. A useful way to investigate the size properties of a
test is therefore to plot F̂ (xi)−xi against xi. This is what Davidson and MacKinnon call a
p value discrepancy plot. The statistical significance of the discrepancies F̂ (xi)−xi can be
approximately assessed by using the Kolmogorov-Smirnov distribution. Using the p value
discrepancy plots it is possible to investigate the size properties of the tests not only in
correspondence with a couple of selected points, but along all the p values distribution.
However, given that we are mostly interested in the left tail of the distribution, we confine
our attention to the nominal size up to 30%. In order to analyse the power of the tests, we
plot the power against the actual size. Davidson and MacKinnon (1998) call these plots
size-power curves. By plotting the power on the vertical axis and the actual size on the
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Figure 2. Size discrepancy plots. The first row refers to experiments 1 to 3, the second
to experiments 4 to 6. DGP with no drift, models with no trend. T = 100, N = 10.
Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dotted, Moon and
Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-Smirnov critical
values

horizontal one, we have a graphical representation of the power for any desired size of the
test. A 45◦ line is also plotted that is equivalent to the size-power curve of a hypothetical
test whose power is always equal to the size. Size-power curves are related to the receiver
operating characteristic (ROC) curves (see e.g. Lloyd, 2005). In fact, a plot of the power
against the size is the ROC curve of the test. It is worth emphasizing that any point on
the estimated ROC (size-power) curve represents the estimated power of the test when the
correct (as opposed to the nominal) critical value for a given test size is utilized. In other
words, the ROC curve is a graphical representation of the intrinsic (size-adjusted) power
of the test (Lloyd, 2005). All the figures presented in this Section are produced using the
same scale in order to ease comparison among the tests and across the experiments.

We start the analysis by considering experiments 1–6 of Table 1 with α = 0 in the
DGP and no trend in the model. The size discrepancies of the tests are reported in
Figures 1 and 2. The test proposed by Demetrescu et al. (2006) has the best overall
size properties across experiments. The pCADF test performs quite well, with no large
size discrepancies in correspondence with the usual size levels. However, it tends to be
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Figure 3. Size-power plots of the pCADF test. The first row refers to experiments
1 to 3, the second to experiments 4 to 6. DGP with no drift, models with no trend.
T = 100, N = 10, 2 series are stationary. Solid line, ξt as the stationary covariate;
dashed, average ∆yjt (j 6= i) as the stationary covariate; dotted, first difference of the
first principal component as the stationary covariate

conservative in experiment 6, especially when the first principal component is used to
derive the stationary covariate. On the contrary, the test advocated by Moon and Perron
(2004) tends to over-reject in experiments 1 and 2, where the factor structure is weaker.
In all the other experiments it performs remarkably well in terms of size. Finally, the
test developed by Chang and Song (2009) does not display significant discrepancies in
correspondence with the usual size levels, but shows a general tendency towards under-
rejection, especially in experiments 5 and 6.

The size-power curves for the same experiments are reported in Figures 3 and 4.
In particular, Figure 3 shows that the power of the pCADF test increases significantly
with decreasing values of ρ2, as expected. Indeed, when ρ2 < 0.5, the pCADF correctly
rejects the null more often than the other tests when ξt is used as the stationary covariate
and, for somewhat smaller values of ρ2 also when the other covariates are used as well.
The covariate-augmented test proposed by Chang and Song (2009) shows a rather stable
rejection rate across experiments (see Figure 4), with only a fairly small increase for low
values of ρ2. A direct comparison with the pCADF test is offered in Figure 5 that shows
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Figure 4. Size-power plots. The first row refers to experiments 1 to 3, the second
to experiments 4 to 6. DGP with no drift, models with no trend. T = 100, N = 10,
2 series are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and Song
(2009); dotted, Moon and Perron (2004)
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Figure 5. Size-power plots. The first row refers to experiments 1 to 3, the second to
experiments 4 to 6. DGP with no drift, models with no trend. T = 100, N = 10, 2
series are stationary. Solid line, pCADF with ξt as the stationary covariate; dashed,
pCADF with average ∆yjt (j 6= i) as the stationary covariate; dotted, Chang and Song
(2009)

that the test proposed by Chang and Song (2009) performs better than the pCADF only for
relatively high values of ρ2. However, it should be reminded that the pCADF is equivalent
to the panel ADF test when ρ2 = 1 while, when ρ2 < 1, the power gain obtained by
using stationary covariates can be substantial. In fact, the power of Chang and Song’s
test is still higher than the power of the pCADF test for ρ2 = 0.61. This is due to the
fact that, although the power of the pCADF test increases as ρ2 decreases, nevertheless
the relation between the power and ρ2 is not linear, and larger power gains are expected
for fixed decrements of ρ2 when the value of ρ2 is small. In fact, simulation results are
consistent with the behaviour of the asymptotic power envelope of the (ordinary) CADF
test (see Hansen, 1995, p. 1153). Therefore, it is reasonable that the pCADF test becomes
more powerful than Chang and Song’s only for values of ρ2 that are below some threshold.
Finally, inspection of Figure 4 suggests that the power of Moon and Perron’s test is instead
rather disappointing, being virtually identical to the size in most experiments.

When the size of the tests with trend (pCADF and Demetrescu et al.’s) or detrended
(Chang and Song’s and Moon and Perron’s) over the same DGP as above are considered,
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Demetrescu et al.’s ADF-based test ranks first, as in the previous case.4 The pCADF test
has approximately correct size in the usual size ranges. It is again slightly conservative
in experiment 6, especially when the difference of the first principal component is used
as the stationary covariate, while Chang and Song’s test is now very conservative across
all the experiments. On the other hand, Moon and Perron’s test tends to over-reject
substantially. Furthermore, the presence of the trend in the model tends to reduce the
power of all the tests. As far as the ADF test is concerned, this is a well known result.
Despite the observed moderate power reduction, the pCADF test continues to behave
quite well, even if rejections do not increase monotonically when ρ2 decreases. In fact,
the same kind of behaviour is mirrored, on a different scale, by Demetrescu et al.’s test.
However, comparison with the latter test shows that the power gain deriving from using
the stationary covariates is again substantial. Chang and Song’s test has good intrinsic
power and the rejections remain fairly stable across experiments, as in the no-trend case.
The pCADF test still compares well with Chang and Song’s, above all when the correct
covariate is considered. Finally, Moon and Perron’s test has virtually no power at all.

We now extend our analysis to cover the case where the DGP includes a drift term
α 6= 0. In particular, in our simulations we consider αi ∼ U(0.7,0.9) (with i = 1, . . . , N).
Given the presence of a drift, in this case we only consider the tests based on models
including the deterministic trend (or the detrended versions of the tests).

When we allow for a non-zero drift in the DGP, the behaviour of the pCADF test
and of Demetrescu et al.’s test remains substantially unchanged and fairly good in terms
of size (see Figures 6 and 7). On the contrary, Chang and Song’s detrended test is so
conservative that it hardly rejects even in correspondence with quite high nominal size
levels, while Moon and Perron’s test rejects much too often (see Figure 7).

The power of the pCADF test (see Figure 8) improves somewhat with respect to the
trend case without drift and is very good, compared to Demetrescu et al.’s and Moon
and Perron’s tests (see Figure 9), whose power is very similar to the case without drift.
Chang and Song’s test maintains good intrinsic power, but it should be emphasised that
the correct critical values that ensure that the test has correct size are very different from
the theoretical ones so that it is difficult to imagine that the test can be really useful in
practice under these circumstances.5

In order to check the performance of the tests for larger values of T and N , we repeat
the experiments of Table 1 with T = 300 and N = 20. Power is investigated again using
only 2 stationary series. The results essentially confirm the tendencies already highlighted
using T = 100 and N = 10.6 In particular, when the size of the tests is examined, the
pCADF test has approximately the same behaviour as in the T = 100 and N = 10 case,
being slightly conservative especially for low values of ρ2. The ADF-based test proposed
by Demetrescu et al. (2006) has again good size. The performance of Moon and Perron’s
test is also very similar to the corresponding DGP with T = 100 and N = 10 and tends
to over-reject in the presence of a weak factor structure. Quite on the contrary, the
tendency towards under-rejection of the test advocated by Chang and Song (2009) is now
more pronounced than in the T = 100, N = 10 case. As far as power is concerned, the
simulations show that the power of the pCADF test increases with decreasing values of
ρ2 and the test virtually always reject when ρ2 is small, despite being in the presence
of only 2 out of 20 stationary series. In other words, even if the fraction of series under
the alternative is smaller than in the previous experiments conducted with T = 100 and

4In order to save space, the figures are not reported for these experiments. The detailed results are
available in Costantini and Lupi (2011).

5If power is plotted against nominal size, it becomes apparent that under this DGP Chang and Song’s
detrended test is heavily biased, with the empirical rejections being well below the nominal size.

6To save space we refer the readers to (Costantini and Lupi, 2011) for the detailed results.
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Figure 6. Size discrepancy plots of the pCADF test. The first row refers to experiments
1 to 3, the second to experiments 4 to 6. DGP with non-zero drift, models with trend.
T = 100, N = 10. Solid line, ξt as the stationary covariate; dashed, average ∆yjt (j 6= i)
as the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values
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Figure 7. Size discrepancy plots. The first row refers to experiments 1 to 3, the second
to experiments 4 to 6. DGP with non-zero drift, models with trend. T = 100, N = 10.
Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dotted, Moon and
Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-Smirnov critical
values
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Figure 8. Size-power plots of the pCADF test. The first row refers to experiments 1
to 3, the second to experiments 4 to 6. DGP with non-zero drift, models with trend.
T = 100, N = 10, 2 series are stationary. Solid line, ξt as the stationary covariate;
dashed, average ∆yjt (j 6= i) as the stationary covariate; dotted, first difference of the
first principal component as the stationary covariate
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Figure 9. Size-power plots. The first row refers to experiments 1 to 3, the second to
experiments 4 to 6. DGP with non-zero drift, models with trend. T = 100, N = 10,
2 series are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and Song
(2009); dotted, Moon and Perron (2004)
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Table 2
Panel tests of the PPP hypothesis (T = 103, N = 20)

Test test statistic p-value

Demetrescu et al. (2006) -0.383 0.351
Moon and Perron (2004) -1.134 0.128
Chang and Song (2009) -0.634 0.998
pCADF (principal component) -0.672 0.251
pCADF (nominal exchange rate) -4.210 0.000

N = 10 (where it was 2 out of 10), nevertheless the pCADF test is now substantially more
powerful. Furthermore, using either the average of the differenced series or the differenced
first principal component gives in this case excellent results, very close to those that can be
obtained using ξt as the stationary covariate. Moon and Perron’s test has again virtually
no intrinsic power at all. On the contrary, the test advocated by Chang and Song (2009)
has the best performance for high values of ρ2, while its power is slightly worse than the
pCADF’s for small values of the nuisance parameter.

V. Empirical application

For the sake of illustration, in this Section we offer an application related to the PPP
hypothesis.7 This is a classical application in the panel unit root literature. In the ap-
plication we use exactly the same procedure adopted in the Monte Carlo analysis, with
automatic model selection and correction for cross-dependence based upon the outcome
of the test proposed in Pesaran (2004). In addition, in carrying out the pCADF test we
also use stationary covariates chosen on theoretical grounds.

It is well known that a necessary condition for the PPP to hold is that the real ex-
change rate must be mean-reverting. For greater comparability with previous works, in our
analysis we use quarterly data from Chang and Song (2009) covering the period 1973q1–
1998q4.8 Data for the same countries over the same period have been used in other papers
(see e.g. Amara and Papell, 2006; Papell, 2006). Given that under the PPP hypothesis
the real exchange rate should not exhibit trends of any kind, in developing our application
of the pCADF test, consistently with the existing literature we focus on tests without de-
terministic trends. Furthermore, following Elliott and Pesavento (2006, pp. 1412–1413),
we apply the pCADF test also using the first difference of the nominal exchange rate as
the stationary covariate. Since the covariate should not cointegrate with the dependent
variable, in order to verify that the nominal exchange rate is not cointegrated with the
variable of interest, we apply the group mean cointegration tests proposed in Westerlund
(2007). The null hypothesis of these tests is no cointergation for all the panel units, while
the alternative is that cointegration is present in at least a panel unit. The p values of
Westerlund’s Gτ and Gα tests are equal to 0.325 and 0.757, respectively, supporting the
validity of the nominal exchange rate as a potential covariate.

The empirical results are summarized in Table 2. Here we also replicate Chang and
Song (2009), so our results are identical to theirs. While the other panel tests in Table 2
do not reject the I(1) null, when the differenced nominal exchange rate is used as the
stationary covariate, the pCADF test strongly rejects the unit root null consistently with

7Interested readers can find a further application dealing with international industrial production indices
in Costantini and Lupi (2011).

8The original sources are the International Monetary Fund’s International Financial Statistics and cover
20 countries (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom).
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Elliott and Pesavento (2006) that reject the null for most countries when the same covariate
is used in the testing procedure proposed by Elliott and Jansson (2003).9 This result is
also broadly consistent with other papers investigating the same data set: in particular,
Amara and Papell (2006) find evidence in favour of the PPP hypothesis in many countries
again using the time series approach proposed in Elliott and Jansson (2003), while Papell
(2006) reaches the same conclusion using a panel-ADF test based on the homogeneous
alternative and parametric bootstrap. Strictly speaking, the outcomes of these papers are
not directly comparable because they refer to different null and alternative hypotheses;
however, they all point in the same direction.

VI. Concluding remarks

A simple covariate augmented Dickey-Fuller (CADF) test for unbalanced heterogeneous
panels is proposed. The test, that we label panel-CADF (pCADF, for short), is a gener-
alization of the CADF test proposed in Hansen (1995) and is developed along the lines
suggested in Choi (2001) and Demetrescu et al. (2006). This choice allows us to be very
general in the specification of the individual unit root tests and makes the test applicable
in the presence of cross-dependent time series. Given that the pCADF test is based on a
modified inverse-normal p value combination, the p values of the individual CADF tests
have to be obtained. For this reason, a procedure to compute the asymptotic p values of
Hansen’s CADF test is also proposed.

The size and power properties of the pCADF test are investigated using an extensive
Monte Carlo analysis. The performance of the pCADF test is compared with that of the
panel unit root tests proposed in Moon and Perron (2004), Demetrescu et al. (2006) and
Chang and Song (2009). It is shown that the pCADF test in general does not suffer from
important size distortions and can offer significant power gains. In all the experiments
analysed in the paper, the power of the pCADF test is significantly higher than the power
of the tests advocated by Moon and Perron (2004) and Demetrescu et al. (2006). When a
drift is present in the DGP, the pCADF test has the best performance in terms of power,
among all the examined tests.

For the sake of illustration we consider an empirical application dealing with the PPP
hypothesis.
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