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To elucidate the physical mechanisms that play a role in the interfacial transfer of atmo-
spheric gases into water, a series of direct numerical simulations of mass transfer across
the air-water interface driven by isotropic turbulence diffusing from below has been car-
ried out for various turbulent Reynolds numbers (RT = 84, 195, 507). To allow a direct
(unbiased) comparison of the instantaneous effects of scalar diffusivity, in each of the
DNS up to six scalar advection-diffusion equations with different Schmidt numbers were
solved simultaneously. As far as the authors are aware this is the first simulation that is
capable to accurately resolve the realistic Schmidt number, Sc = 500, that is typical for
the transport of atmospheric gases such as oxygen in water. For the range of turbulent
Reynolds numbers and Schmidt numbers considered, the normalized transfer velocity

KL was found to scale with R
−1/2
T and Sc−

1/2, which indicates that the largest eddies
present in the isotropic turbulent flow introduced at the bottom of the computational
domain tend to determine the mass transfer. The KL results were also found to be in
good agreement with the surface divergence model of McCready, Vassiliadou & Hanratty
(AIChE J., vol. 32, 1986, pp. 1108-1115) when using a constant of proportionality of
0.525. Although close to the surface large eddies are responsible for the bulk of the gas
transfer, it was also observed that for higher RT the influence of smaller eddies becomes
more important.
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1. Introduction

Many environmentally important gases like oxygen (O2), carbon dioxide (CO2), nitrous
oxide (NO) etc. have a very low diffusivity in water. Because of this, the mass transfer
of these gases across the water surface (high Schmidt number process) is governed by
resistance on the liquid side and the typical thickness δ of the gas-saturated layer im-
mediately below the water surface is very small (δ ≈ 10 − 1000µm). A wide variety of
interfacial gas exchange processes can be found in nature, including oxygen absorption
from the atmosphere into streams or lakes (reaeration), CO2 absorption by the ocean
(carbon sinks) or the volatilization of pollutants. Even though the equations that describe
fluid flow and scalar transport (Equation 2.1) are well-known, the very small thickness

† Email address for correspondence: herlina.herlina@kit.edu



2 H. Herlina and J. G. Wissink

of the concentration boundary layer, which is thinner than the Kolmogorov scale of the
liquid flow, complicates the effort of understanding the actual gas transfer mechanisms.

Early studies focused on developing conceptual models and finding empirical relations
between measurable flow quantities and the global gas transfer velocity

KL =
j

cs − cb
, (1.1)

where j is the average gas flux, cb and cs are the average gas concentrations in the
bulk and at the surface of the water, respectively. The oldest model is the film-model
of Lewis & Whitman (1924) who assumed the presence of a stagnant film on both sides
of the interface in which the gas transfer is controlled by molecular diffusion, D. This
assumption led to the equationKL = D/δ, in which δ is the thickness of the stagnant film.
In various experiments (see e.g. McCready et al. 1986) this linear relationship between
KL and D was found to be an oversimplification of the actual transfer process. Higbie
(1935) realised that the actual transfer velocity was strongly dependent on the rate at
which turbulence replaced the saturated fluid near the interface by fresh fluid from below.
To describe this he introduced a (constant) surface-renewal time, T , in his penetration
model. Danckwerts (1951) subsequently improved Higbies model by allowing the surface
renewal rate, r, to follow an exponential distribution so that T was no longer a constant.
As a result he obtained the relationship KL ≈

√
Dr. The hydrodynamics are described

by the renewal rate r, which needs to be determined experimentally. Some researchers
tried to circumvent the experimental determination of r by relating it to measurable
flow parameters. By assuming that the surface renewal rate is determined by the largest
turbulent eddies in a flow, Fortescue & Pearson (1967) estimated r by urms/L∞, where
urms is the rms of the turbulent fluctuations and L∞ is the integral length scale of the
turbulence. Hence, in this so-called large-eddy model KL is given by KL ≈

√

Durms/L∞,

or alternatively KLSc
1/2/urms ∝ R

−1/2
T . An alternative approach for the determination

of r is given by the small-eddy model developed by Banerjee et al. (1968) and Lamont
& Scott (1970). By assuming that the small eddies are determining the surface renewal
rate, they approximated r by

√

ε/ν, where ε is the turbulent dissipation rate near the
surface and ν is the kinematic viscosity. As a result they obtained the equation KL ≈√
D[ε/ν]

1/4 or KLSc
1/2/urms ∝ R

−1/4
T . Theofanous et al. (1976) subsequently proposed

two regimes, in which the large-eddy model is valid for low RT and the small-eddy model
is valid for high RT , where the critical RT is approximately 500. Finally, by performing
numerical investigations, McCready et al. (1986) found that the surface divergence plays
an important role in the interfacial gas transfer process. The main problem of conceptual
models (reviews of models can be found in e.g. Theofanous (1984); Jähne & Haussecker
(1998)) is to find a reliable relation between the near surface hydrodynamics and the
global (in the bulk) turbulent flow parameters. The drawback of empirical relations (see
for instance O’Connor & Dobbins 1956; Plate & Friedrich 1984; Moog & Jirka 2002)
often is the limited applicability of locally developed equations to other flow conditions.

To date, improved knowledge of the physical mechanisms of the gas transfer process
has been obtained through detailed mapping of both the gas concentration and the
fluid flow near the surface, which was made possible by the fast development of labo-
ratory measurement techniques as well as increased numerical computing capabilities.
Non-intrusive optical measurement techniques such as Particle Image Velocimetry (PIV)
have been used in order to understand the near surface hydrodynamics (e.g. Tamburrino
& Gulliver 2002; Banerjee et al. 2004; McKenna & McGillis 2002, 2004b; Sugihara &
Tsumori 2005; Turney & Banerjee 2013), while Laser Induced Fluorescence (LIF) en-
abled visualization of the gas concentration fields (e.g Wolff & Hanratty 1994; Münsterer
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et al. 1995; Schladow et al. 2002; Woodrow & Duke 2002; Herlina & Jirka 2004; Walker
& Peirson 2008). Various research groups (such as Lu & Hetsroni (1995); Handler et al.
(1999); Nagaosa (1999); Yamamoto et al. (2001)) conducted direct numerical simulations
(DNS) of passive heat/mass transfer across the free surface of an open-channel flow. These
studies show a number of important features such as the correlation between the vortices
ejected from the bottom region and the near-surface concentration field. Magnaudet &
Calmet (2006) used a large-eddy simulation (LES) to perform a statistical analysis of the
structure of the near-surface region of an open-channel flow at a high Reynolds number.
Kermani & Shen (2009) used DNS to study characteristics of interfacial mass transfer
driven by free-surface turbulence. They investigated the quantification of the surface age
related to the surface renewal models pioneered by Higbie’s penetration theory (Higbie
1935) and further elaborated by Danckwert’s random surface renewal model (Danckw-
erts 1951). These models assume that the turbulence in the bulk region transports fluid
with a low gas-saturation up to the surface where gas transfer takes place. The surface
age can be thought of as the time between two surface renewal events. Kermani & Shen
(2009) concluded that Higbie’s model is inappropriate for describing the gas transfer and
Danckwert’s model is only applicable at large surface age where the gas transfer is actu-
ally insignificant. Hasegawa & Kasagi (2009) performed a hybrid DNS/LES calculation
of a coupled air-water turbulent flow and associated mass transfer for Sc = 1 and 100 at
Reτ = 150 (Reτ is the Reynolds number based on the interfacial friction velocity). They
focused on the relation between the local interfacial mass transfer and the surface diver-
gence and proposed a criterion for the validity of the surface divergence model. Recently,
Khakpour et al. (2011) performed low Sc DNS with turbulent shear flow and examined
the effect of surfactant contamination at the surface on the mass transfer process. The
scalar statistics near the contaminated surface were found to behave similarly to those
near a solid wall. In this paper, we focus on examining the effect of Schmidt (Sc) and
turbulent Reynolds (RT ) numbers on mass transfer at a clean flat-interface using DNS
performed at a wide range of Sc (1 to 500) and low to moderate RT (84 to 507).
The numerical setup is chosen largely in accordance with the experimental work of

Herlina & Jirka (2008). In these experiments the gas transfer process across the air-
water interface driven by grid-stirred turbulence (a convenient analogy to bottom-shear
induced turbulence) in the water phase was investigated using PIV and LIF techniques
(see Figure 1). The synoptic visualization of velocity and concentration fields near the
interface provided a better insight into the transfer mechanisms. Direct quantification of
the molecular diffusive transport D∂c/∂z and the turbulent mass flux c′w′ in terms of
the total mass flux j

j̄ = c′w′ −D∂c/∂z (1.2)

in the vertical direction were made possible. Their data provided experimental evidence
that the normalized mean c′w′ profile increases from around 0 at the water surface to 1
within a short distance below the surface (approx. twice the boundary layer thickness).
The techniques applied, however, still face difficulties in resolving the uppermost diffusive
sublayer as well as any structures present in the deeper bulk region.

With the present DNS we aim to complement the laboratory results and obtain details
of the gas transfer mechanisms that in the laboratory experiments might be affected by
limitation of measurement accuracy and/or unavoidable disturbances (such as unwanted
surface contamination). As in the experiments, we focused on elucidating the transfer
process in the near surface region at various turbulent Reynolds numbers RT ranging
from low to moderate. Another focus of the present numerical study is to complement
the laboratory results by studying the effect of varying the Schmidt numbers Sc, defined
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Figure 1. Schematic illustration depicting the gas transfer problem driven by isotropic
turbulence diffusing from below (a convenient analogy to bottom-shear induced turbulent

flow.)

as the ratio of the momentum diffusivity (viscosity ν) and mass diffusivity D. Typical
Schmidt numbers for gases dissolved in water are Sc ≈ 200 for Helium, Sc ≈ 500 for
oxygen and Sc ≈ 600 for carbon dioxide. Due to limitations in computing capacity, most
previous DNS studies were limited to Schmidt numbers smaller than 10 and considered
typically only one turbulent Reynolds number. To be able to perform the highly accurate
simulations at realistic Schmidt numbers, a numerical code especially developed for this
purpose was used. It uses a special discretization of the scalar advection using a weighted,
essentially non-oscillatory (WENO) scheme (Liu et al. 1994) that is able to resolve steep
concentration gradients efficiently together with a fourth-order discretisation of scalar
diffusion and a fourth-order incompressible flow solver. To further increase the accuracy
of the scalar discretisation a dual meshing strategy was used with a finer mesh for the
scalar than for the flow field. The code was parallelised so that it runs on modern,
massively parallel supercomputers. As far as the authors are aware these are the first
direct numerical simulations of mass transfer across the air-water interface in which the
scalar transport at Schmidt numbers up to Sc = 500 is fully resolved for low to moderate
RT .

2. Description of Computations

The problem under consideration is the gas transfer across the air-water interface
driven from below by a homogeneous turbulent flow that is generated at the bottom
of the water body. The passive scalar transport is governed by the three-dimensional
convection diffusion equation of the scalar c = c(x, y, z, t) that in conservative form reads

∂c

∂t
+

∂uc

∂x
+

∂vc

∂y
+

∂wc

∂z
=

1

ReSc

(

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)

, (2.1)

where x, y are the horizontal directions and z is the vertical direction, u, v and w are the
velocities in the x, y, and z directions, Re is the Reynolds number and t denotes time.
The fluid motion is governed by the incompressible Navier-Stokes equations where the



DNS of interfacial scalar transport 5

continuity equation reads,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.2)

and the momentum equations are given by

∂u

∂t
+

∂uu

∂x
+

∂uv

∂y
+

∂uw

∂z
= −∂p

∂x
+

1

Re

{

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

}

(2.3)

∂v

∂t
+

∂vu

∂x
+

∂vv

∂y
+

∂vw

∂z
= −∂p

∂y
+

1

Re

{

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

}

(2.4)

∂w

∂t
+

∂wu

∂x
+

∂wv

∂y
+

∂ww

∂z
= −∂p

∂z
+

1

Re

{

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

}

(2.5)

where p is pressure.
For the simulations, the full set of governing equations mentioned above was solved

using a three-dimensional version of our in-house developed code described in Kubrak
et al. (2013). The solver was developed specifically with the aim to resolve the details
of low-diffusivity scalar transport, which is governed by a very thin boundary layer at
the air-water interface. In this code, a fifth-order accurate WENO scheme (Liu et al.

1994) for the scalar convection combined with a fourth-order accurate central method
for scalar diffusion were applied in order to accurately capture high concentration gradi-
ents. The time-integration for the scalar was performed using a three-stage Runge-Kutta
scheme. For the fluid flow, a central finite-difference approach with a fourth-order accu-
rate discretization of the diffusion and a fourth-order-accurate kinetic energy conserving
discretization of the convection (Wissink 2004) was used to solve the incompressible 3D
Navier-Stokes equations. The spatial discretization of the fluid flow was performed on
a non-uniform mesh using a staggered variable arrangement and was combined with a
second order accurate Adams-Bashforth method for the time-integration. The Poisson
equation for the pressure, which is obtained after substituting the discretized momentum
equation into the continuity equation, was solved using a conjugate gradient solver with
a simple diagonal preconditioning.

As the scalar diffusivity is much smaller than the momentum diffusivity, significantly
more grid points are needed to accurately resolve the evolution of scalar. To deal with this
in a computationally efficient manner a dual-meshing strategy was employed in which
the scalar concentration field was solved on a finer mesh than the velocity field.

As mentioned above, the setup of the computational domain was in accordance with
the laboratory experiments conducted by Herlina & Jirka (2008). The experiments were
performed in a 50 × 50 × 45 cm3 water column and the turbulence was generated by
an oscillating mesh in the lower part of the tank. To save computing time, only a small
part of the fluid domain adjacent to the surface was modeled and periodic boundary
conditions were applied in the horizontal directions (x and y directions) to account for
the significantly larger horizontal size of the domain as illustrated in Figure 2. In the
vertical direction (z), a symmetry boundary condition was applied at the top of the
simulation volume, while at the bottom a Dirichlet boundary condition was used to
introduce the background turbulent flow-field. In the simulations, the gravity and / or
capillary wave effects induced by the turbulent motions at the water surface were assumed
to be negligible so that a rigid lid, shear-free surface approximation could be employed.
Note that in all our simulations, the Froude number was of the order of 10−3 which is
very close to zero and thus validates the application of the rigid lid assumption.
While the turbulence in the experiments was generated by an oscillating mesh in the

lower part of the tank, in order to save computing time we chose to introduce nearly
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Figure 2. Setup of the computational domain. Only a small part near the surface is modeled.
The grid-distribution (only every 8th grid-points) for case GS200 is shown.

isotropic turbulence (grid-like-turbulence) at the bottom of the computational domain.
The actual way by which the turbulence at the bottom of the domain is generated is
not crucial as long as the near surface hydrodynamics has similar characteristics as those
found in the far-field of grid-generated turbulence. In the simulations, the incoming tur-
bulent fluctuations (u′, v′,w′) stemmed from an LES of isotropic turbulence in a periodic
box that ran concurrently with the main DNS. The isotropic turbulence generated in
the LES evolved from an initially random flow field that was allowed to develop until a
statistically steady state was obtained. The desired level of turbulence was maintained
by regularly rescaling the fluctuating velocities. The integral length scale that can be
obtained in this way was constrained by the size of the LES domain. The horizontal
cross-section of the LES and the DNS domain was identical. At each time-step the in-
stantaneous velocity field in a horizontal plane from the LES was interpolated to the DNS
grid (Figure 2) and subsequently used as the bottom boundary condition for the DNS ve-
locity field. After inputing the LES turbulence at the bottom, the small scales that were
absent in the LES solution quickly reappeared in the DNS by non-linear transportation
of kinetic energy from the larger scales to the smallest scales (thereby completing the
spectrum as shown in Figure 7e).

The concentration c was non-dimensionalized by c∗ = (c−cb,0)/(cs,0−cb,0), where cs,0
and cb,0 denote the initial scalar concentration at the surface and in the bulk, respectively.
In the remainder of this paper, we will use c to refer to the non-dimensional concentration.
The initial value of c was set to zero in the entire computational domain, except close to
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Run Sc Domain Mesh Size fRS RT

GS80 2− 32 5L× 5L× 5L 128× 128× 300 1 84
GS200 2− 32 5L× 5L× 3L 128× 128× 212 1 195
GS500 2− 32 20L× 20L× 5L 512× 512× 300 1 507
GS80R5 500 5L× 5L× 5L 128× 128× 300 5 84
GS200R5 500 5L× 5L× 3L 128× 128× 212 5 195

Table 1. Overview of the simulations. Note: The reference length scale L was of the order of
1 cm in the physical setup. fRS = refinement factor for scalar mesh, RT is the characteristic
turbulent Reynolds number of the system defined in Section 4.

the interface where it was defined by

c(ζ, t) = 1− erf

(

ζ√
4Dtd

)

, (2.6)

in which ζ is the distance from the interface and td is diffusion time. Using this analytical
expression as an initial condition and keeping the concentration at the surface saturated
(c = 1) at all times, the diffusive transport was forced. At the bottom, a Neumann
boundary condition ∂c/∂z = 0 (zero flux) was employed. This assumption holds as the
scalar distribution in the lower part of the computational domain will be nearly fully
mixed because of the intense turbulent motions. The distance to the bottom was deemed
to be sufficient to ensure that the gas transfer in the region of interest (i.e. in the near
surface region) would not be affected by the zero flux boundary condition applied at the
bottom.

For grid-stirred or isotropic turbulence driven flow, a convenient measure to match
simulated with experimental flow conditions is the turbulent Reynolds number RT (cf.
Equation 4.1). Simulations were conducted for three RT , using computational domain
sizes of 5L×5L×5L, 5L×5L×3L and 20L×20L×5L, respectively. The reference length
scale L was typically of the order of 1 cm and - because the viscosity in all simulations
was set to ν = 1/600UL - the reference velocity scale was U = νwater

1/600 /L = 6 cm/s, where

νwater = 10−2cm2/s. The simulations were performed on meshes with 5× 106, 3.5× 106

and 79× 106grid points, respectively, as listed in Table 1. In all cases, the domain had a
uniform grid size in the x and y directions and a slightly stretched grid distribution in
the vertical direction to achieve a denser grid near the interface.

The scalar transport (mass transfer) was modeled by solving the advection-diffusion
transport equation for several passive scalars concurrently with the time-dependent
Navier-Stokes equations. A major benefit is that it allows a detailed comparative study
of the effect of the mass diffusivity on the instantaneous distribution of gases in the tur-
bulent flow field. In this study, the mass transfer for six different Schmidt numbers (2, 4,
8, 16, 32 and 500) was simulated. The cases Sc = 2 to 32 were solved simultaneously in
a single run on the standard mesh. This allowed us to investigate the influence of the Sc
number on instantaneous mass transfer driven by exactly the same background turbulent
flow.

Separate runs were performed in which the dual-mesh strategy was employed to resolve
the low-diffusivity mass transfer at Sc = 500. A refinement factor of 5 was used for the
scalar meshes in GS80R5 and GS200R5 (see Table 1). To allow a direct comparison to
the other lower Sc cases, the simulations GS80R5 and GS200R5 were started using the
same initial flow-fields as used in the GS80 and GS200 cases, respectively.

As mentioned above, initially the concentration was set to c = 0 except close to the
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Run ∆z ∆/π η LB (L)
(L) (L) (L) Sc = 2 Sc = 4 Sc = 8 Sc = 16 Sc = 32 Sc = 500

GS80 0.0011 0.0038 0.1418 0.1003 0.0709 0.0501 0.0354 0.0251 −
GS200 0.0011 0.0038 0.0489 0.0346 0.0245 0.0173 0.0122 0.0086 −
GS500 0.0011 0.0038 0.0597 0.0422 0.0298 0.0211 0.0149 0.0105 −
GS80R5 0.00022 0.00076 0.1418 − − − − − 0.0063
GS200R5 0.00022 0.00076 0.0489 − − − − − 0.0022

Table 2. Comparison of the vertical and mean-width grid spacing with the Kolmogorov and
Batchelor scales. In all cases, the chosen grid spacing fulfills the Grötzbach criterion. η and LB

are the estimated thicknesses of the Kolmogorov (see Section 4) and Batchelor (see Section 5.2)
sublayers, respectively. The reference length scale L was typically of the order of 1 cm.

interface where c was defined by Equation 2.6 using td = 30, 30, 7, 7, and 10 time-units
for the cases GS80, GS80R5, GS200, GS200R5, and GS500, respectively.

3. Refinement Study

It is well known that an extremely fine grid resolution is needed to capture the dynamics
of the turbulent mass transfer at high Schmidt numbers (Grötzbach 1983). To mitigate
this, we decided to employ the WENO scheme for scalar convection in order to capture
the steep gradients (like capturing shocks in incompressible flow simulations) that might
occur anywhere in the computational domain due to the extremely low scalar diffusivity.
Capturing such steep gradients does not necessarily mean they need to be fully resolved.
Instead, WENO schemes allow the usage of relatively coarse meshes while still capturing
the steepest gradients without the over and undershoot that typically occurs in such
situations when using spectral methods (Gibbs phenomenon). A detailed validation of
the solver’s performance and accuracy can be found in Kubrak et al. (2013). In this
section we will verify the adequacy of the chosen grid resolution in the present DNS
domain (upper box in Figure 2) for both velocity and scalar fields.
To establish which grid resolution would be sufficient we used the Grötzbach criterion

(Grötzbach 1983) as a first guideline and subsequently performed grid refinement studies
to further verify our choice for the meshes employed in our simulations. As shown in
Table 2 the grid spacings used in the upper part of the computational domain in all our
simulations fulfill the Grötzbach criterion: The vertical grid resolution near the interface
∆z is finer than the Batchelor scale (in our case there were at least 7 grid points in the
vertical direction within the estimated Batchelor sublayer LB) and the geometric mean
of the grid cells (∆ = 3

√
∆x×∆y ×∆z) in the upper part of the computational domain

fulfills :

∆ 6 πLB for Sc > 1. (3.1)

For the velocity, we only carried out a grid refinement test for the case GS80 which has
the highest input turbulence intensity and the smallest integral length scale. Because of
this, GS80 was deemed to be the most challenging flow problem to resolve and any mesh
that is fine enough to accurately resolve the velocity field for this case is expected to be
also fine enough for usage in the other cases considered.

The resulting flow-field of a simulation with the base mesh of 128×128×300 grid points
was compared with the one obtained using 176× 176× 420 grid points. Snapshots of the
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Figure 3. Verification of grid resolution of flow field in case GS80 at x/L = 2.5. Contour plot of
the vertical velocity component w/U at t = 7L/U on (a) the standard 128×128×300 mesh and
(b) the refined 176 × 176 × 420 mesh. (c) Instantaneous w/U -profiles extracted at z/L = 2.02
and z/L = 4.00.
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w flow-field for the base and refined meshes are shown in Figures 3a and b, respectively.
After t = 7 time-units of simulation, both the vertical velocity contours and the velocity
profiles at z/L = 2.02 and z/L = 4.00 obtained on the standard 128×128×300 mesh were
found to be in good agreement with those obtained on the refined 176× 176× 420 mesh.
Because the turbulence in the DNS domain is sensitively dependent on the boundary
conditions, after some time the velocity fields in the base-line and the refined simulations
will diverge. However, as long as the turbulence characteristics of the instantaneous flow
field introduced at the bottom for both the base-line and refined DNS domains do not
differ significantly, the characteristics of the turbulence inside the DNS boxes should also
remain in good agreement. This was indeed found to be true, even after t = 40 time-
units the spectra of the instantaneous flow-field at various z locations obtained from the
standard and refined mesh simulations showed a very similar distribution. Based on this,
we concluded that the flow-field on the standard mesh was well resolved.

The grid resolution of the concentration field was tested by employing the dual-mesh
option of the code. This means that for the refined case, the flow-field was still solved
on the base mesh, while the scalar field was solved on a finer mesh. The scalar-mesh
refinement test was performed at Sc = 32 for all three turbulent Reynolds numbers RT

(cases GS80, GS200, GS500). Here, the refinement test of the most challenging case only
(GS200, see Table 2) is presented.

The results shown in Figure 4 were obtained by starting both the unrefined (128×128×
300 grid points) and refined (256×256×600 grid points) simulations from the same initial
scalar field using the same background turbulent flow-field. Both unrefined and refined
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Figure 4. Verification of scalar grid spacing for case GS200 with RT = 195 and Sc = 32.
Concentration field at time ∆tR2 = 14L/U using the (a) standard mesh and (b) refined-mesh
with factor 2. (c) Extracted c-profiles: ◦ using standard mesh at ζ/L = 0.007, △ using standard
mesh at ζ/L = 0.042, − using refined mesh. (d) Spatially averaged c, c′, c′w′ -profiles at time
∆tR2 = 14L/U : △ standard mesh, − refined mesh. Only every 3rd data point is shown.
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simulations were allowed to evolve for the same time period of ∆tR2 = 14.0 time-units to
check the accuracy of the scalar evolution obtained on the unrefined mesh. The snapshots
of the concentration fields in Figures 4a and b show a very good agreement between the
results obtained using the unrefined and refined meshes. It can be seen that even in the
bulk region (outside the region of interest) where the grid becomes relatively coarse, the
WENO scheme is still capable of capturing steep gradients in the scalar distribution
without introducing any under/overshoots. In the area of interest (immediately below
the air-fluid interface), for all simulations a very good agreement was observed between
the results obtained on refined and unrefined meshes (see Figure 4c). This is further
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Run RT L∞/L u∞/U T∞L/U t/T∞

GS80 84 1.967 0.0359 110 1.2
GS200 195 1.276 0.1276 20 4
GS500 507 3.187 0.1328 48 1.5

Table 3. Flow parameters. T∞ is the time scale of the large eddies (T∞ = 2L∞/u∞), t/T∞ is
the total time over which ensemble averaging is performed in large eddy turnover time scale.
The reference length and velocity scales were typically L = 1 cm and U = 6 cm/s, respectively.

evidenced by the statistics that were obtained in the region of interest which show a
nearly perfect match (Figure 4d). To conclude, in all cases we could verify that the
present grid resolution is sufficient to accurately resolve the mass transfer problem in the
interface region.

4. Flow parameters

The mass transfer simulations reported here were performed at three different turbulent
Reynolds numbers (RT = 84, 195, 507). We used the conventional turbulent Reynolds
number definition for grid-stirred turbulence (e.g. Hopfinger & Toly 1976; Brumley &
Jirka 1987) given by

RT = u∞2L∞/ν, (4.1)

where u∞ and 2L∞ are the characteristic velocity and length scales, respectively and ν is
the kinematic viscosity. The characteristic turbulence scalings of the flow-field including
the definition of u∞ and length scale 2L∞ used in Equation 4.1 are described below and
summarized in Table 3.

To obtain suitable initial flow-fields for the mass transfer simulations, in precursor
simulations (without scalar mass transport) the turbulent fluctuations introduced at the
bottom of the computational domain were allowed to diffuse upwards and fill the entire
computational domain. Only after the flow in the DNS domain was fully developed, the
actual mass transfer was activated. Figures 5 to 7 show the statistics of the flow-field
used in the mass transfer simulations of the runs with the lowest and highest RT (GS80
and GS500). The plots show time-space averaged values, i.e. space-averaged over the
horizontal planes and then time-averaged over t/T ≈ 1 to 4 large eddy turnover times.
The flow behaviour in the present DNSs was, as aimed, similar to that found in the

far-field of grid-generated turbulence. Figure 5 shows the typical decay of the root mean
squared turbulent velocities urms, vrms and wrms with increasing distance away from the
turbulence generation source (note that the ordinate ζ/L denotes the distance from the
surface and not from the turbulence source, i.e. ζ/L = 5 is the bottom of the DNS
domain). The plots also show that the input velocities urms, vrms, wrms at the bottom
of the DNS domain are nearly isotropic and that the homogeneity of the horizontal
components urms and vrms is reasonably maintained throughout the whole DNS domain.
It should be noted that a much better agreement of the urms and vrms profiles in the
bulk region of the DNS domain is obtained when averaging over a much longer period
than presented here. For consistency reasons, the period of averaging used for the urms

and vrms profiles shown in Figure 5 was chosen to be identical to the period over which
the other (scalar) statistics were gathered. In the GS500 case (Figure 5b), for example,
we limited the statistical evaluation of the mass transfer simulation to 1.5 large-eddy
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Figure 5. Decay of turbulent velocity fluctuations with increasing distance away from the
turbulence generation source which is located at the bottom (ζ/L = 5) of the domain. The
velocities are normalized with

√
kν where kν is the turbulent kinetic energy at one-Lν below

the surface (Lν is the thickness of the viscous sublayer defined below): · urms/
√
kν ,

vrms/
√
kν , wrms/

√
kν . a)from case GS80 and b) case GS500.

a)

b)

turnover times due to the high numerical cost of the calculation of the scalar transfer on
the refined mesh.

The distribution of the turbulent fluctuations and the turbulent kinetic energy (k) in
the near-surface region are shown in Figures 6a and b for the cases GS80 and GS500,
respectively. As a consequence of the rigid lid assumption, the flow looses its isotropy
when approaching the interface. The vertical velocity decreases rapidly to zero while the
non-restricted horizontal components slightly increase. In the experiments of Herlina &
Jirka (2008) (used as one of our reference experiments) the horizontal turbulent fluctua-
tions were found to decrease near the surface, most probably due to the presence of tracer
particles at the surface. This dampening of the turbulent fluctuations near contaminated
surfaces was, for instance, also observed in the laboratory experiments of McKenna &
McGillis (2004b) and in recent low Sc DNS simulations of Khakpour et al. (2011) who
employed a boundary condition at the surface which accounts for the relation of surface
tension to surfactant concentration.

Also shown in Figure 6 is the typical increase of k near the free surface (ζ/L 6 0.5)
- corresponding to the sudden decrease in wrms and the slight increase of urms and
vrms mentioned above - as has been found previously in experiments (e.g. Komori et al.
1982) and numerical simulations (e.g. Calmet & Magnaudet 2003; Walker et al. 1996). In
Figure 6, k is normalized with kν which is the turbulent kinetic energy at one-Lν below
the surface (Lν is the thickness of the viscous sublayer as defined below). The minimum
values of k/kν were found to be 0.88 and 0.79 in cases GS80 and GS500, respectively,



DNS of interfacial scalar transport 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

ζ/L

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

ζ/L

Figure 6. Distribution of the velocity fluctuations urms/
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√
kν and the turbulent

kinetic energy k/kν near the surface region: −k/kν , −−−urms, −.− .wrms (a) case GS80 and
(b) case GS500.
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which are comparable with the value kmin/kν = 0.865 predicted by Hunt & Graham
(1978) and kmin/kν ≈ 0.84 obtained in the open-channel flow computations of Calmet
& Magnaudet (2003).

In Figure 7a, the variation of the local integral length scale L11 with depth is displayed.
The evaluation of L11 was performed by integrating the two-point longitudinal velocity
correlation function (R11),

L11 =

∫

∞

0

R11(r1)dr1, (4.2)

where r denotes the distance between the points. Because the dissipation tends to be
small at large length scales, the turbulence-decay in the large integral length scale case
GS500 was found to be smaller than in GS80 (see Figures 5a and b). As observed in
grid-stirred experiments, the size of the eddy structures grows with distance from the
turbulence source at the bottom. Near the interface L11 reaches a maximum value which
is related to the size of the largest eddy resolved in our domain. This maximum value is
taken as the characteristic integral length scale of the flow field (L∞).
As evidenced in Figure 5, the thickness of the so called surface influenced layer (Brum-

ley & Jirka 1988) corresponding to the depth over which the flow becomes anisotropic
or, in other words, over which the surface blockage is felt matches L∞. The thickness Lν

of the viscous sublayer is defined by the distance over which ∂urms/∂z decreases from its
maximum value to zero as forced by the rigid lid assumption near the surface (Figure

7b). Lν in our DNSs was found to be of the order of L∞R
−1/2
T (i.e. Lν = 0.7L∞R

−1/2
T

in GS80 and GS200; and Lν = L∞R
−1/2
T in GS500) which is in good agreement with
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the prediction of Hunt (1984). While ∂urms/∂z decreases towards the surface within Lν ,
at clean surfaces the rms of the surface divergence βrms (β = −∂w/∂z) keeps increasing
(Figure 7c). The profiles also indicate the thickness η of the Kolmogorov sublayer where
the vertical velocity decreases linearly with ζ/L (see e.g. Pope 2000). The computed pre-

dictions of η, based on the relation η = (ν3/ǫ)
1/4, scale approximately with η = 2L∞R

−3/4
T

(Brumley & Jirka 1988).

Based on the local urms and the local correlation length scale L11, the variation of the
turbulent Reynolds number RT (RT = urms2L11/ν) with ζ/L (Figure 7d) was computed.
In the grid-stirred experiments, at a sufficient distance away from the turbulence source,
the turbulent fluctuations urms were observed to decay linearly with z while L∞ increased
linearly with z (Herlina & Jirka 2008) resulting in a constant RT . The same behaviour
was found in the present DNS: RT stayed almost constant at values of 84 and 507
for GS80 and GS500, respectively. When determining the global RT of the system, for
consistency reasons the velocity scale u∞ was identified with the value of urms at the
location of maximum L11. Based on these two quantities and the kinematic viscosity
of the fluid turbulent Reynolds numbers of approximately 84, 195 and 507 in GS80,
GS200 and GS500, respectively, were obtained. According to Theofanous (1984), these
Reynolds numbers are all in the low to moderate regimes. The selection of u∞ and L∞ as
the characteristic velocity and length scales was found to be appropriate as the resulting
RT -s lie within the bulk region where the local RT -s remain constant.

Besides the turbulent Reynolds number RT , another useful measure of the turbulence
level is the Taylor Reynolds number (Rλ = urmsλ/ν), where λ is the Taylor microscale
that can be obtained from the relation

(

∂u

∂x

)2

=
2u2

rms

λ2
(4.3)

The mean Taylor Reynolds numbers estimated some distance away from the surface (at
ζ/L = 0.7 in GS80 and GS500 and at ζ/L = 0.46 in GS200) were between 30 and 100.
Although Rλ was in the lower range, we could still observe the existence of an inertial
range as evidenced in the computed spectrum (Figure 7e). In Figure 7f the premultiplied
energy and dissipation spectra are shown for GS200 (Rλ = 50). As expected for low
Rλ number flows, the energy and dissipation spectra overlap. The symbols in Figure 7f
indicate the sizes of the integral, Taylor and Kolmogorov length scales. Because of the
need to fully resolve the diffusive sublayer, our mesh size was chosen to be finer than the
Kolmogorov length scale (see Table 2).

5. Statistical properties of turbulent scalar transport

The interfacial mass transfer in the present system is affected by the molecular diffu-
sivity (Sc dependency) of the solvent itself and the level of the turbulence rising up from
below (RT dependency). As described in Section 2, the mass transfer was simulated at
three different RT . At each RT mass transfer was calculated for five to six Sc numbers.
The cases with Sc= 2 to 32 were solved simultaneously in single runs such that the mass
transfer could be investigated using exactly the same background turbulent flow-field
allowing an unbiased (direct) Sc parametric study over the whole simulation time. As
mentioned previously in Section 2, for the Sc= 500 cases GS80R5 and GS200R5 the
same initial flow-field was used as in the lower Sc cases (Sc = 2 to 32) so that a direct
parametric study of the Schmidt number could be made from t/T = 0 up to (at least)
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the time when the evolution of the turbulent flow field started to differ from that in the
lower Sc cases.

A detailed discussion of the instantaneous flow structures that enhance the scalar
transport can be found in the later sections. In this section the mean properties of the
scalar transport, in particular the influence of Sc and RT , will be discussed.

5.1. Transfer velocity

The instantaneous gas flux j at the interface i is completely dominated by diffusion and
can be written as

ji = D
∂c

∂z

∣

∣

∣

∣

i

(5.1)

The averaged transfer velocity KL can subsequently be determined using the relation

j̄ = KL(cs − cb) = D
∂c̄

∂z

∣

∣

∣

∣

i

(5.2)

where cs and cb are the saturation concentrations at the interface and in the bulk, respec-
tively. Figures 8a and b show the influence of the Schmidt Sc and turbulent Reynolds
numbers RT , respectively, on the transfer velocity KL. Figure 8a shows that the overall
total mass flux is related to the Schmidt number by Sc−

1/2 which is in agreement with
the theory for freely moving interface boundary conditions. Though previous DNSs have
shown that the same dependency holds for low Sc numbers (less than 8), as far as the
authors are aware this is the first DNS that shows that it also holds for Sc numbers up
to 500. The present results indicate that the usage of temperature (heat) (Sc ∼ Pr = 7,
where Pr is the Prandtl number) as a tracer for the measurements of the mean gas
transfer velocity KL might be possible provided that the temperature behaves approx-
imately like a passive scalar and the effect of evaporation (latent heat transfer) on the
temperature field is negligible. In additon, it should be kept in mind that the power rate
dependency of −1/2 only applies at clean surfaces where shear stresses are approximately
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zero. However, when the interface is not clean, for example when it is covered by sur-
factans, greater tangential stresses occur and the turbulence fluctuations are damped.
At very contaminated surfaces, the description of the mass flux would be similar to the
theoretical relations of solid-liquid boundary conditions (Sc−

2/3, see Jähne & Haussecker
1998).

In Figure 8b, the variation of the mean KL with RT is shown. Within the present
range of RT , the DNS data show that KL/u∞ scales with RT

−1/2. Using the above result
which showed that KL ∝ Sc−

1/2, we can conclude that for our range of Schmidt and
turbulent Reynolds numbers KL can be written as

KL = au∞R
−1/2
T Sc−

1/2 (5.3)

which is similar to the large-eddy model proposed by Fortescue & Pearson (1967). The
constant a in the present simulations is found to be about 1.6. In the grid-stirred ex-
periments of Herlina & Jirka (2008) KL (measured in the bulk) was found to generally
follow RT

−1/4. However, it should be noted that compared to the present DNS-s their
measurements spanned also to higher RT , where for RT> 500 Theofanous (1984) sug-
gested that the small-eddies scaling as proposed by Lamont & Scott (1970) and Banerjee

et al. (1968) would be more appropriate (KL = cu∞R
−1/4
T Sc−

1/2).
In addition, as mentioned above, KL is sensitive to the surface condition which is

reflected in the surface divergence β. Laboratory measurements have indeed shown βrms

to be a good measure for mass transfer as it implicitly takes the surface conditions into
account (Turney & Banerjee 2013). Figure 9 shows the dependency of KL on the surface
divergence supporting the surface divergence model of McCready et al. (1986), KL ∝√
βrmsD. It can be seen that our numerical results predict thatKL = 0.525

√
βrmsD which

matches the trend of the experimental results in grid-stirred tanks performed by Herlina
& Jirka (2008); McKenna & McGillis (2004a). The advantage of the present numerical
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simulation is that surface contamination is not an issue so that unbiased investigations
of the effect of Sc and the turbulence levels (here described in terms of the turbulent
Reynolds number RT ) can be performed.

5.2. Boundary layer

The instantaneous snapshots in Figure 13 present a visual impression of the effect of
impinging turbulence on the diffusive boundary layer at Sc = 2 and Sc = 32. As shown
in Figure 13b, a decreased diffusivity at the higher Sc case (Sc = 32) causes the con-
centration (or diffusive) boundary layer to become thinner. From below the boundary
layer is constantly disturbed by the turbulent flow: upwelling motions suppress the thick-
ness of the layer while downwelling motions locally thicken the layer. In the mean, the
presence of turbulence diffusing upwards from below suppresses the diffusive boundary
layer leading to a steeper concentration gradient which increases the diffusivity controlled
transfer rate at the surface. Obviously, the thickness δ depends on both RT and Sc. This
makes δ an appropriate length scale when analysing the scalar properties as δ represents
a mixed length scale taking into account both the kinematic viscosity of the fluid and
the molecular diffusivity of the transported scalar (see also the discussion by Magnaudet
& Calmet (2006)).

Various definitions to quantify δ have been used in the literature. They mostly depend
on the available or resolvable data. For instance, δ could be defined as the depth where
the peak of the concentration fluctuation occurs (δcf ) or -due to the concentration profile
being approximately exponential- as δe which corresponds to the distance from the surface
where the normalized concentration, given by

(c− cb)/(cs − cb), (5.4)

reaches a value of 1/e with e being the Euler number (e = 2.71828182...) and cb is the
mean bulk concentration at a certain reference depth. (If not mentioned otherwise, we
take cb as the mean value of c at a distance of L∞ from the surface.) Often, the boundary
layer thickness is quantified by a fictious boundary layer thickness δi defined by

δi = D(cs − cb)/j. (5.5)

With the latter definition, the overall mass transfer across the interface, as discussed by
Jähne & Haussecker (1998), can be simply described using the transfer velocity KL, the
concentration boundary layer thickness δi and the time interval ti as scaling parameters
owing to the fact that they are directly related to each other through the molecular
diffusion coefficient D, i.e. KL = D/δi and ti = δi/KL = D/K2

L. The relation KL =
D/δi should not be misinterpreted as KL being linearly dependent on D, such as in the
assumption of the classical film model of Lewis & Whitman. It will be shown below that
for mass transfer at clean surfaces, δi is a function of (ν/D)−

1/2 so thatKL is proportional
to

√
D as confirmed by laboratory experiments and predicted by the surface renewal

model of Danckwerts (1951).
Figure 10a shows the concentration boundary layer thickness δ from GS200, where δ

is estimated using the various definitions described above. All three definitions of δ scale
with Sc−

1/2 and only a slight variation between the three thicknesses is observed, i.e.
δe 6 δi 6 δcf so that all three definitions are equally useful. Also plotted in Figure 10a
are the different hydrodynamic layers arising near the free surface, which are calculated
using the scaling laws as described in Brumley & Jirka (1988). These include the surface

influenced layer L∞ used to normalize the depth ζ, the viscous sublayer Lν = L∞R
−1/2
T ,

the Kolmogorov sublayer η = 2L∞R
−3/4
T and the two concentration (diffusive) sublayers
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arising from the largest and the smallest eddies present in the system. The first three
sublayers have been discussed in Section 4. The latter two sublayers are usually referred

to as the outer diffusive sublayer LD = 2L∞Sc−
1/2R

−1/2
T and the Batchelor sublayer

LB = 2L∞Sc−
1/2R

−3/4
T , respectively. For the case RT= 195 (Figure 10a), the boundary

layer thickness δ for all Sc resides within the viscous sublayer thickness Lν . At Sc > 8, δ
is even smaller than the Kolmogorov length scale. For the lower RT cases an exception
was found for Sc 6 2 where δ was located outside the observed viscous sublayer. In all
runs, the boundary layer thickness was found to scale with Sc−

1/2.
Subsequently the effect of RT on the thickness of the diffusive sublayers was exam-

ined. Figure 10b shows that in the present range of simulated RT the thickness of the
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concentration boundary layer δe varies with R
−1/2
T . The thickness δ can thus be associ-

ated with the outer diffusive sublayer thickness LD. In the present DNS-s, it was found
that δe ≈ 0.58LD. In the grid stirred experiments by Herlina & Jirka (2008) δe was
≈ 1.9LD. The increased thickness of the diffusive boundary layer in the experiments
is likely to be related to the contaminated surface which increases the damping of the
velocity fluctuations.

As mentioned in the previous section, our vertical grid spacing was sufficiently fine
to resolve both the Kolmogorov η and the Batchelor LB sublayer thicknesses. Figure
10c shows the variation of the thickness δB with RT , where δB is the distance from the
surface over which the concentration profile evolves linearly with ζ (and, hence, diffusion

completely dominates). It was found that δB ≈ L∞Sc−
1/2R

−3/4
T , corresponding to 50%

of the estimated inner diffusive sublayer thickness LB as suggested by Brumley & Jirka
(1988).

5.3. Mean and fluctuation concentration profile

Figure 11a presents the mean normalized concentration distribution in the vertical di-
rection from GS500. The distance from the surface, denoted by ζ, is normalized with
δe, while the concentration is given by Equation 5.4. The profiles obtained at various Sc
numbers nearly collapse onto the same curve, illustrating that the boundary layer thick-
ness δe can be used as a representative length scale when analysing the concentration
profile. In the deeper regions, a slight deviation between curves can be observed. The
deviation was found to depend on the reference depth at which cb is determined. As the
downward transport of dissolved gases at higher Sc is reduced, the quasi-steady state
condition at deeper reference points is achieved later in time than in the lower Sc cases.

For various RT , the mean concentration profiles at Sc = 32 are shown in Figure
11b. The profiles almost collapse onto the same curve which is in agreement with the
trend found by Herlina & Jirka (2008). As RT increases the spatial drop-off (the rate of
concentration decay) slightly decreases, which might be an indication that apart from δe
(associated with the integral length scales) other, smaller, scales could also be important.
Such multiscale processes can be observed in the instantaneous snapshots discussed in
the next section.

The normalized root mean squared concentration profiles (crms) are presented in Fig-
ures 11c and d. The rms of the fluctuations increases from 0 at the interface and reaches
a maximum value near the boundary layer edge. For all runs the peak value was found to
be between 0.25 and 0.3, which was higher than in the experiments by Herlina & Jirka
(2008), but largely in agreement with the values reported by various other researchers,
which vary between 0.1 and 0.3. The large variation measured in the laboratory might be
due to difficulties in maintaining the exact same surface conditions as well as limitations
of measurement techniques when it comes to measuring minute fluctuations within the
boundary. It should also be noted that it is nearly impossible to maintain a perfectly
clean surface in the laboratory. Most of the time, the water surface had a certain degree
of contamination, for instance due to dust particles. Khakpour et al. (2011) showed a
decrease of the concentration fluctuations near contaminated surfaces when compared
to clean surfaces. This is related to the increased damping of the turbulent velocity
fluctuations near contaminated surfaces.

5.4. Turbulent Mass flux

To determine the total mass flux j it is necessary to know both the turbulent and diffusive
mass fluxes (see (1.2)). Measurements of the turbulent mass flux c′w′ using the eddy-
correlation method are difficult and the first attempt to measure c′w′ in grid-stirred
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experiments by Chu & Jirka (1992) was inconclusive. Herlina and Jirka’s (2008) data
(Figure 12c) showed a typical increase of the turbulent mass fluxes c′w′ with increasing
distance from the surface but this observation was limited to the region between ζ/δ = 0
and about 2− 3.

In Figure 12a the variation of the time-space averaged molecular (D∂c/∂z) and tur-
bulent (c′w′) mass fluxes with depth carried out for Sc = 2 to 32 is presented for GS200.
The ordinate shows the depth normalized with the thickness of the viscous layer. These
figures clearly illustrate the effect of the Schmidt number on the mass fluxes. At low
Schmidt numbers, the region where molecular diffusion dominates is relatively thick. At
Sc = 32, however, the contribution of the turbulent fluxes is already of order D∂c/∂z
almost immediately below the surface.

The normalized mass flux profiles for all RT are shown in Figure 12b. At the surface,
the turbulent mass fluxes are zero as any turbulent transport vanishes in the immediate
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Figure 12. Variation of mass fluxes with depth. The mass fluxes are normalized with the total
flux (D∂c/∂z+ c′w′). a) Molecular D∂c/∂z (dashed lines) and turbulent c′w′ (solid lines) mass
fluxes plotted against ζ/Lν at various Sc numbers. b) Molecular (dashed lines) and turbulent
(solid lines) mass fluxes (Sc = 32) at RT= 84, 195 and 507 (legend for the symbols is the same
as in Figure 11d). c) Mean profiles of c′w′ measured in the grid-stirred tank experiments of
Herlina & Jirka (2008).
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vicinity of the water surface. In this region the molecular diffusion contribution to the
transfer mechanism is maximum but reduces quickly to 50% at around 0.75δe. After this
point, the importance of the turbulent mass flux increases rapidly and beyond z > 3δe
it becomes almost completely dominant.

As shown in Figure 12c, for 0 < ζ/δe 6 2.5 a very good agreement between the
numerical results and the experimental data from Herlina and Jirka (2008) is obtained.
For larger ζ/δe the experimental c′w′ profiles tend to decrease to zero. This decrease was
unexpected as both the numerical and experimental data were gathered in the quasi-
static regime. The most likely reason for this discrepancy with both the present numerical
results and the theory is that the laser intensity of the LIF setup was insufficient to detect
the minute concentration fluctuations in the deeper bulk region. Figures 12a and b, hence,
emphasize the major advantage of DNS compared to even advanced experiments which



DNS of interfacial scalar transport 23

is that DNS allows us to elucidate the distribution of D∂c/∂z and turbulent c′w′ within
the diffusive sublayer down to the deeper bulk region. The present results show that
experimental measurements and DNS results complement each other well in achieving a
better understanding of the gas transfer mechanisms.

6. Flow and scalar structures near the surface

Figure 13 compares contours of the scalar distributions for Sc = 2 and 32 in the cross-
section at x/L = 2.5 from simulation GS80 (RT = 84). The superposed velocity vectors
correspond to a snapshot of the turbulent flow-field that drives the scalar transfer and is
the same for both Sc numbers. The 2D visualizations show the interplay between the up-
and downwelling motions and the scalar transport. In general, similar scalar patterns or
structures are seen. The major differences are that in the higher Schmidt number case
(Sc = 32) the concentration boundary layer is much thinner, the structures are finer and
the concentration gradients steeper.

In Figures 14a and c, two snapshots of the concentration field captured in the labo-
ratory grid-stirred experiments (using the Laser Induced Fluorescence (LIF) technique)
at RT = 260 and RT = 520, respectively, are presented for qualitative comparison to
the present numerical results at RT = 195 (GS200) and RT = 507 (GS500). Similar
concentration distributions as found in the experiments were observed (Figures 14b and
d). In Figures 14c and d it can be seen that the transport mechanisms of the highly
concentrated mass from the surface into the bulk are similar despite the huge differences
between the Schmidt numbers in the numerical simulation (Sc = 32) and the experiment
(Sc ≈ 500). It is interesting to note that (for the Sc = 500 case) in the deeper bulk
region fine tail structures move in and out of the 2D vertical observation plane (Figures
14a and b). Similar tail structures (Schlieren) were also recorded in the LIF images of
Herlina & Jirka (2004). The present DNS results hence corroborate that the Schlieren
structures seen in the experiments are truly physical and not just optical artefacts.

Compared to the 2D LIF measurements, in the DNS instantaneous 3D spatial informa-
tion of the flow-field and the gas distribution could be obtained allowing a more detailed
examination of the physical processes involved. For instance, Figure 15a shows a contour
plot of the divergence in the horizontal section immediately below the surface illustrating
upwelling and downwelling action of turbulent motions impinging on the surface from
below. It can be seen that upwellings can be very strong locally but that these occurences
are quite rare. These strong upwellings are located approximately in the middle of the
large cells, though the structures are not always symmetric. Once the fluid is very close
to the air/water interface, it starts to flow radially outward, almost parallel to the inter-
face with only a very small vertical component w (as can be seen in the PDF in Figure
15b), w very often is slightly negative - as the initial upwelling may cause some over-
shoot. The strong downwellings occur in very narrow regions that separate cells formed
by the upwelling and subsequent radial motion of the fluid. This is similar to the flow
of a vertical jet impinging on a horizontal surface, where the stagnation point would be
approximately in the middle of the divergence area.

In Figure 15b, the probability density function (PDF) of surface divergence occur-
rences stored every 0.1 time-units during 4 eddy turn-over times of simulation GS200
is displayed. All runs were found to have a similar PDF. The PDF shows that most
occurences by far are low velocity up- and downwelling events which more or less cor-
respond to (almost) wall-parallel flow (as supported by the predominant blue to green
colour scaling in Figure 15a). The direct connection of the flow-field structures to the
scalar distribution near the surface is discussed below.
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Figure 13. Visualization of scalar transport obtained from Run GS80(RT = 84) for the cases
(a) Sc = 2 and (b) Sc = 32. The thickness of the boundary layer reduces with increasing Schmidt
number.
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Figure 14. Qualitative comparison between laboratory experiments (Herlina & Jirka 2008)
and present DNS results: a) Experiments: RT = 260, Sc = 500, b) DNS: RT = 195, Sc = 500
(GS200R5), c) Experiments: RT = 520, Sc = 500 d) DNS: RT = 507, Sc = 32 (GS500). Colour
scaling is the same as in Figure 13.
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Figure 16 shows isosurfaces of the concentration at various Schmidt numbers illustrat-
ing how the instantaneous concentration boundary layer is affected by the turbulence
diffusing from below. In these figures, the isosurfaces represent a concentration of c = 1/e
and the colour coding corresponds to the vertical location of the isosurface. The light
to dark colour scaling indicates near to far distances to the surface. From ζ = 0 to δ,
above the shown isosurface, molecular diffusion plays an important role in the scalar
transport (see Figure 12b). Moving further down, turbulent transport rapidly takes over
the mixing of gas into the bulk. The isosurfaces in Figure 16 and the profiles in Figure 12
illustrate the interchange between molecular diffusion and turbulent transport at various
Sc numbers.

It can be recognized that the topography of the isosurface at Sc = 2 is more irregular
than that of the other isosurfaces at larger Schmidt numbers. This can be explained by
the fact that the thickness of the boundary layer δe increases with decreasing Sc. As
the vertical location of the isosurface at Sc = 2 is nearest to the turbulence generating
source (at the bottom of the computational domain), the turbulence impinging on the
isosurface tends to be stronger. With increasing Sc the topography becomes smoother
as closer to the surface the vertical turbulent velocity rapidly decreases to zero.
The figure also shows that the crests -due to strong downwelling motions- surround-

ing the divergence area become narrower with increasing Sc. As explained above, the
diverging area itself comprises the strong upwelling area and the area where the flow
moves radially outward with low vertical velocity. At Sc = 2 the crests are about 0.5L∞

wide, while at Sc = 500 they are much smaller. Because of the low RT and the fact
that the Sc = 500 isosurface is located so close to the interface, only the footprints of
the large turbulent eddies can be seen, while any evidence of smaller eddies has virtually
disappeared.

Next we examine the effect of different turbulent Reynolds numbers on the topology of
the isosurfaces. A sequence of isosurfaces from GS80 and GS500 is presented in Figures
17 and 18, respectively. The x and y coordinates are normalized by L∞ to facilitate
the comparison between the two RT cases. The contour maps indicate that also for RT

= 507 the top surface is dominated by divergence areas separated by narrow downwelling
(flow-converging) areas. Compared to the RT= 84 case, an increased number of smaller
strucures are present in the RT= 507 case as is also evidenced by the cumulative spectra
discussed below. Compared to what was observed at RT= 84 (Figure 16), at larger
RT not only the largest eddies but also the smaller eddies manage to clearly affect the
concentration boundary layer.

Figure 19a presents a snapshot showing velocity vectors together with contours of
the z−component of the vorticity in a horizontal plane immediately below the interface
from simulation GS500. The intense vorticity regions (|ω| > 2) are indicated by the
brightest and darkest areas. Comparing Figure 19a and b, we can see that the intense
vorticity regions correlate to the region where the concentration boundary layer varies
significantly. The significant local thickening of the concentration boundary layer in these
regions corresponds to a strong, very localized mass transfer from the surface into the
bulk of the fluid.

We can estimate the relative contribution of the different eddy sizes to the total mass
flux by plotting the cumulative spectra of the turbulent mass flux c′w′ as shown for GS80
and GS500 in Figures 20a and b, respectively. The spectra of c′w′ are extracted at the
concentration boundary layer edge (at ζ = δe). For all Schmidt numbers the proportion of
the turbulent mass flux due to the smaller eddies grows with increasing RT . For Sc = 2,
for example, the turbulent mass flux due to eddies smaller than the integral length scale
is about 7% at RT= 84, while at RT= 507 this proportion is increased to approximately
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Figure 15. Near surface flow structures, Run GS200. a) Horizontal cross-section immediately
below the interface showing the surface divergence (β = −∂w/∂z) contour plot together with
the u− v vector-field. b) PDF of surface divergence from all events in GS200.
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Figure 16. 3D isosurface showing position of boundary layer δe (where c = 1/e) at different Sc
numbers. Each isosurface corresponds to a snapshot taken after t = 30.1L/U simulation time
(cases GS80 and GS80R5). Twice the thickness of the viscous layer (2Lν) is used as threshold
for the darkest color scaling.
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Figure 17. Contour map showing position of boundary layer δe (where c = 1/e) at RT= 84
and Sc = 8 in GS80.

27%. For the larger Schmidt number of Sc = 32, these proportions change to about 12%
and 30%, respectively. So that for larger RT (and Sc) the contribution to the turbulent
mass flux of scales smaller than L∞ can not be neglected.

In Section 5.1 we have shown that in our simulations, where 84 < RT < 507, the large
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Figure 18. Contour map showing position of boundary layer δe (where c = 1/e) at RT= 507
and Sc = 8 in GS500.

eddy model of Fortescue & Pearson (1967) provided a very good estimate of the transfer
velocity KL with a coefficient of proportionality of 1.6. However, the results shown in
this section indicate that for large RT the smaller eddies start to play an important role
in the interfacial mass transfer so that it is expected that for even larger RT the small
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Figure 19. Correlation between intense vorticity region and position of concentration bound-
ary layer in GS500. a) Snapshot of the vector-field immediately below the surface with its
corresponding z−component vorticity contour map and b) Contour map of the concentration
boundary layer position (i.e. ζ/L∞ where c = 1/e)

a)

b)



30 H. Herlina and J. G. Wissink

0 10 20 30 40
40

50

60

70

80

90

100

κ L
∞

cu
m

m
ul

at
iv

e 
E

c′
 w

′ (
%

)

 

 
1 L

∞

Sc=2
Sc=4
Sc=8
Sc=16
Sc=32

0 10 20 30 40
40

50

60

70

80

90

100

κ L
∞

cu
m

m
ul

at
iv

e 
E

c′
 w

′ (
%

)

 

 
1 L

∞

Sc=2
Sc=4
Sc=8
Sc=16
Sc=32

Figure 20. Cumulative energy spectra of c′w′ at ζ = 5δe a)RT = 84 and b)RT = 507.

eddy model might give a better estimate of KL, which would support the arguments of
Theofanous et al. (1976) for the existence of large-eddy and small-eddy regimes for low
and high RT , respectively.

7. Conclusions

Large scale direct numerical simulations (DNS-s) of clean-surface interfacial mass
transfer for three different turbulent Reynolds numbers have been performed. A wide
range of Schmidt numbers, 2 6 Sc 6 500, were simulated for RT = 84 and 195. At
RT = 507, however, all Sc except Sc = 500 were simulated, the Sc = 500 case was not
simulated due to the excessively high demand for computational resources. The interfa-
cial mass transfer was driven by isotropic turbulence diffusing from below. In accordance
with grid-stirred experiments, isotropic turbulence was introduced at the bottom of the
computational domain to mimic the near-surface effects of the turbulence in open-channel
flows. Compared to previously performed simulations of interfacial mass transfer driven
by bottom-shear induced turbulence, the present DNSs are the first that provide fully
resolved data for realistic Schmidt numbers that are typical for environmental gases like
oxygen (Sc = 500).

Near surface transport processes at small and large Schmidt numbers were found to be
qualitatively very similar. The eddies impinging from below were seen to locally either
suppress or thicken the concentration boundary layer at the surface. The reduced diffusion
at high Sc resulted in finer, more localized structures of high scalar concentration.
It was found that the transfer velocity KL scales with Sc−

1/2 for the entire range of
Schmidt numbers considered. For low to moderate RT it was also found that KL/u∞ ∝
R

−1/2
T . The above is in agreement with the large eddy model of Fortescue & Pearson

(1967),
A direct comparison of KL obtained in the DNS-s and several grid-stirred experi-

ments with the surface divergence model of McCready et al. (1986) showed a very good
agreement when using a constant of proportionality of 0.525.

For our range of RT , the concentration boundary layer thickness was found to be
proportional to the outer diffusive sublayer thickness LD and, hence, was determined by
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the size of the largest eddies. For this scaling, the choice of the definition of the boundary
layer thickness (either using δe, δi or δcf ) was found to be unimportant, and the variation
in the actual thicknesses was found to be small.

The Batchelor thickness, δB , was found to be proportional to the inner diffusive sub-

layer (or Batchelor sublayer) thickness LB . Note that LB scales with R
−3/4
T rather than

with R
−1/2
T , which is the typical scaling for the outer diffusive sublayer thickness.

When normalizing the ζ-coordinate (corresponding to the distance from the surface) of
the concentration profiles using δe, an almost perfect collapse of the normalized profiles is
observed up to distances of 2δe from the surface. Further down, small variations can still
be observed which might indicate that apart from the δe, which is associated with the
integral length scales, also smaller scales become important. Similar results were found
for the normalization of the crms profiles.

While in the experiments it was found to be very difficult to resolve the turbulent mass
flux at larger distances from the surface, the present numerical simulations were found to
be able to fully resolved the turbulent mass fluxes even in the deeper bulk region. Again,
a nice collapse of the profiles is obtained when normalizing the ζ-coordinate using δe.
Similar to jets impinging on a horizontal plane from below, immediately underneath

the surface large divergence areas were found consisting of strong localized upwellings
near the centre surrounded by flow moving radially outwards. These divergence areas
were found to be separated by small areas with downwelling flow.
Detailed observation of the concentration boundary layer thickness shows that for low

RT only the larger eddies are able to distort the boundary layer, while for higher RT also
smaller eddies were found to penetrate the boundary layer. The cumulative spectra of
the turbulent mass flux indicate that with increasing RT and Sc the contribution of the
smaller eddies to the total mass flux becomes more significant. Though our data fitted
well with the large eddy model, the results obtained at the higher RT indicate that the
contribution of the small eddies to the overall mass transfer becomes more significant
with increasing RT . Hence, it is likely that for even higher RT the small eddy model is
more relevant than the large eddy model, supporting the two-regime mass transfer model
of Theofanous et al. (1976).
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