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Abstract

The usefulness of a predictor evaluation framework which combines
a blocked cross-validation scheme with directional accuracy measures
is investigated. The advantage of using a blocked cross-validation
scheme with respect to the standard out-of-sample procedure is that
cross-validation yields more precise error estimates of the prediction
error since it makes full use of the data. In order to quantify the gain in
precision when directional accuracy measures are considered, a Monte
Carlo analysis using univariate and multivariate models is provided.
The experiments indicate that more precise estimates are obtained
with the blocked cross-validation procedure. An application is car-
ried out on forecasting UK interest rate for illustration purposes. The
results show that in such a situation with small samples the cross-
validation scheme may have considerable advantages over the stan-
dard out-of-sample evaluation procedure as it may help to overcome
problems induced by the limited information the directional accuracy
measures contain due to their binary nature.
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1 Introduction

Assessing and evaluating the accuracy of forecasting models and forecasts is
an important and long-standing problem which a forecaster always faces when
choosing among various available forecasting methods. This paper aims to
investigate the usefulness of a blocked cross-validation (BCV) scheme along
with directional accuracy measures for forecast evaluation. Several forecast
error measures such as scale-dependent, percentage and relative measures
have been used largely for forecast evaluation (see Hyndman and Koehler
(2006); Costantini and Pappalardo (2010), Costantini and Kunst (2011)
among others).

However, Blaskowitz and Herwartz (2009) point out that directional fore-
casts can provide a useful framework for assessing the economic forecast value
when loss functions (or success measures) are properly formulated to account
for the realized signs and realized magnitudes of directional movements. In
this regard, Blaskowitz and Herwartz (2009, 2011) propose several directional
accuracy measures which assign a different loss to the forecast, depending on
whether it correctly predicts the direction (rise/fall) of the time series or not.
The idea behind this kind of measure is that there are many situations where
the correct prediction of the direction of the time series can be very useful,
even if the forecast is biased (an investor buys stock, if its price is expected
to rise, Blaskowitz and Herwartz (2009); a central bank tends to increase the
interest rate, if inflation is expected to rise, Milas and Naraidoo (2012)).
For purposes of out-of-sample (OOS) forecast evaluation, the sample is di-
vided into two parts. A fraction of the sample is reserved for initial parameter
estimation while the remaining fraction is used for evaluation. However, this
procedure may fail to work well when the overall amount of data is limited
and/or a lot of parameters are to be estimated. As the directional accuracy
measures use the predictions in a binary way (correct/incorrect prediction of
direction), the problems may be even more prominent when using such mea-
sures. Provided that the data used for forecasting are stationary (see Arlot
and Celisse (2010)), the cross-validation scheme may help improve the esti-
mation of the forecast directional accuracy, as it uses the data more efficiently
by splitting them into k-folds. In this context, the use of the directional fore-
casting accuracy is also recommended since changes in the sign are frequent
with stationary data (no increasing/decreasing trend).
This paper makes a contribution to the existing literature by investigat-
ing whether, and to what extent, the k-fold BCV procedure proposed by
Bergmeir and Beńıtez (2012) may provide a better estimate of forecast di-
rectional accuracy than the standard OOS procedure. The use of the k-fold
blocked scheme is suggested because it yields more precise error measures, in
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the sense that the error measure calculated using BCV is a better estimate of
the generalization error (the expected loss of the model on unknown future
observations; see Blum et al. (1999); Hastie et al. (2009)).

This paper aims to evaluate if this benefit is also retained when the fore-
casts are tested for directional accuracy. To this end, we provide a Monte
Carlo analysis using simple univariate and multivariate linear autoregressive
models. The models are estimated and evaluated both with BCV and tradi-
tional OOS evaluation methods. Furthermore, the models are also evaluated
on an additional validation set which consists of new unknown future data.
This allows us to compare the directional accuracy obtained by the evalua-
tion procedure and the directional accuracy obtained using the new future
data. In this way, it is possible to ascertain how well the evaluation proce-
dure is able to predict the future loss of a certain model. The Monte Carlo
experiment results show that the advantage of using a BCV scheme is quite
remarkable.

We use simple linear models as these models are likely to show a rather
conservative behavior compared to more complex models regarding the dif-
ferences in the outcome of the forecast evaluation, as more complex models
require more data for parameter estimation, so the observed effects may be
even stronger with complex models. Also, autoregressive models have been
extensively used in the literature for directional forecasts, especially for the
prediction of the exchange rate and the interest rate, as it is of primary
importance for investors and policy makers to better understand the move-
ments of these variables for the decision-making process (see Kong (2000);
Sosvilla-Rivero and Garćıa (2005); Kim et al. (2008); Blaskowitz and Her-
wartz (2014); Blaskowitz and Herwartz (2009); Altavilla and De Grauwe
(2010), among others). The use of these models has been justified on the
basis of the potential correlation in the change of the exchange rate due to
data measurement or aggregation (see Kong (2000)) and in the interest rate
due to monetary policy of the central bank.

We also offer an empirical application to the UK interest rate data. The
forecast results show that, when using directional accuracy measures in small
sample sizes, it may happen that distinct forecast approaches reveal identical
realized average loss/success. The BCV scheme uses additional information
from other test sets and is less likely to obtain identical loss estimates, thus
it is able to distinguish the performance of the models.

The rest of the paper is organized as follows. Section 2 reviews the BCV
procedure. Section 3 describes the directional accuracy measures. Section 4
provides the Monte Carlo results. Section 5 discusses our empirical findings,
and Section 6 concludes.
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2 Blocked cross-validation

Cross-validation is an estimator widely used to evaluate prediction errors
(Borra and Di Ciaccio, 2010; Khan et al., 2010). In k-fold cross-validation
(see, e.g., Hastie et al. (2009)), the overall available data is randomly parti-
tioned into k sets of equal size: each of the k sets is used once to measure the
OOS forecast accuracy and the other k− 1 sets are used to build the model.
The k resulting error measures are averaged using the mean to calculate the
final error measure. The advantage of cross-validation is that all the data is
used both for training (initial estimation) and testing and the error measure
can be computed k times instead of only one. Therefore, by averaging over
the k measures, the error estimate using cross-validation has a lower variance
compared to an error estimate using only one training and test set. In this
way, a more accurate evaluation of the generalization error can be obtained
(see Blum et al. (1999) for a theoretic result on this).

Since the cross-validation scheme requires the data to be i.i.d. (see Arlot
and Celisse (2010)), modified versions of cross-validation for time series anal-
ysis have been proposed (for a large survey see Bergmeir and Beńıtez (2012)).
Identical distribution translates to stationarity of the series (Racine, 2000).
Independence can be assured by leaving a margin of a certain distance in
time d between training and test values, after which the values are approx-
imately independent (and no autocorrelation is present). The value d will
be typically related to the order of the model, as we assume that all the
autocorrelation is considered during model building. Therefore, the values
in a neighborhood of d, around a value which is used for testing, cannot be
used for training (see, e.g., McQuarrie and Tsai (1998) or Kunst (2008) for
the procedure).

If the test set is chosen randomly from the data, removing a neighborhood
of d values from the training set for each value in the test set may lead
(depending on d and on the size of the test set) to a considerable loss of data
and may even result in an insufficient amount of data for model estimation.
A solution to this problem is to choose the test set as a block of sequential
data (see also Racine (2000)), so that omission of dependent values is only
necessary at the borders of this data block. This scheme, applied to k-fold
cross-validation, yields k-fold BCV (Bergmeir and Beńıtez, 2012). Figure 1
shows a simple example how the BCV procedure works in practice (see also
Bergmeir and Beńıtez (2011)).

The choice of k depends on the computational cost and the amount of
available data. More specifically, the number of models to be estimated
increases as k increases and the smaller k, the smaller is the training set
(which may represent a problem if only few data is available). Typical choices
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5-fold blocked cross-validation

out-of-sample evaluation

Figure 1: Training and test sets chosen for traditional OOS evaluation, and 5-fold BCV.
Blue dots represent points from the time series in the training set and orange dots represent
points in the test set. In the example, we assume that the model uses two lagged values
for forecasting, which is why at the borders always two values are omitted.

for k are 5 or 10 (see Khan et al. (2010); Hastie et al. (2009)). In this work
we use k = 5.

In the following, we offer a theoretical analysis to show the advantage
of using BCV over OOS. Specifically, we will show that the BCV procedure
yields an error measure with a lower variance than that of OOS.

Let xt be a time series. Let D be a (N, p + 1)-matrix of time series
data to which an autoregressive model is applied. The rows of D are of
the form ((xt−p), . . . , xt−1, xt, xt+h), where h is the forecast horizon. Let
κ : {1, . . . , N} 7→ {1, . . . , k} be an index function that indicates the partition
to which row i belongs to. The index function is built according to the
paradigm of BCV, so that k blocks of equal size of data are generated (we
assume for simplicity that the length of the time series is a multiple of k).

Let us consider the kth cross-validation estimate, where the kth partition
is used as the test set. Note that this is equivalent to OOS evaluation, using
an OOS period with a length of 1/kth the length of the training data. We
estimate a model f̂ on the data D using all rows i with κ(i) 6= k. Denote
such a model by f̂−κk in the following. Then, an error measure M for f̂−κk

is calculated on D using all rows j with κ(j) = k. We denote such an error
measure M(f̂−κk , κk). So, we define the OOS estimate as:

OOS(f̂) = M(f̂−κk , κk).

From this, we can straightforwardly define the BCV estimate as:

BCV (f̂) =
1

k

k∑
i=1

M(f̂−κi , κi).

In this case, it is straightforward to see that BCV uses all the information
available to OOS and additional information from other test sets. Let us
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consider the variance of the error measure. Assuming that the error measures
M calculated on different test sets are uncorrelated, we have:

V ar(BCV (f̂)) = V ar(
1

k

k∑
i=1

M(f̂−κi , κi)) =
1

k2

k∑
i=1

V ar(M(f̂−κi , κi)),

and for stationary data:

V ar(BCV (f̂)) =
1

k2

k∑
i=1

V ar(M(f̂−κk , κk)) =
V ar(OOS(f̂))

k
.

As the BCV estimate has a smaller variance than that of the OOS pro-
cedure, for unbiased estimates the BCV procedure yields a more precise es-
timate of the generalization error (in the sense of Blum et al. (1999); Hastie
et al. (2009)). We investigate this in our Monte Carlo experiments in Sec-
tion 4.

However, there are some cases in which the use of the BCV procedure
may not be straightforward, or not be advisable. In the BCV procedure, for
all the folds but the first and the last one, the test set interrupts the training
set, then for some forecasting models (e.g., exponential smoothing methods
or models with a moving average part) it may be difficult to handle training
sets that consist of two non-continuous parts. Nevertheless, this is not an
issue in the broad class of (linear or non-linear) pure autoregressive models
of fixed order, as in the embedded form of the series only the respective rows
have to be removed before estimating the model.

Also, the use of the BCV procedure is not straightforward when only
the forecasts, but not the forecasting models, are available, as it then may
not be possible to generate forecasts for the different test sets. This may
be the case when one evaluates the forecasting record of an international
organization (e.g. IMF, EC or OECD).

Finally, the use of BCV may also not be recommended when changes
at a certain point in time (structural breaks) are present in the data. In
this respect, it may be counterproductive to use data before the break as it
does not provide valuable information for future values of the series, both for
model estimation and evaluation.

All in all, the use of BCV is beneficial in the following cases. First, the
model allows for non-continuous training periods. Second, the forecaster
controls the model building steps and can produce the forecasts. Finally, full
use of the data can be made. In many applications, this is the case, especially
when the performance of (linear or non-linear) autoregressive models for
stationary data is to be evaluated.
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3 Directional accuracy measures

Conventional measures of forecasting accuracy are based on the idea of a
quadratic loss function in that larger errors carry proportionally greater
weights than smaller ones. Such measures respect the view that forecast
evaluation should concentrate on all large disturbances whether or not they
are associated with directional errors which are of no special interest in and of
themselves. However, several studies argue that incorrectly predicted direc-
tions are among the most serious errors a forecast can make (see Chung and
Hong (2007); Kim et al. (2008); Solferino and Waldmann (2010), Blaskowitz
and Herwartz (2009, 2011) among others). In this respect, this study applies
some directional accuracy measures (Blaskowitz and Herwartz (2009, 2011))
for forecast evaluation.
Using the indicator function I[. . .], the realized and predicted directions Rt

and Pt are given by:

Rt = I [(yt+h − yt) > 0] ,

Pt = I [(ŷt+h − yt) > 0] ,

where yt is the current value of the series, ŷt+h is the value of the forecast,
and yt+h is the true value of the series at time t+ h.

Using Rt and Pt, the directional error (DE) for h-step-ahead forecasts can
be defined as follows:

DEt = I[Rt = Pt].

Using DE, a general framework for the directional accuracy (DA) can be
obtained:

DAt =

{
a for DEt = 1
b for DEt = 0

In this framework, a correct prediction of the direction takes a value a,
which can be interpreted as a reward, and an incorrect prediction takes a
value b, a penalty. Based on the DA, several directional accuracy measures
can be defined.
The mean directional accuracy (MDA) is defined straightforwardly as the
mean of the DA:

MDA = mean(DAt).
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This measure acquires well the degree up to which the predictor is able
to correctly predict the direction of the forecast, and it is robust to outliers.
It should be noted that the following holds:

MDA = (a− b) mean(DEt) + b,

so that MDA is a linear transformation of the mean of the DE, depending
on a and b (this linear relationship can be derived from a contingency table
of sums of correct/incorrect upward/downward predictions). As MDA does
not take into account the actual size of the change, it does not measure the
economic value of the forecast (the predictor can be able to forecast the di-
rection in cases of low volatility quite well, but it can fail when the volatility
is high). Therefore, we use the directional forecast value (DV), which multi-
plies DA by the absolute value of the real changes, thus assessing better the
actual benefit/loss of a correct/incorrect direction of the prediction.
The mean DV (MDV) is defined as:

MDV = mean(|yt+h − yt| ·DAt).

In order to have a scale-free measure, the absolute value of the change
can be divided by the current value of the series (Blaskowitz and Herwartz,
2011). Then, the mean directional forecast percentage value (MDPV) can
be defined as follows:

MDPV = mean

( ∣∣∣∣yt+h − ytyt

∣∣∣∣ ·DAt

)
.

According to Blaskowitz and Herwartz (2011), common values for a and b
are (a, b) = (1, 0), or (a, b) = (1,−1). In the first case, DAt is identical to DEt.
In the second case, b is actually a penalty. In our study, we use (a, b) = (1,−1)
to consider the more general case where penalties are involved.

4 Monte Carlo experiment

In this section, we provide a Monte Carlo analysis. We consider univariate
and multivariate experiments. In the univariate experiment, we generate
series from a stable AR(3) process, while in the multivariate experiments the
data is generated from bivariate and trivariate VAR(2) models, respectively.
The design of the first two experiments (univariate case and bivariate VAR(2)
model) is stochastic, in the sense that for every Monte Carlo trial the model
parameters are generated randomly and, as a result, we obtain different data
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for every trial. The third experiment (trivariate VAR(2) model) is designed
in line with the empirical application.

As for the stochastic design, our experiments allow to explore larger re-
gions of the parameter space. In all experiments, one-step-ahead predictions
are considered. Series with lengths of 50, 70, 100, 150, 200, 250, 300, 350,
400, 450, 500, 550, and 600 values are used. For each length, 1000 Monte
Carlo experiments are conducted. The experiments are performed with the
R programming language (R Development Core Team, 2009) in the follow-
ing way. Series are first generated and partitioned into a data set which is
available to the forecaster, the in-set, and a set of data from the end of the
series as unknown future, the out-set. We use 70 percent of the data as in-
set, and the rest of the data as out-set. Then, the in-set is partitioned into
training and test sets using the OOS and 5-fold BCV procedures (20 percent
of the in-set are used as test set, so that the OOS evaluation coincides with
the last fold of the BCV). Models are then built and values of the test sets
are predicted to compute the directional accuracy measures (see Section 3)
and the root mean squared forecast error (RMSFE). In addition to the OOS
evaluation and the 5-fold BCV, we also perform OOS evaluation with rolling
and recursive schemes. In the recursive scheme, for every point in the test
set, the model is re-estimated using the training set and all the values from
the test set prior to the current value to be forecasted. The rolling scheme is
similar to the recursive scheme, but for every value that is added to the end
of the training set, a value from the beginning of the training set is discarded.

5-fold BCV / OOS evaluation

retraining and evaluation with new, unknown data

Figure 2: Illustration of the Monte Carlo experiments. The data are partitioned into
an in-set, which is used for BCV and OOS evaluation, and an out-set (green), which is
completely withheld. After model estimation and estimation of the directional accuracy
measures, the models are estimated again using all available data in the in-set to forecast
the unknown future (the out-set). This is a typical application scenario of forecasting.
In our experiments, the directional accuracy measures are calculated on the out-set, and
the error estimates given by BCV and OOS evaluation can be compared to the reference
errors calculated on the out-set.

In this way, estimates are obtained only using the data of the in-set.
Then, we build models using all data of the in-set, and predict the values of
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the out-set and calculate the directional accuracy measures on the out-set
(see also Figure 2). Thus, for each kind of model we obtain an error estimate
using only the in-set data, and an error measure on future values of the series,
the out-set data. This allows us to compare the in-set error estimates using
BCV, OOS, rolling and the recursive scheme, and the out-set errors. To this
end, we calculate the root mean squared error of the in-set estimates with
respect to the out-set errors, and we call this measure the root mean squared
predictive accuracy error (RMSPAE). It is defined as follows:

RMSPAE =

√√√√ 1

n

n∑
i=1

(M out−set
i −M in−set

i )2 ,

where n is the number of series, i.e., trials in the Monte Carlo simulation,
and M is the accuracy measure in consideration, calculated for one model
and one series. In the case of M in−set, the BCV, OOS, rolling, or recursive
procedure is used on the in-set, and in the case of M out−set, the data of the
in-set are used for training, and the data of the out-set are used for testing.

The RMSPAE is an appropriate measure to compare the performances
of different evaluation procedures. Indeed, the RMSPAE does not assess the
performance of a forecasting model, but it assesses the performance of an
evaluation procedure (e.g., BCV) to predict the generalization error for a
determined model, regardless of whether the model performs well or not.

4.1 Univariate case

Series are generated from a stable AR(3) process. Real-valued roots of the
characteristic polynomial are chosen randomly from a uniform distribution in
the interval [−rmax,−1.1]∪ [1.1, rmax], with rmax=5.0. From these roots, the
coefficients of the AR model are estimated (for a more detailed description
of the procedure, see Bergmeir and Beńıtez (2012)). The first 100 time
series observations are discarded to avoid possible initial value effects. The
series are then normalized to zero mean and unit variance. As percentage
measures such as the MAPE and the MDPV are heavily skewed when the
series have values close to zero (see e.g. Hyndman and Koehler (2006); this
is also confirmed in unreported preliminary experiments), for each series we
subtract the overall minimum (calculated over all series) from all values to
obtain a series of non-negative values, and then we increment all values by
1, to achieve a series which only contains values greater 1. In this way, new
coefficients are estimated and a new series is generated for each iteration.

For forecasting purposes, we consider the data generating process, AR(3),
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Table 1: Univariate results. OOS, 5-fold BCV, recursive, and rolling procedures.

MDA MDV MDPV RMSFE
RMSPAE 5-fold BCV

AR(1) 0.1803 0.3576 0.0692 0.1595
AR(2) 0.1830 0.3579 0.0693 0.1457
AR(3) 0.1820 0.3593 0.0695 0.1481

RMSPAE OOS
AR(1) 0.2697 0.5203 0.1013 0.2293
AR(2) 0.2775 0.5217 0.1014 0.2180
AR(3) 0.2756 0.5243 0.1018 0.2220

RMSPAE Recursive Scheme
AR(1) 0.2738 0.5223 0.1016 0.2170
AR(2) 0.2775 0.5222 0.1017 0.2084
AR(3) 0.2804 0.5240 0.1019 0.2117

RMSPAE Rolling Scheme
AR(1) 0.2687 0.5195 0.1012 0.2164
AR(2) 0.2748 0.5202 0.1012 0.2089
AR(3) 0.2780 0.5213 0.1014 0.2138

Notes: Series of length 100. The RMSPAE is calculated over 1000 trials.

and other two autoregressive processes, namely AR(1) and AR(2). Evalua-
tion is performed using 5-fold BCV, OOS, rolling and recursive schemes.

Table 1 reports the RMSPAE results for the directional accuracy mea-
sures (see Section 3) and the RMSFE for BCV, OOS, rolling, and recursive
schemes. A series length of 100 is considered in the table (to save space,
results for other series lengths are not reported here; they are available upon
request).

We clearly see that the values for BCV are consistently smaller than the
respective values of OOS, rolling, and recursive evaluation. This occurs for
all the models and different measures considered. As regards the RMSFE
measure, the values for RMSPAE obtained with the BCV procedure are
around 0.15 for all the models, whereas the other procedures provide values
over 0.20. For the directional accuracy measures, the RMSPAE shows similar
findings across the models. For example, when the model AR(3) is considered
along the MDV measure, the BCV provides a value of 0.3593, where this value
steps up to 0.5213, 0.5240 and 0.5243 for the other three schemes respectively.
Among these schemes, similar results are found.

All in all, these results show that the measures calculated on the in-set
using BCV estimate more precisely the out-set measures. Therefore, using
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Figure 3: RMSPAE averaged over the Monte Carlo trials AR(3). Series of different lengths.

BCV, one is able to estimate the directional accuracy for a given method
more precisely when predicting unknown future values of the series.

Another important result emerges from the experiment. Figure 3 shows
the RMSPAEs for the series of all lengths when an AR(3) model is con-
sidered. The results indicate that in general the RMSPAE decreases with
increasing length of the series, so that the directional accuracy is estimated
more precisely if more data are available. Also, advantages of cross-validation
are bigger if the series are shorter which is often the case in empirical appli-
cations.

4.2 Multivariate case

For the multivariate case, two studies are performed. The first study is in
line with the univariate experiments discussed so far, while the second study
is motivated by our application.

4.2.1 Multivariate experiment with stochastic design

The purpose of this multivariate Monte Carlo simulation study is to verify
the robustness of the results in Section 4.1. The data generating process
is a bivariate VAR(2) model. Series are generated in a similar way as in
Section 4.1. Eigenvalues for the companion matrix of the VAR model are
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generated, with an absolute value smaller than 1, in order to obtain a sta-
ble model (Lütkepohl, 2006). The companion matrix is generated from these
eigenvalues by the procedure described by Boshnakov and Iqelan (2009). The
covariance matrix is randomly chosen by generating an upper triangular ma-
trix from a uniform distribution in the [−1, 1] interval where the elements
on the diagonal are set equal to 1. Therefore, a random symmetric matrix
is built up. The random values for the VAR process are then drawn from
a Gaussian distribution, and multiplied by the Cholesky form of the covari-
ance matrix. As in the univariate experiment, the first 100 observations are
discarded and the resulting series are normalized to have zero mean and unit
variance. Then, the series are shifted to prevent problems with percentage
measures (by incrementing each value by 1 and subtracting the overall min-
imum from the series).

In analogy to the application in Section 5, we use only the first component
of the bivariate model for the evaluation. Along with the VAR(2) model, two
other models are used for forecasting purposes, namely the bivariate VAR(1)
and VAR(3) model.

Table 2: Multivariate results, using the stochastic design. OOS, 5-fold BCV, recursive,
and rolling procedures.

MDA MDV MDPV RMSFE
RMSPAE 5-fold BCV

VAR(1) 0.2203 0.1165 0.0212 0.1118
VAR(2) 0.2157 0.1264 0.0230 0.1219
VAR(3) 0.2212 0.1324 0.0241 0.1361

RMSPAE OOS
VAR(1) 0.3220 0.1815 0.0340 0.1712
VAR(2) 0.3132 0.1922 0.0356 0.1812
VAR(3) 0.3299 0.2022 0.0374 0.2187

RMSPAE Recursive Scheme
VAR(1) 0.3167 0.1782 0.0336 0.1563
VAR(2) 0.3091 0.1946 0.0361 0.1537
VAR(3) 0.3127 0.1981 0.0368 0.1662

RMSPAE Rolling Scheme
VAR(1) 0.3218 0.1803 0.0339 0.1599
VAR(2) 0.3078 0.1917 0.0355 0.1566
VAR(3) 0.3128 0.1962 0.0361 0.1695

Notes: Series of length 100. The RMSPAE is calculated over 1000 trials.

In Table 2, the Monte Carlo results of RMSPAE for the directional ac-
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Figure 4: RMSPAE averaged over the Monte Carlo trials for VAR(2). Series of different
lengths.

curacy measures and the RMSFE are reported, using BCV, OOS, rolling,
and recursive procedures for series of length 100 (as in the univariate case,
results for series of other lengths are not reported here to save space; they
are available upon request). The results confirm those in the univariate case.
From Table 2, it can be seen that the RMSPAE is consistently smaller using
the BCV procedure.

As regards the RMSFE, the results show that for the VAR(2) model the
value of this conventional accuracy measure is equal to 0.1219 for the BCV
procedure and larger than 0.15 for the OOS procedures. With respect to the
directional accuracy measures, we find that the values of MDV and MDPV
are equal to 0.1264 and 0.0230 when using BCV, whereas these values are
around 0.20 and 0.035 for the OOS schemes. Among OOS procedures, the
results here confirm those in the univariate experiment.

Figure 4 shows the Monte Carlo results in terms of RMSPAE for series of
all lengths when a VAR(2) model is considered. The findings observed in the
univariate case are confirmed: the advantage of using the cross-validation
scheme is preserved and it is also bigger with shorter series.
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4.2.2 Multivariate experiment related to the empirical application

The stochastic design of the Monte Carlo experiments shown in Section 4.2.1
allows us to explore a broad class of different data generating processes.
However, it may ignore potential local accuracy differences. Therefore, in
this section we focus on a data generating process consistent with the data
used for the empirical application. We follow the procedure in Costantini
and Kunst (2011) and estimate a VAR(2) model using data from Section 5
for all the Monte-Carlo trials. We set the maximum lags to 8. The optimal
number of lags selected by the AIC and BIC criteria are 2 and 1, respectively.
We use a model with two lags as recommended model in macroeconomic
systems, see Lütkepohl (2006). The estimated parameters of the model are
reported in Appendix A. Apart from the different data generating process,
the experiment is identical to those in Section 4.2.1. The results are shown
in Table 3 and Figure 5. The BCV procedure shows a better performance
in terms of RMSPAE than the OOS procedure for all the forecast measures.
These results confirm those obtained in the previous experiments.

Table 3: Multivariate results, using a data generating process in line with the empirical
application. OOS, 5-fold BCV, recursive, and rolling procedures.

MDA MDV MDPV RMSFE
RMSPAE 5-fold BCV

VAR(1) 0.2222 0.0644 0.0035 0.0615
VAR(2) 0.2325 0.0697 0.0037 0.0695
VAR(3) 0.2314 0.0686 0.0037 0.0856

RMSPAE OOS
VAR(1) 0.3429 0.0968 0.0051 0.0908
VAR(2) 0.3481 0.1033 0.0055 0.1037
VAR(3) 0.3549 0.1041 0.0055 0.1229

RMSPAE Recursive Scheme
VAR(1) 0.3403 0.1003 0.0053 0.0769
VAR(2) 0.3454 0.1030 0.0055 0.0763
VAR(3) 0.3482 0.1049 0.0056 0.0805

RMSPAE Rolling Scheme
VAR(1) 0.3447 0.1009 0.0054 0.0780
VAR(2) 0.3465 0.1058 0.0056 0.0770
VAR(3) 0.3481 0.1059 0.0056 0.0816

Notes: Series of length 100. The RMSPAE is calculated over 1000 trials.
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Figure 5: RMSPAE averaged over the Monte Carlo trials for a trivariate VAR(2). Series
of different lengths.

5 Empirical application

In this section, we offer an application to UK interest rate as an example of
the use of BCV in practice. While the findings of the Monte Carlo simula-
tion show that in general the BCV performs better than the OOS, we now
focus on the particularity of directional accuracy measures of binary output,
which potentially leads to a loss of information. The main purpose of our
study is neither to support or establish an economic theory nor to show the
suitability of a particular method, but to investigate the usefulness of the
cross-validation scheme along with directional accuracy measures. Therefore
we consider simple linear models for forecasting the UK quarterly interest
rate (for a forecasting exercise on UK interest data see also Barnett et al.
(2012)).

In order to have a realistic setup with regard to the evaluation procedures,
we do not perform a partition of the data into in-set and out-set, but just
use BCV, OOS, rolling, and recursive evaluation in the way it would be used
in an empirical application. Therefore, we provide directly the results of the
directional accuracy measures.

The data set consists of quarterly annualized real GDP growth, quarterly
annualized inflation rate and the three-month Treasury bill rate. The data
is taken from the OECD Main Economic Indicators database and it covers
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the period 1965:1-2011:1. The CPI data has been seasonally adjusted using
Tramo seats. GDP growth is defined as 400 times the log difference of GDP
and inflation is similarly defined using CPI. The interest rate is used without
any change. The series are shown in Figure 6. All the series have been tested
for stationarity using the DF-GLS unit root test of Elliott et al. (1996). The
results show that the inflation and GDP growth rates are stationary at 5%
level (the statistics are -3.102 and -5.129, respectively) while interest rate is
stationary at 10% level (the statistics is -1.920).

1970 1980 1990 2000 2010

0
5

15

Interest rate

1970 1980 1990 2000 2010

0
15

30

CPI inflation

1970 1980 1990 2000 2010−
10

5
20

GDP growth

Figure 6: UK quarterly interest rate, CPI inflation rate, and GDP growth rate.

In the application, we consider a trivariate VAR model with interest rate,
CPI inflation rate and GDP growth rate (VAR3), a bivariate VAR model with
interest rate and CPI inflation rate (VARcpi) and a bivariate VAR model with
interest rate and GDP growth rate (VARgdp). All the VAR models are of
order two. Furthermore, we use 5-fold BCV and for the OOS a period which
coincides with the 5th fold. Therefore, the last 20% of the data are used for
OOS evaluation.

Table 4 reports the results. It should be noted that the MDV measure
yields negative values for the OOS procedure, and sometimes for the rolling
and recursive schemes. This result may be due to the fact that the last
part of the sample period of the series is fairly stable, so that forecasting of
the direction is difficult and the models do not perform well. Furthermore,
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Table 4: UK interest rate forecasting results. OOS, 5-fold BCV, recursive, and rolling
procedures.

MDA MDV MDPV RMSFE
5-fold BCV

VAR3 0.1778 0.0819 0.0165 0.8990
VARcpi 0.2444 0.1122 0.0152 0.9209
VARgdp 0.1556 0.1013 0.0181 0.9009

OOS
VAR3 0.1667 -0.0048 0.0191 0.6146

VARcpi 0.1111 -0.0161 0.0036 0.6989
VARgdp 0.1667 -0.0048 0.0191 0.6147

Recursive
VAR3 0.2778 0.1521 0.0637 0.5271

VARcpi 0.1111 -0.0161 0.0036 0.6033
VARgdp 0.2778 0.1521 0.0637 0.5267

Rolling
VAR3 0.2778 0.1521 0.0637 0.5355

VARcpi 0.1111 -0.0161 0.0036 0.6077
VARgdp 0.2222 0.0024 0.0328 0.5352

Notes: The values for 5-fold BCV are averaged error measures over the 5 folds. VAR3

includes interest, CPI inflation and GDP growth rates; VARcpi interest and CPI inflation
rates; VARgdp interest and GDP growth rates. Note that the table does not report the

RMSPAE as Tables 1 and 2, but it shows the values of the directional accuracy
measures.

neither the OOS nor the recursive procedure are capable of distinguishing
the performance of two models, VAR3 and VARgdp, as the exactly same
values for all the directional measures are found. For example, for the MDA,
values of 0.1667 and 0.2778 are found for the OOS and recursive procedures,
both for VAR3 and VARgdp. A different situation is observed in case of the
conventional RMSFE measure. For the recursive scheme, for example, the
VAR3 and VARgdp obtain different values, 0.5271 and 0.5267, respectively.

In contrast, the cross-validation procedure is able to distinguish the per-
formance of the two models when all the directional accuracy measures are
considered (e.g., for the MDA, values of 0.1778 and 0.1556 are found for the
VAR3 and VARgdp, respectively). It should be noted that the rolling scheme
also performs well in this application, in the sense that it differentiates the
performance of the models in terms of directional accuracy (e.g., for the MDA
and the mentioned VAR models, the values are 0.2778 and 0.2222, respec-
tively). However, as for the OOS and recursive scheme, the rolling scheme
does not cope with the fact that the few information for evaluation may be
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not enough to distinguish the performance of the models.
Furthermore, the results are examined in more detail in Figure 7. We

focus on the BCV and OOS procedures (similar results to OOS are found
for rolling and recursive schemes). It should be noticed that in the last fold
of BCV, which is also used for OOS, all models yield identical results in
terms of the directional accuracy, with the exception of the VARcpi which
yields an incorrect directional forecast in one case (the other two models
are able to predict the direction correctly). Using OOS, only the informa-
tion from the 5th fold is used, and the VAR3 and VARgdp models yield the
same results on this fold. In contrast, BCV uses forecasts of all folds, so
that it helps distinguish the forecasting performance of the models in terms
of directional forecast accuracy. These results have important implications
for macroeconomic applications where the amount of data available can be
limited: the use of the blocked cross-validation is highly recommended for
directional forecasts.

6 Conclusions

This paper investigates the usefulness of a predictor evaluation framework
which combines a k-fold blocked cross-validation scheme with directional
accuracy measures. The advantage of using a blocked cross-validation scheme
over other procedures such as the standard out-of-sample procedure is that
the blocked cross-validation allows one to obtain a more precise error estimate
of the generalization error from the data as it uses all the available data both
for training and testing.

In this paper we evaluate whether, and to what extent, the k-fold blocked
cross-validation procedure may provide more precise results than the stan-
dard out-of-sample procedure even when dealing with directional forecast
accuracy. To this end, a Monte Carlo analysis is performed using simple
univariate and multivariate linear models. The results show that the blocked
cross-validation is able to estimate the directional accuracy more precisely
than the out-of-sample procedure when predicting unknown future values of
the series. These results are obtained in both the univariate and multivariate
design.

An empirical application is also carried out on forecasting UK interest
rate data using three different simple VAR(2) models. The limited amount
of available data, together with the use of directional accuracy measures,
leads to identical realized average loss/success on some occasions when using
the standard out-of-sample procedure. The blocked cross-validation is less
likely to yield identical estimates for a given sample size, as it uses additional
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information from other test sets. In particular, in our application the blocked
cross-validation can distinguish the performance of the different forecasting
models. This result has important implications for the macroeconomic ap-
plications where the amount of data is often limited: the use of the block
cross-validation scheme is highly recommended when dealing with directional
forecast evaluation.
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Appendix A: Parameters of the VAR data gen-

erating process

The resulting trivariate VAR(2) model has the form:

Yt = µ+
2∑
j=1

ΦjYt−j + εt.

The parameters estimated from the data used in the empirical application
are the following:

µ = (0.102, 0.109, 2.959)′,

Φ1 =

 1.153 0.009 0.012
0.522 0.608 0.141
0.516 −0.079 0.036


Φ2 =

 −0.200 0.009 0.047
−0.415 0.220 −0.107
−0.571 −0.035 0.110


All polynomial roots have absolute values smaller 1, so that the model is

stable.
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The variance-covariance matrix has the following form:

Σ =

 0.882 0.530 0.319
0.530 8.100 −2.134
0.319 −2.134 14.145


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