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Abstract

Kernel methods make it relatively easy to define complex high-
dimensional feature spaces. This raises the question of howwe can
identify the relevant subspaces for a particular learning task. When two
views of the same phenomenon are available kernel CanonicalCorrela-
tion Analysis (KCCA) has been shown to be an effective preprocessing
step that can improve the performance of classification algorithms such
as the Support Vector Machine (SVM). This paper takes this observa-
tion to its logical conclusion and proposes a method that combines this
two stage learning (KCCA followed by SVM) into a single optimisation
termed SVM-2K. We present both experimental and theoretical analysis
of the approach showing encouraging results and insights.

1 Introduction

Kernel methods enable us to work with high dimensional feature spaces by defining weight
vectors implicitly as linear combinations of the training examples. This even makes it
practical to learn in infinite dimensional spaces as for example when using the Gaussian
kernel. The Gaussian kernel is an extreme example, but techniques have been developed to
define kernels for a range of different datatypes, in many cases characterised by very high
dimensionality. Examples are the string kernels for text, graph kernels for graphs, marginal
kernels, kernels for image data, etc.
With this plethora of high dimensional representations it is frequently helpful to assist
learning algorithms by preprocessing the feature space in projecting the data into a low
dimensional subspace that contains the relevant information for the learning task. Methods
of performing this include principle components analysis (PCA) [7], partial least squares
[8], kernel independent component analysis (KICA) [1] and kernel canonical correlation
analysis (KCCA) [5].



The last method requires two views of the data both of which contain all of the relevant
information for the learning task, but which individually contain representation specific
details that are different and irrelevant. Perhaps the simplest example of this situation is a
paired document corpus in which we have the same informationin two languages. KCCA
attempts to isolate feature space directions that correlate between the two views and hence
might be expected to represent the common relevant information. Hence, one can view this
preprocessing as a denoising of the individual representations through cross-correlating
them.
Experiments have shown how using this as a preprocessing step can improve subsequent
analysis in for example classification experiments using a support vector machine (SVM)
[6]. This is explained by the fact that the signal to noise ratio has improved in the identified
subspace.
Though the combination of KCCA and SVM seems effective, there appears no guarantee
that the directions identified by KCCA will be best suited to the classification task. This
paper therefore looks at the possibility of combining the two distinct stages of KCCA and
SVM into a single optimisation that will be termed SVM-2K.
The next section introduces the new algorithm and discussesits structure. Experiments are
then given showing the performance of the algorithm on an image classification task.
Though the performance is encouraging it is in many ways counter-intuitive, leading to
speculation about why an improvement is seen. To investigate this question an analysis of
its generalisation properties is given in the following twosections, before drawing conclu-
sions.

2 SVM-2K Algorithm

We assume that we are given two views of the same data, one expressed through a feature
projectionφA with corresponding kernelκA and the other through a feature projectionφB

with kernelκB. A paired data set is then given by a set

S = {(φA(x1), φB(x1)), . . . , (φA(xℓ), φB(xℓ))},

where for exampleφA could be the feature vector associated with one language andφB

that associated with a second language. For a classificationtask each data item would also
include a label.
The KCCA algorithm looks for directions in the two feature spaces such that when the
training data is projected onto those directions the two vectors (one for each view) of values
obtained are maximally correlated. One can also characterise these directions as those that
minimise the two norm between the two vectors under the constraint that they both have
norm 1 [5].
We can think of this as constraining the choice of weight vectors in the two spaces. KCCA
would typically find a sequence of projection directions of dimension anywhere between
50 and 500 that can then be used as the feature space for training an SVM [6].
An SVM can be thought of as a 1-dimensional projection followed by thresholding, so
SVM-2K combines the two steps by introducing the constraintof similarity between two
1-dimensional projections identifying two distinct SVMs one in each of the two feature
spaces. The extra constraint is chosen slightly differently from the 2-norm that charac-
terises KCCA. We rather take anǫ-insensitive 1-norm using slack variables to measure the
amount by which points fail to meetǫ similarity:

|〈wA, φA(xi)〉 + bA − 〈wB, φB(xi)〉 − bB| ≤ ηi + ǫ,

wherewA, bA (wB, bB) are the weight and threshold of the first (second) SVM.
Combining this constraint with the usual 1-norm SVM constraints and allowing different



regularisation constants gives the following optimisation:
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Let ŵA, ŵB, b̂A, b̂B be the solution to this optimisation problem. The final SVM-2K
decision function is thenh(x) = sign(f(x)), where

f (x) = 0.5
(

〈ŵA, φA (x)〉 + b̂A + 〈ŵB, φB (x)〉 + b̂B

)

= 0.5 (fA (x) + fB (x)) . (2)

Applying the usual Lagrange multiplier techniques we arrive at the following dual problem:
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3 Experimental results

Figure 1: Typical example images from the PASCAL VOC challenge database. Classes
are; Bikes (top-left), People (top-right), Cars (bottom-left) and Motorbikes (bottom-right).



The performance of the algorithms developed in this paper weevaluated on PASCAL Vi-
sual Object Classes (VOC) challenge datasettest11. This is a new dataset consisting of
four object classes in realistic scenes. The object classesare, motorbikes (M), bicycles (B),
people (P) and cars (C) with the dataset containing 684 training set images consisting of
(214, 114, 84, 272) images in each class and 689 test set images with (216, 114, 84, 275)
for each class. As can be seen in Figure 1 this is a very challenging dataset with objects of
widely varying type, pose, illumination, occlusion, background, etc.
The task is to classify the image according to whether it contains a given object type. We
tested the images containing the object (i.e. categories M,B, C and P) against non-object
images from the database (i.e. category N). The training setcontained 100 positive and 100
negative images. The tests are carried out on 100 new images,half belonging to the learned
class and half not.
Like many other successful methods [3, 4] we take a “set-of-patches” approach to this
problem. These methods represent an image in terms of the features of a set of small
image patches. By carefully choosing the patches and their features this representation can
be made largely robust to the common types of image transformation, e.g. scale, rotation,
perspective, occlusion.
Two views were provided of each image through the use of different patch types. One was
from affine invariant interest point detectors with a momentinvariant descriptor calculated
for each interest point. The second were key point features from SIFT detectors. For one
image, several hundred characteristic patches were detected according to the complexity
of the images. These were then clustered aroundK = 400 centres for each feature space.
Each image is then represented as a histogram over these centres. So finally, for one image
there are two feature vectors of length 400 that provide the two views.

Motorbike Bicycle People Car
SVM 1 94.05 91.58 91.58 87.95
SVM 2 91.15 91.15 90.57 86.21

KCCA + SVM 94.19 90.28 90.57 88.68
SVM 2K 94.34 93.47 92.74 90.13

Table 1: Results for 4 datasets showing test accuracy of the individual SVMs and SVM-2K.

Figure 1 show the results of the test errors obtained for the different categories for the
individual SVMs and the SVM-2K. There is a clear improvementin performance of the
SVM-2K over the two individual SVMs in all four categories.
If we examine the structure of the optimisation, the restriction that the output of the two
linear functions be similar seems to be an arbitrary restriction particularly for points that are
far from the margin or are misclassified. Intuitively it would appear better to take advantage
of the abilities of the different representations to betterfit the data.
In order to understand this apparent contradiction we now consider a theoretical analysis
of the generalisation of the SVM-2K using the framework provided by Rademacher com-
plexity bounds.

4 Background theory

We begin with the definitions required for Rademacher complexity, see for example Bartlett
and Mendelson [2] (see also [9] for an introductory exposition).

Definition 1. For a sampleS = {x1, · · · ,xℓ} generated by a distributionD on a set
X and a real-valued function classF with a domainX , the empirical Rademacher

1Available fromhttp://www.pascal-network.org/challenges/VOC/voc/160305 VOCdata.tar.gz



complexity ofF is the random variable
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whereσ = {σ1, · · · , σℓ} are independent uniform{±1}-valued Rademacher random vari-
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We useED to denote expectation with respect to a distributionD andES when the distri-
bution is the uniform (empirical) distribution on a sampleS.
Theorem 1. Fix δ ∈ (0, 1) and letF be a class of functions mapping fromS to [0, 1].
Let (xi)

ℓ
i=1 be drawn independently according to a probability distribution D. Then with

probability at least1 − δ over random draws of samples of sizeℓ, everyf ∈ F satisfies

ED [f (x)] ≤ ES [f (x)] + Rℓ (F) + 3
√

ln(2/δ)
2ℓ

≤ ES [f (x)] + R̂ℓ (F) + 3
√

ln(2/δ)
2ℓ

(6)

Given a training setS the class of functions that we will primarily be consideringare linear
functions with bounded norm

{
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i=1 αiκ (xi, x) : α′Kα ≤ B2
}

⊆ {x → 〈w, φ (x)〉 : ‖w‖ ≤ B} = FB

(7)

whereφ is the feature mapping corresponding to the kernelκ andK is the corresponding
kernel matrix for the sampleS. The following result bounds the Rademacher complexity
of linear function classes.
Theorem 2. [2] If κ : X × X → R is a kernel, andS = {x1, · · · ,xℓ} is a sample of
point from X, then the empirical Rademacher complexity of the classFB satisfies
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4.1 Analysing SVM-2K

For SVM-2K, the two feature sets from the same objects are(φA (xi))
ℓ
i=1 and(φB (xi))

ℓ
i=1

respectively. We assume the notation and optimisation of SVM-2K given in section 2,
equation (1).
First observe that an application of Theorem 1 shows that
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C2 for some prefixedC. Hence, the class of functions we are considering when applying
SVM-2K to this problem can be restricted to
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The classFC,D is clearly closed under negation.
Applying the usual Rademacher techniques for margin boundson generalisation we obtain
the following result.

Theorem 3. Fix δ ∈ (0, 1) and letFC,D be the class of functions described above. Let
(xi)

ℓ
i=1 be drawn independently according to a probability distributionD. Then with prob-

ability at least1 − δ over random draws of samples of sizeℓ, everyf ∈ FC,D satisfies
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It therefore remains to compute the empirical Rademacher complexity of FC,D, which
is the critical discriminator between the bounds for the individual SVMs and that of the
SVM-2K.

4.2 Empirical Rademacher complexity ofFC,D

We now define an auxiliary function of two weight vectorswA andwB,

D(wA,wB) := ED[|〈wA, φA(x)〉 + bA − 〈wB , φB(x)〉 − bB|]

With this notation we can consider computing the Rademachercomplexity of the class
FC,D.
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Our next observation follows from a reversed version of the basic Rademacher complexity
theorem reworked to reverse the roles of the empirical and true expectations:

Theorem 4. Fix δ ∈ (0, 1) and letF be a class of functions mapping fromS to [0, 1].
Let (xi)

ℓ
i=1 be drawn independently according to a probability distribution D. Then with

probability at least1 − δ over random draws of samples of sizeℓ, everyf ∈ F satisfies
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The proof tracks that of Theorem 1 but is omitted through lackof space.
For weight vectorswA andwB satisfyingD(wA,wB) ≤ D, an application of Theorem 4
shows that with probability at least1 − δ we have
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We now return to bounding the Rademacher complexity ofFC,D. The above result shows
that with probability greater than1 − δ
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First note that the expression in square brackets is concentrated under the uniform distribu-
tion of Rademacher variables. Hence, we can estimate the complexity for a fixed instantia-
tion σ̂ of the the Rademacher variablesσ. We now must find the value ofwA andwB that
maximises the expression
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1

ℓ
j′abs(KAαA − KBαB + (bA − bB)j) ≤ D̂

wherej is the all ones vector andabs(u) is the vector obtained by applying theabs function
to u component-wise. The resulting value of the objective function is the estimate of the
Rademacher complexity. This is the optimisation solved in the brief experiments described
below.

4.3 Experiments with Rademacher complexity

We computed the Rademacher complexity for the problems considered in the experimental
section above. We wished to verify that the Rademacher complexity of the spaceFC,D,
whereC andD are determined by applying the SVM-2K, are indeed significantly lower
than that obtained for the SVMs in each space individually.

Motorbike Bicycle People Car
SVM 1 94.05 91.58 91.58 87.95
Rad 1 2.78 2.44 2.46 2.29
SVM 2 91.15 91.15 90.57 86.21
Rad 2 5.65 5.48 1.78 3.34

SVM 2K 94.34 93.47 92.74 90.13
Rad 2K 0.25 ± 0.18 0.84 ± 0.71 0.53 ± 0.38 0.37 ± 0.27

Table 2: Results for 4 datasets showing test accuracy and Rademacher complexity (Rad) of
the individual SVMs and SVM-2K.

Table 2 shows the results for the motorbike, bicycle, peopleand car datasets. We show
the Rademacher complexities for the individual SVMs and forthe SVM-2K along with



the generalisation results already given in Table 1. In the case of SVM-2K we sampled
the Rademacher variables 10 times and give the corresponding standard deviation. As pre-
dicted the Rademacher complexity is significantly smaller for SVM-2K, hence confirming
the intuition that led to the introduction of the approach, namely that the complexity of the
class is reduced by restricting the weight vectors to align on the training data. Provided
both representations contain the necessary data we can therefore expect an improvement in
generalisation as observed in the reported experiments.

5 Conclusions

With the plethora of data now being collected in a wide range of fields there is frequently
the luxury of having two views of the same phenomenon. The simplest example is paired
corpora of documents in different languages, but equally wecan think of examples from
bioinformatics, machine vision, etc. Frequently it is alsoreasonable to assume that both
views contain all of the relevant information required for aclassification task.
We have demonstrated that in such cases it can be possible to leaver the correlation be-
tween the two views to improve classification accuracy. Thishas been demonstrated in
experiments with a machine vision task. Furthermore, we have undertaken a theoretical
analysis to illuminate the source and extent of the advantage that can be obtained, show-
ing in the cases considered a significant reduction in the Rademacher complexity of the
corresponding function classes.
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