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Abstract

Kernel methods make it relatively easy to define complex -high
dimensional feature spaces. This raises the question ofviewan
identify the relevant subspaces for a particular learnasft When two
views of the same phenomenon are available kernel Candbaratla-
tion Analysis (KCCA) has been shown to be an effective pregssing
step that can improve the performance of classificationralgos such
as the Support Vector Machine (SVM). This paper takes thsepka-
tion to its logical conclusion and proposes a method thatkines this
two stage learning (KCCA followed by SVM) into a single optiation
termed SVM-2K. We present both experimental and theolleditalysis
of the approach showing encouraging results and insights.

1 Introduction

Kernel methods enable us to work with high dimensional feespaces by defining weight
vectors implicitly as linear combinations of the trainingaeples. This even makes it
practical to learn in infinite dimensional spaces as for gamnwhen using the Gaussian
kernel. The Gaussian kernel is an extreme example, butitpebshave been developed to
define kernels for a range of different datatypes, in mangsakaracterised by very high
dimensionality. Examples are the string kernels for tesep kernels for graphs, marginal
kernels, kernels for image data, etc.

With this plethora of high dimensional representationssifrequently helpful to assist
learning algorithms by preprocessing the feature spaceadjegting the data into a low
dimensional subspace that contains the relevant infoomé#dir the learning task. Methods
of performing this include principle components analy§I€A) [7], partial least squares
[8], kernel independent component analysis (KICA) [1] amdriel canonical correlation
analysis (KCCA) [5].



The last method requires two views of the data both of whiattaia all of the relevant
information for the learning task, but which individuallprtain representation specific
details that are different and irrelevant. Perhaps the Isishgxample of this situation is a
paired document corpus in which we have the same informatibmo languages. KCCA
attempts to isolate feature space directions that coerbkitveen the two views and hence
might be expected to represent the common relevant infeaasmatience, one can view this
preprocessing as a denoising of the individual representathrough cross-correlating
them.

Experiments have shown how using this as a preprocessipgateimprove subsequent
analysis in for example classification experiments usingppert vector machine (SVM)

[6]. This is explained by the fact that the signal to noisérhas improved in the identified

subspace.

Though the combination of KCCA and SVM seems effective,dhagpears no guarantee
that the directions identified by KCCA will be best suited lbe ttlassification task. This
paper therefore looks at the possibility of combining the tlistinct stages of KCCA and
SVM into a single optimisation that will be termed SVM-2K.

The next section introduces the new algorithm and discutsssucture. Experiments are
then given showing the performance of the algorithm on argerdassification task.

Though the performance is encouraging it is in many ways totintuitive, leading to
speculation about why an improvement is seen. To investidpg question an analysis of
its generalisation properties is given in the following teextions, before drawing conclu-
sions.

2 SVM-2K Algorithm

We assume that we are given two views of the same data, onessegl through a feature
projectiong 4 with corresponding kerned 4, and the other through a feature projectipm
with kernelx . A paired data set is then given by a set

S ={(¢a(x1),9B(x1)),. .., (Pa(xe), p5(xe))},

where for example 4 could be the feature vector associated with one languagegnd
that associated with a second language. For a classifidastreach data item would also
include a label.

The KCCA algorithm looks for directions in the two featureasps such that when the
training data is projected onto those directions the twaorsdone for each view) of values
obtained are maximally correlated. One can also charaetérese directions as those that
minimise the two norm between the two vectors under the cainstthat they both have
norm 1 [5].

We can think of this as constraining the choice of weight eesin the two spaces. KCCA
would typically find a sequence of projection directions ohension anywhere between
50 and 500 that can then be used as the feature space fongraimiSVM [6].

An SVM can be thought of as a 1-dimensional projection fo#dwby thresholding, so
SVM-2K combines the two steps by introducing the constrafrdimilarity between two
1-dimensional projections identifying two distinct SVMaein each of the two feature
spaces. The extra constraint is chosen slightly diffeyefinddm the 2-norm that charac-
terises KCCA. We rather take arinsensitive 1-norm using slack variables to measure the
amount by which points fail to meetsimilarity:

|<WA7 ¢A(X’L)> + bA - <WBa ¢B(XZ)> - bB| < i + ¢,

wherew 4, by (wp, bp) are the weight and threshold of the first (second) SVM.
Combining this constraint with the usual 1-norm SVM conistissand allowing different



regularisation constants gives the following optimisatio

4 4 L
. 1 2, 1 2 A A B B
min L = Zllwal® + 3 [ws|* +C ;g +C ;g +D;m 1)
such that [(Wa,da(xi)) +ba— (Wg,¢p(x;)) —bp| <ni +¢
yi ((Wa, da(xi)) +ba) > 1 - &
yi ((Wp, dp(x:)) + bp) > 1 - &7
>0, ¢8>0, 5 >0 alfor 1<i</

Let wa, Wg, ba, bp be the solution to this optimisation problem. The final SVK-2
decision function is theh(z) = sign(f(x)), where

F (@) =05 ((Wa, 04 (@) +ba + (W, 65 (2) + bp ) = 0.5 (fa (&) + f5 (2)) . ()

Applying the usual Lagrange multiplier techniques we aratthe following dual problem:

¢
maxW = —— Z g 9; Aka(xi,x;) + gP 9; Prp(xi,x;)) +Z(a +a?) (3)

i,j=1 i=1
such that gt = aty; — ﬂ++ﬂf, 9P =aly + B - b7,

¢

Sgt=0 Zgl,
0<al gOA/B
0<8, Br+p7 <D

with the functions

fa/B(w Zgl ka/B(Xi, ) +ba/p.

3 Experimental results

Figure 1: Typical example images from the PASCAL VOC challenlatabase. Classes
are; Bikes (top-left), People (top-right), Cars (bottosfi)land Motorbikes (bottom-right).



The performance of the algorithms developed in this papeewvatuated on PASCAL Vi-
sual Object Classes (VOC) challenge datasett 11. This is a new dataset consisting of
four object classes in realistic scenes. The object classesnotorbikes (M), bicycles (B),
people (P) and cars (C) with the dataset containing 684itigiset images consisting of
(214, 114, 84, 272) images in each class and 689 test set smatie(216, 114, 84, 275)
for each class. As can be seen in Figure 1 this is a very clyatigmlataset with objects of
widely varying type, pose, illumination, occlusion, baokgnd, etc.

The task is to classify the image according to whether it@iosta given object type. We
tested the images containing the object (i.e. categorieB,N, and P) against non-object
images from the database (i.e. category N). The trainingsgained 100 positive and 100
negative images. The tests are carried out on 100 new imiagiébelonging to the learned
class and half not.

Like many other successful methods [3, 4] we take a “setadfipes” approach to this
problem. These methods represent an image in terms of therdsaof a set of small
image patches. By carefully choosing the patches and thafufes this representation can
be made largely robust to the common types of image transfiiom e.g. scale, rotation,
perspective, occlusion.

Two views were provided of each image through the use ofriffepatch types. One was
from affine invariant interest point detectors with a moniawériant descriptor calculated
for each interest point. The second were key point featuoes SIFT detectors. For one
image, several hundred characteristic patches were ddtactording to the complexity
of the images. These were then clustered ardiing 400 centres for each feature space.
Each image is then represented as a histogram over thesesced finally, for one image
there are two feature vectors of length 400 that providewloeviews.

Motorbike | Bicycle | People| Car

SVM 1 94.05 91.58 | 91.58 | 87.95
SVM 2 91.15 91.15 90.57 | 86.21
KCCA + SVM 94.19 90.28 90.57 | 88.68
SVM 2K 94.34 93.47 | 92.74 | 90.13

Table 1: Results for 4 datasets showing test accuracy ofithieidual SVMs and SVM-2K.

Figure 1 show the results of the test errors obtained for ffierent categories for the
individual SVMs and the SVM-2K. There is a clear improvemienperformance of the
SVM-2K over the two individual SVMs in all four categories.

If we examine the structure of the optimisation, the resbicthat the output of the two
linear functions be similar seems to be an arbitrary rdgtriparticularly for points that are
far from the margin or are misclassified. Intuitively it wdwppear better to take advantage
of the abilities of the different representations to befitehe data.

In order to understand this apparent contradiction we nawsider a theoretical analysis
of the generalisation of the SVM-2K using the framework pded by Rademacher com-
plexity bounds.

4 Background theory
We begin with the definitions required for Rademacher coriplesee for example Bartlett
and Mendelson [2] (see also [9] for an introductory exposiki

Definition 1. For a sampleS = {xi,---,x,} generated by a distributio® on a set
X and a real-valued function clas§ with a domainX, the empirical Rademacher
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complexity ofF is the random variable

¢
- 2
Ry (F) =Eo [SUP Zzoif(xi) X1, ,Xe] 4)
feF |t i
whereo = {0y, - , 0.} are independent uniforfit1}-valued Rademacher random vari-
ables. TheRademacher complexitf F is
¢
- 1 2
Ry (F)=Es [Ré (F)| =Eso [sup |5 oif (xi) ©)
; R

We useEp to denote expectation with respect to a distributidandEs when the distri-
bution is the uniform (empirical) distribution on a sample

Theorem 1. Fix 6 € (0,1) and letF be a class of functions mapping frofhto [0, 1].

Let (xi)le be drawn independently according to a probability disttibn D. Then with
probability at leastl — § over random draws of samples of sizeveryf € F satisfies

Ep [f (@)] < Es[f (2)] + Re (F) + 3¢/ 2G2
< Es [f (@)] + Re (F) + 3/ 232
Given a training sef the class of functions that we will primarily be considerarg linear
functions with bounded norm
T — Zle aik (xi,7) o Ka < B? )
CH{z — (w, ¢ (2)) : [Jw| < B} = Fz
whereg¢ is the feature mapping corresponding to the kernahd K is the corresponding

kernel matrix for the sampl8. The following result bounds the Rademacher complexity
of linear function classes.

Theorem 2. [2] If k : X x X — Ris a kernel, andS = {x1,--- ,x¢} is a sample of
point from X, then the empirical Rademacher complexity efclass? 5 satisfies

¢
Re(F) < %, e (5, 1) = %\/tr &) )
=1

4.1 Analysing SVM-2K

(6)

For SVM-2K, the two feature sets from the same 0bject$@ae(xi))f:1 and(¢p (xi))le
respectively. We assume the notation and optimisation d#1X given in section 2,
equation (1).

First observe that an application of Theorem 1 shows that

Es(|fa(z) = fe(@)]] < Es[|(Wa,¢a(2)) +ba — (Wg, ép(w)) - bpl]

In(2/4) _.D
20
with probability atleast — 4. We have assumed thia 4 |2+ < C? and|wg|?+b% <

C? for some prefixed”. Hence, the class of functions we are considering when apply
SVM-2K to this problem can be restricted to

4
1 2C
< ety ;:1 n; + 7\/tr(KA) +tr(Kp) +3

¢
Fep = {f’f cx— 0.5 (Z (9K a (xi,2) + g7 K (xi,2)] +ba +bB> ;

i=1

GV K agh B < O gP K pg® + B < O, Es[|fa(a) — fula)]] < D} ©)



The classF¢,p is clearly closed under negation.

Applying the usual Rademacher techniques for margin boandgeneralisation we obtain
the following result.

Theorem 3. Fix § € (0,1) and letF¢ p be the class of functions described above. Let

(xi)le be drawn independently according to a probability disttibn D. Then with prob-
ability at leastl — ¢ over random draws of samples of siz@veryf € F¢ p satisfies

¢
Play)~p(sign(f(z)) # y) < 05 Z(QA +&8)+ Ry(Fop) +3 1n(22€/6)'

=1
It therefore remains to compute the empirical Rademacheptexity of ¢ p, which
is the critical discriminator between the bounds for thevittial SVMs and that of the
SVM-2K.
4.2 Empirical Rademacher complexity ofF¢ p
We now define an auxiliary function of two weight vectevs, andw g,
D(wa,wp) :=Ep[[(Wa,¢a(z)) +ba — (Wp, dp(z)) — bp]]
With this notation we can consider computing the Rademacbmplexity of the class
Fe.p.
¢

% Z 0 [((Wa, 04 (X)) +ba+ (Wp, dp (%)) + b5]
i—1

9 1
Z Z oif (Xz)

i=1

Rz (FC,D) = Eg [ sup
feFe,p

=E, sup
[[wall<C
lwell<C
D(wa,wp)<D

(10)

Our next observation follows from a reversed version of theibRademacher complexity
theorem reworked to reverse the roles of the empirical arelékpectations:

Theorem 4. Fix 6 € (0,1) and letF be a class of functions mapping frofhto [0, 1].

Let (xi)le be drawn independently according to a probability disttibn D. Then with
probability at leastl — § over random draws of samples of sizeveryf € F satisfies

Es [f ()] < Ep [f (2)] + Re (F) + 3¢/ 22

< Ep [f (2)] + Re (F) + 3¢/ 22

The proof tracks that of Theorem 1 but is omitted through lafcépace.

For weight vectorsv 4 andw  satisfyingD (w4, wg) < D, an application of Theorem 4
shows that with probability at least— 6 we have

(11)

D(wa,wp) = Es[[(wa,da(x)) +ba — (Wg,¢5(z)) — bsl]
In(2/4)
20

2C
< D—f—T\/tr(KA)—i—tr(KB)—i—?)

14
S it S V) (K ) + 6 o) . p
=1

<
< e+ 50



We now return to bounding the Rademacher complexitfefp. The above result shows
that with probability greater thah— §

Ry (Fop) <E, sup
[[wal<C
lwe|<C

f)(wA,wB)gf)

J4
‘1 Y oil{wa, a (x))) +ba+ (Wp,ép (xi)) + bs]
i=1

¢ ‘ ‘
1

= E, g <WA,ZUi¢A (Xz‘)> + <WB, > oidn (Xi)> +(ba+bp)> o
wall<C Pl P i=1
well<C

f)(wA,wB)gf)

First note that the expression in square brackets is coratedtunder the uniform distribu-
tion of Rademacher variables. Hence, we can estimate thplegity for a fixed instantia-
tion & of the the Rademacher variablesWe now must find the value ¢f 4 andw g that
maximises the expression

¢ ¢ ¢ ¢
KWAa Z@'QM (Xi)> +ba Zﬁi + <WB, Z 0B (Xi)> +bp Z&i]
=1 =1 =1

i=1

1

14

1,. R »
6'Kag™* +6'Kpg® + (ba + bp)d'j|

subject to the constraintg" K 4g4 < C?, %' Kpg® < C?, and
1 .
Zj’abs(KAaA — Kpap + (ba —bB)j) <D

wherej is the all ones vector anibs(u) is the vector obtained by applying thbs function

to u component-wise. The resulting value of the objective fiamcts the estimate of the
Rademacher complexity. This is the optimisation solvedhéntirief experiments described
below.

4.3 Experiments with Rademacher complexity

We computed the Rademacher complexity for the problemsaeresl in the experimental
section above. We wished to verify that the Rademacher caxitplof the spaceF¢ p,
whereC and D are determined by applying the SVM-2K, are indeed signitigdower
than that obtained for the SVMs in each space individually.

Motorbike Bicycle People Car

SVM 1 94.05 91.58 91.58 87.95

Rad 1 2.78 2.44 2.46 2.29

SVM 2 91.15 91.15 90.57 86.21

Rad 2 5.65 5.48 1.78 3.34

SVM 2K 94.34 93.47 92.74 90.13
Rad 2K | 0.25+0.18 | 0.84£0.71 | 0.53 £0.38 | 0.37 £0.27

Table 2: Results for 4 datasets showing test accuracy anelRacher complexity (Rad) of
the individual SVMs and SVM-2K.

Table 2 shows the results for the motorbike, bicycle, peaplé car datasets. We show
the Rademacher complexities for the individual SVMs andtlfier SVM-2K along with



the generalisation results already given in Table 1. In #eeof SVM-2K we sampled
the Rademacher variables 10 times and give the corresppstdindard deviation. As pre-
dicted the Rademacher complexity is significantly smabeSVM-2K, hence confirming

the intuition that led to the introduction of the approacimely that the complexity of the
class is reduced by restricting the weight vectors to alignthe training data. Provided
both representations contain the necessary data we cafidteeexpect an improvementin
generalisation as observed in the reported experiments.

5 Conclusions

With the plethora of data now being collected in a wide ranfgféetds there is frequently
the luxury of having two views of the same phenomenon. Thelkkgt example is paired
corpora of documents in different languages, but equallcarethink of examples from
bioinformatics, machine vision, etc. Frequently it is ateasonable to assume that both
views contain all of the relevant information required farlassification task.

We have demonstrated that in such cases it can be possil#averlthe correlation be-
tween the two views to improve classification accuracy. Tias been demonstrated in
experiments with a machine vision task. Furthermore, weshandertaken a theoretical
analysis to illuminate the source and extent of the advantiagt can be obtained, show-
ing in the cases considered a significant reduction in theeRagher complexity of the
corresponding function classes.

References

[1] Francis R. Bach and Michael I. Jordan. Kernel indepehdemponent analysislour-
nal of Machine Learning ResearcB:1-48, 2002.

[2] P. L. Bartlett and S. Mendelson. Rademacher and Gaussiaplexities: risk bounds
and structural resultslournal of Machine Learning Resear31463—-482, 2002.

[3] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categaidn with bags of keypoints.
In XRCE Research Reports, XEROXe 8th European Conference on Computer Vi-
sion - ECCV, Prague, 2004.

[4] R. Fergus, P. Perona, and A. Zisserman. Object clasgnition by unsupervised
scale-invariant learning. IRroceedings of the IEEE Conference on Computer Vision
and Pattern Recognitiqr2003.

[5] David Hardoon, Sandor Szedmak, and John Shawe-Tayégrofical correlation anal-
ysis: An overview with application to learning methods.appear in Neural Compu-
tation, 2004.

[6] Yaoyong Li and John Shawe-Taylor. Using kcca for jap@&resglish cross-language
information retrieval and classificatioto appear in Journal of Intelligent Information
Systems

[7]1 S. Mika, B. Scholkopf, A. Smola, K.-R. Muller, M. Schmland G. Ratsch. Kernel
PCA and de-noising in feature spacesAldvances in Neural Information Processing
Systems 1,11998.

[8] R. Rosipal and L. J. Trejo. Kernel partial least squaeggession in reproducing kernel
hilbert spaceJournal of Machine Learning Researc197-123, 2001.

[9] J. Shawe-Taylor and N. CristianinKernel Methods for Pattern Analysi€ambridge
University Press, Cambridge, UK, 2004.



