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Received: date / Accepted: date

Abstract In order to test systems that have physically
distributed interfaces, called ports, we might use a dis-

tributed approach in which there is a separate tester at

each port. If the testers do not synchronise during test-

ing then we cannot always determine the relative order

of events observed at different ports and this leads to
new notions of correctness that have been described us-

ing corresponding implementation relations. We study

the situation in which each tester has a local clock and

timestamps its observations. If we know nothing about
how the local clocks relate then this does not affect the

implementation relation while if the local clocks agree

exactly then we can reconstruct the sequence of obser-

vations made. In practice, however, we are likely to be

between these extremes: the local clocks will not agree
exactly but we have some information regarding how

they can differ. We start by assuming that a local tester

interacts synchronously with the corresponding port

of the system under test and then extend this to the
case where communications can be asynchronous, con-

sidering both the first-in-first-out (FIFO) case and the
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non-FIFO case. The new implementation relations are
stronger than implementation relations for distributed

testing that do not use timestamps but still reflect the

distributed nature of observations. This paper explores

these alternatives and derives corresponding implemen-

tation relations.

Keywords Model based testing · distributed systems ·
timed systems

1 Introduction

Complex computer systems often consist of many parts

and components that interact to produce the desired
result. These systems communicate with their environ-

ment at physically distributed ports. Examples of such

systems include communications protocols, web-services,

cloud systems and wireless sensor networks. Users per-

ceive these systems as black-boxes and user require-
ments are thus expressed at this level: users are not

interested in the internal structure of a system, only

in whether it delivers the services they require. Due

to the complexity of these systems, it is very difficult
to ensure that they are correct, that is, that their be-

haviour is consistent with what the designers had in

mind before the system was created. Therefore, it is of

the utmost importance to use sound engineering tech-

niques in order to analyse the developed systems. In
this line, testing [33,1] is the most widely used method

to increase confidence regarding the correctness of soft-

ware systems. Testing has traditionally been a manual

activity. This characteristic strongly increases the cost
of complex software systems, where testing might take

up to 50% of the project budget [33]. As a result, there

has been increasing interest in the development of tech-
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Fig. 1 Test Architecture.

niques to automate, as much as possible, the different

testing activities.

One important approach to automation of testing

is to use formal testing methods [13,30,18,17]. Formal
testing methods are a type of model based testing (MBT)

in which automation is based on a model of the required

behaviour of the system under test (SUT) or some as-

pect of this required behaviour. Given such a model
M there is the potential to automatically generate test

cases fromM , useM to direct testing, and to check that

the behaviour observed in testing is consistent with M .

Most MBT work focusses on testing from a finite state

machine (FSM) [32,14,35] or an input output transition
system (IOTS) [39,40]. While testers will often want to

use richer modelling languages, MBT tools normally

translate a model into either an FSM or an IOTS and

use the resultant model [11,15]. In addition to the au-
tomation of the testing process [42], MBT techniques

were found to be significantly more cost effective than

manual testing in a recent industrial study involving

hundreds of testers [15]. In the context of the integra-

tion of formal methods and testing it is important to
define suitable implementation relations, that is, for-

mal ways to express what it means for a system to be

correct with respect to a specification. Currently, the

standard implementation relation for testing from an
IOTS is ioco [40], a well-established framework where

the SUT is correct with respect to a specification if

for every sequence of actions σ that both the SUT and

the specification can produce, we have that the outputs

that the SUT can show after performing σ are a subset
of those that the specification can show.

In order to test systems with distributed ports we

place a tester at each port and we are then using a dis-

tributed test architecture [24] (see Figure 1 for a graph-

ical representation of this architecture). The use of a

distributed test architecture can have a significant im-

pact on testing and this topic has received much atten-

tion [37,10,5,31,38,41,23]. Much of this work has con-

cerned controllability problems, where the observations
of the tester at a port p are not sufficient for it to know

when to supply an input. There has also been interest in

observability problems, where it is impossible to recon-

struct the order in which events were produced at differ-
ent ports. A different line of work involves providing im-

plementation relations that appropriately capture the

special characteristics of the distributed test architec-

ture. The underlying assumption in dioco [19–21], an

extension of ioco to the distributed setting, is that
we cannot compare global traces, obtained at different

ports, by using equality. The idea is that if a trace is a

reordering of another one where the order of events at

each port has been preserved, then these two traces are
indistinguishable in a distributed framework and there-

fore must be considered equivalent. The dioco frame-

work reflects the situation in which separate agents in-

teract with the SUT, these agents record their observa-

tions but we cannot know the causalities between events
observed by different agents. However, sometimes we

wish to use a framework where it is possible to estab-

lish information regarding causalities between events

observed at different ports through the testers at these
ports exchanging messages [6,36]. In particular, if the

testers can exchange synchronisation messages with an

external agent then it is possible to use such messages

to establish the exact order in which events occurred

[25]. However, the assumption that the testers can syn-
chronise (effectively, message exchange takes no time)

does not seem appropriate if the testers are physically

distributed. It is know that it is sometimes possible

to overcome controllability and observability problems
through the exchange of coordination messages between

testers [8,38,6]. Almost all work in this area concerns

testing from a deterministic finite state machine and it

is assumed both that the input/output pair produced

by a transition is atomic and that after an input/output
pair the SUT waits until it receives the next input.

When these assumptions hold it is possible to fully syn-

chronise testing through the testers exchanging coordi-

nation messages. However, when these assumptions do
not hold it may not be possible to synchronise testing

since the exchange of coordination messages introduces

delays that may not be compatible with test cases. In-

terestingly, it has also been suggested that the over-

heads introduced by the exchange of coordination mes-
sages means that approaches that use such messages

do not scale to testing large-scale distributed systems

and this has motivated work that aims to structure an
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architecture in order to reduce the number of messages

required [9].

This paper considers an alternative perspective to

providing additional information regarding the causal-

ity between actions performed at different ports. We
use time information: if we label actions with times-

tamps that give the time when they were observed then

we can obtain additional information regarding the or-

der in which they occurred. We can consider two pos-
sibilities to include time information in the distributed

test architecture. The first one assumes the existence

of a global clock. However, typically there will not be

a global clock and instead each tester has a local clock.

If we know nothing about how these clocks relate then
timestamps provide no additional information regard-

ing causality. However, in practice we are likely to have

some information regarding the potential differences in

the times given by the local clocks. This paper inves-
tigates different assumptions regarding how the local

clocks relate and the corresponding implementation re-

lations. Initially we assume that the communication be-

tween the testers and the SUT is synchronous but we

then weaken this to consider the case where the commu-
nication between the SUT and the testers can introduce

a (bounded) delay. Despite the added complexity of the

asynchronous approaches, these new frameworks are

better suited to appropriately reflect the nature of cur-
rent distributed systems. These systems usually com-

municate through different channels, that can transmit

information at different speeds, so that an action that

was produced before another one can actually be ob-

served after the occurrence of the latter. We would like
to note that, in general, timestamps are less powerful

than coordination messages to reconstruct the original

order in which actions where performed. However, they

are an effective solution when it is not feasible to use
these messages.

The use of timestamps to decorate actions is not

new in formal testing, in particular, in order to gener-

ate tests in asynchronous systems [26,27]. In contrast

with our work, these approaches do not consider that
time information might not precisely reflect reality. Lo-

cal clocks can be used to timestamp actions observed in

a distributed system in order to determine information

regarding the order in which actions are performed [28]

and the problems concerning the synchronisation of dif-
ferent clocks have also been studied [29]. Moreover, it

has been shown that the use of timestamps has limi-

tations since not all the causality relations can be cap-

tured [12]. Our approach is related to the previously
mentioned work on ordering of events in distributed sys-

tems. In particular, we consider both situations where

the clocks allow us to determine the order between dif-

ferent events (a kind of clock condition [28]) and where

this does not happen.

This paper extends our previous work [22]. In addi-

tion to providing more detailed explanations regarding

the main concepts, the paper includes several new con-

tributions. All the material concerning asynchronous
communications is new and did not appear before. In

fact, the new implementation relations presented in this

paper for asynchronous communication are a contribu-

tion to the field of the formal testing of distributed sys-

tems, even in the absence of time information. We have
included many results to compare the different imple-

mentation relations. Proofs that were omitted due to

space limitations are now included in this paper. We

have added a running example that helps to clarify the
differences between the implementation relations pre-

sented in the paper. Finally, we have included a glos-

sary (see Figures 2 and 3) where, in particular, all the

implementation relations presented in the paper are in-

formally described.

The rest of the paper is structured as follows. Sec-
tion 2 provides preliminary material. In Section 3 we

review previous work on untimed relations in the dis-

tributed architecture that will be the basis for the sub-

sequent relations. Sections 4 and 5 define implementa-

tion relations that correspond to different assumptions
regarding how the clocks relate. In Sections 4 and 5

we assume that communications are synchronous and

in Sections 6 and 7 this assumption is modified to con-

sider a framework where communication between the
different entities is asynchronous. In Section 8 we briefly

explain why the oracle problem is NP-complete in our

setting. Finally, in Section 9 we present our conclusions

and some lines for future work.

2 Preliminaries

In the following two sections we present the main con-

cepts that we use to define the implementation relations

that we study in this paper. In this section we define

input output transition systems, how timestamps can

be used to annotate actions performed by systems and
how sequences of pairs (action, timestamp) can be used

to define partially ordered sets. This later construction

will simplify some of the definitions that we present in

the paper.

2.1 Basic notation

Given a set A, we let A∗ denote the set of finite se-

quences of elements of A; ǫ ∈ A∗ denotes the empty

sequence. Given a sequence σ ∈ A∗, we have that |σ|
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Processes, actions and traces

Concept Explanation

IOTS
Def. 1

Input Output Transition System. Labelled transition systems with a distinction between input actions (preceded
by ? and grouped in a set I), output actions (preceded by ! and grouped in a set O), an internal action (denoted
by τ) and an action to denote quiescence (denoted by δ). The set of visible actions, denoted by Act, is equal to
I ∪O ∪ {δ}. Inputs and actions are usually labelled with a number denoting the port where they are performed.

trace
Def. 2

Sequence of visible actions that a process can perform.

timed
trace
Def. 4

Sequence of pairs (visible action, time) denoting the actions performed by a process and the time when these
actions were (locally) observed.

Orders between events

Concept Explanation

eσ Def. 5 For all 1 ≤ i ≤ |σ|, eσ(i) returns the occurrence of the symbol appearing in the position i of σ together with
the number of occurrences of the symbol so far in the trace. For example, ea1b2a1a1c2a1

(4) = (a1, 3).
e(σ) Def. 5 Set of values generated by eσ. For example, e(a1b2a1a1c2a1) = {(a1, 1), (b2, 1), (a1, 2), (a1, 3), (c2, 1), (a1, 4)}.
<σ Def. 6 Two events eσ(i) and eσ(j) are related if they occur at the same port and i < j. For example, if σ =

a1b2a1a1c2a1, then eσ(2) <σ eσ(5), eσ(6) ≮σ eσ(4), eσ(2) ≮σ eσ(3).
L(e(σ), <σ)
Def. 6

Linearisations. Permutations of the elements of e(σ) consistent with <σ . For example, if σ = a1b2a1a1c2a1,
then (b2, 1)(c2, 1)(a1, 1)(a1, 2)(a1, 3)(a1 , 4) belongs to L(e(σ), <σ) while (a1, 2)(a1, 1)(b2, 1)(a1, 3)(c2, 1)(a1, 4)
does not belong to L(e(σ), <σ).

Main relations between traces

Concept Explanation

∼
Def. 3

Relation to compare traces in a synchronous framework. Two traces are related if all their local projections are
equal. For example, !o1!o2?i1?i2 ∼!o2?i2!o1?i1.

⊑
Def. 11

Relation to compare traces in an asynchronous FIFO framework. Intuitively, outputs in each port can be delayed,
in other words, overtaken by inputs, but the order between outputs must be kept. For example, ?i1!o1!o′1?i2!o2 ⊑
!o1!o2!o′1?i1?i2 but !o2!o′1!o1?i1?i2 6⊑!o1!o2!o′1?i1?i2 and !o2!o′1!o1?i1?i2 6⊑!o2!o′1?i1!o1?i2.

⊑N

Def. 13
Relation to compare traces in an asynchronous non-FIFO framework. This differs from ⊑ because input or
output can overtake one another in each port. For example, ?i1!o1!o′1?i2!o2 ⊑N !o1!o2!o′1?i1?i2, ?i1!o1!o

′

1
?i2!o2 ⊑N

?i1!o′1!o1?i2!o2.

Fig. 2 Glossary of concepts (1/2).

denotes its length and σr ∈ A, with 1 ≤ r ≤ |σ|, de-
notes the rth element of σ. Given a sequence σ ∈ A∗

and a ∈ A, we have that σa denotes the sequence σ
followed by a and aσ denotes the sequence σ preceded

by a.

Throughout this paper we let I be the set of in-

puts and O the set of outputs. We also let Ports =

{1, . . . ,m} be the set of the names of the ports and

assume that the sets I and O are partitioned into sets
I1, . . . , Im and O1, . . . , Om such that for all p ∈ Ports,
Ip and Op are the sets of inputs and outputs at port p,

respectively. We assume that I1, . . . Im, O1, . . . , Om are

pairwise disjoint. In order to distinguish between input

and output we usually precede the name of an input
by ? and precede the name of an output by !. In ad-

dition, we will often decorate actions with a subindex

indicating the port at which the action occurs. For ex-

ample, !o1 indicates an output at port 1. This notation
should not be confused with the one used for sequences

of actions: in this case, a subindex denotes, as expected,

the position of the action in the sequence.

2.2 Input output transition systems

An input output transition system is a labelled transi-
tion system in which we distinguish between input and

output. We use this formalism to define processes.

Definition 1 An input output transition system (IOTS)

is defined by a tuple s = (Q, I,O, T, qin) in which Q is a
countable set of states, qin ∈ Q is the initial state, I is a

countable set of inputs, O is a countable set of outputs,

and T ⊆ Q×(I∪O∪{τ})×Q, where τ represents an in-

ternal (unobservable) action, is the transition relation.

A transition (q, a, q′) ∈ T , also denoted by q a−−→ q′,
means that from state q it is possible to move to state

q′ with action a ∈ I ∪O ∪ {τ}.

We say that a state q ∈ Q is quiescent if from q it

is not possible to take a transition whose action is an

output or τ without first receiving an input. We extend

T to Tδ by adding transition (q, δ, q) for each quiescent
state q. We say that s is input-enabled if for all q ∈ Q

and ?i ∈ I there is some q′ ∈ Q such that (q, ?i, q′) ∈ T .

We say that a system s is output divergent if it can
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Implementation relations: untimed and synchronous communication

Concept Explanation

r ioco s Def. 8 Standard implementation relation in the non-distributed architecture [40]. An implementation r should
not show behaviours that were not planned in a specification s.

r pdioco s
Def. 9

Simple implementation relation in the distributed architecture [21]. For each port, an implementation r
should not show behaviours that are not planned in a specification s. Information obtained at different
ports is not combined.

r dioco s
Def. 10

Main implementation relation in the distributed architecture [21]. An implementation r should not show
behaviours that are not planned in a specification s, with the exception of the order between events
performed at different ports.

r tdioco(T ) s
Def. 15

We assume a global clock. First, we ask for r dioco s. In addition, the information contained in the set
of timed traces T is checked to ensure that the order between events at different ports is correct.

r tdiocoα(T ) s
Def. 17

Similar to tdioco(T ) but assuming that there is a local clock for each port and that local clocks can
differ in at most α time units.

r tdiocoα,β(T ) s
Def. 20

Refinement of tdiocoα(T ) assuming that the difference between clocks can grow but the growth is
bounded by β.

r tdiocoh(T ) s
Def. 20

Refinement of tdiocoα(T ) assuming that the difference between clocks is bounded by the function h.

Implementation relations: asynchronous communication

Concept Explanation

r diocoF s Def. 12 Adaption of dioco to deal with asynchronous FIFO communications.
r tdiocoF (T ) s, r tdiocoF

α (T ) s,
r tdiocoF

α,β(T ) s, r tdiocoF
h (T ) s

Def. 26

Adaption of the different variants of tdioco(T ) to deal with asynchronous FIFO
communications.

r diocoN s Def. 14 Adaption of dioco to deal with asynchronous non-FIFO communications.
r tdiocoN (T ) s, r tdiocoN

α (T ) s,
r tdiocoN

α,β(T ) s, r tdiocoN
h (T ) s

Def. 30

Adaption of the different variants of tdioco(T ) to deal with asynchronous non-FIFO
communications.

Fig. 3 Glossary of concepts (2/2).

reach a state from which there is an infinite path that
contains only outputs and internal actions.

We let Act denote the set of observable actions, that
is,Act = I∪O∪{δ}. Given port p ∈ Ports,Actp denotes

the set of observations that can be made at p, that is,

Actp = Ip ∪Op ∪ {δ}.

We let IOTS(I, O,Ports) denote the set of IOTSs

with input set I, output set O and port set Ports. ⊓⊔

A process can be identified with its initial state and

we can define a process corresponding to a state q of s

by making q the initial state. Thus, we use states and

processes and their notation interchangeably. An IOTS

can be represented by a diagram in which nodes repre-

sent states of the IOTS and transitions are represented

by arcs between the nodes.

In this paper, whenever we compare two IOTSs we

will assume that they have the same set of ports and the

same set of actions Actp for all p ∈ Ports. Moreover,
as usual, we assume that implementations are input-

enabled.1 We also consider that specifications are input-

enabled since this assumption simplifies the analysis.

1 If an input cannot be applied in some state of the SUT,
then we can assume that there is a response to the input that
reports that this input is blocked.

However, it is possible to remove this restriction in our
framework [21].

A trace is a sequence of observable actions that

can be performed, possibly interspersed with τ actions,

from the initial state of a process. Since traces are com-

posed of observable actions, they cannot contain oc-

currences of τ . In contrast, quiescence can appear in
traces.

Definition 2 Let s = (Q, I,O, T, qin) be an IOTS. We
use the following notation.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write
q a−−→ q′.

2. We write q
ǫ

==⇒ q′ if there exist q0, . . . , qk ∈ Q, for

k ≥ 0, such that q = q0, q
′ = qk, and we have the

following transitions q0
τ−−→ q1, . . . , qk−1

τ−−→ qk.
3. We write q

a
==⇒ q′, for a ∈ Act, if there exist q0, q

′

0 ∈
Q such that we have the following: q

ǫ
==⇒ q0, q0

a−−→
q′0, q

′

0
ǫ

==⇒ q′.

4. Let σ = a1 . . . ak ∈ Act∗ be a finite trace. We write

q
σ

==⇒ q′ if there exist q0, . . . , qk ∈ Q such that
q = q0, q

′ = qk and for all 1 ≤ i ≤ k we have that

qi−1
ai

==⇒ qi.

5. We write q
σ

==⇒ if there exists q′ ∈ Q such that

q
σ

==⇒ q′.
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6. We write s
σ

==⇒ if qin
σ

==⇒ and we say that σ is a

trace of s. We let T r(s) denote the set of traces of

s.

7. σ ∈ T r(s) is a quiescent trace of s if σδ ∈ T r(s).

⊓⊔

Note that for every state q we have q
ǫ

==⇒ q holds.

Therefore, ǫ ∈ T r(s) for every process s.

In distributed testing, quiescent states can be used
to combine the traces observed at each port and reach a

verdict. This is because we assume that quiescence can

be observed and, in addition, the testers can choose to

stop testing in a quiescent state. The use of distributed

testers also leads to the requirement for us to compare
the set of local observations made with the global traces

from the specification; if we make observations in non-

quiescent states then we cannot know that the observed

local traces are all projections of the same global trace
of the SUT and we can then appear to be able to distin-

guish processes that are observationally equivalent. For

example, consider the processes r and s such that r can

do !o1!o2 and then can only receive input (!o1 and !o2
are at different ports) and s can do !o2!o1 and then can
only receive input. We have that r can do !o1 while s

cannot. Therefore, if we use non-quiescent traces when

comparing these processes then we conclude that they

are not equivalent. However, in a distributed environ-
ment we have that !o1!o2 and !o2!o1 are equivalent since

in each case the tester at port 1 will observe !o1 and the

tester at port 2 will observe output !o2. Thus, we can-

not distinguish between these two processes if we do

not have additional information (e.g. a timestamp indi-
cating which action was performed first). Note that if

a process is output-divergent then it can go through

an infinite sequence of non-quiescent states, so that

local traces cannot be combined. In addition, output-
divergence is similar to a livelock and will generally be

undesirable. We therefore restrict attention to processes

that are not output divergent2.

We introduce a system that will be used, as a run-

ning example, along the paper to illustrate the main
concepts and the differences between implementation

relations.

Example 1 The specification depicted in Figure 4 rep-

resents a simplified version of the user behaviour in a

collaborative editor that allows multiple users to view

and edit a shared document simultaneously3. When a

user requests to open a document for editing, the server

2 It is possible to remove this restriction by considering
infinite traces rather than quiescent traces [21] but this com-
plicates the exposition.
3 In the graphical representation we have omitted irrel-

evant input transitions. For each state q and input ?i ∈

?save2

!edit2

?open2 !edit2

?save2

!edit2

?open2 !edit2

?open2 !edit2

?save1!edit1

?open1

!edit1

?save1!edit1

?open1

!edit1

?open1

!edit1

?save1

!update2
!edit2

!edit1

?save2 !update1

!edit1

!edit2

Fig. 4 Running example: collaborative Editor.

returns the corresponding file. Then, the user will have

access to change, add, and delete content. Each time a

user saves the changes made in the document, the rest

of the users, working on the same file, receive a message

and their versions are updated with the modifications.
We will use this system as a running example to illus-

trate some of the concepts that we will introduce in the

paper.

The system presents as many different ports as users

accessing the document. All of them are connected to
the central server where the last valid version of the

document is stored. We denote by EDShared the speci-

fication of the collaborative editor. For the sake of clar-

ity, we will consider only two users. ⊓⊔

Previous implementation relations, devised for dis-

tributed testing, are based on an equivalence relation

∼ on traces. Essentially, the relation ∼ reflects the fact

that in distributed testing each tester observes only the

events at its port and this corresponds to a projection
of the global trace that occurred.

Definition 3 Let p ∈ Ports and σ ∈ Act∗ be a se-

quence of visible actions. We let πp(σ) denote the pro-

jection of σ onto port p and πp(σ) is called a local trace.

Formally,

πp(σ) =







ǫ if σ = ǫ

aπp(σ
′) if σ = aσ′ ∧ a ∈ Actp

πp(σ
′) if σ = aσ′ ∧ a ∈ Act \ Actp

Given σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ can-
not be distinguished when making local observations,

{?open1, ?open2, ?save1, ?save2}, if there does not exist an
outgoing transition from q labelled by ?i then we assume the
existence of the transition (q, ?i, q).
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!o2

!o1

?i1

!o1

?i1

?i1

δ

?i1

δ, ?i1

!o1

!o2

?i1

!o1

?i1

?i1

δ

?i1

δ, ?i1

!o2

!o1

?i1

!o1

!o1

?i1

?i1

δ, ?i1

δ, ?i1

Fig. 5 r (left) and s (right); we cannot distinguish r from s
without quiescence.

that is, for all p ∈ Ports we have that πp(σ) = πp(σ
′).
⊓⊔

2.3 Adding timestamps

We assume that there is a local clock at each port and

that an event at port p is timestamped with the current
time of the local clock at p. Therefore, timed traces

collected from the SUT are sequences of inputs and

outputs annotated with the local time at which events

were observed.We assume that actions need a minimum

amount of time to be performed (this is a reasonable
assumption since we can always consider a clock cycle

as this bound) and therefore it is not possible to have

Zeno processes. As a consequence of this assumption,

if two events are produced at the same port, then one
has to be produced first and, therefore, we cannot have

two events in the same port timestamped with the same

value.

It is clear how a tester can timestamp inputs and
outputs. In contrast, quiescence is typically observed

through timeouts: the system is deemed to be quiescent

if it fails to produce output for a given period of time.

As a result, quiescence is not observed at a particular

time. In our previous work [22] we therefore did not
include quiescence in timed traces. However, consider

the following example shown in Figure 5 in which there

are two ports and one input.

If we do not include the observation of quiescence in
a timed trace then the addition of timestamps cannot

help us to distinguish r from s since !o2!o1?i1!o1 is a

trace of s. However, !o2!o1δ?i1!o1 is not a trace of s and

so timed traces that include quiescence can be used to
distinguish r from s. Since the inclusion of quiescence

in timed traces has the potential to lead to stronger

implementation relations, we allow this. While the ob-

servation of quiescence does not happen at a particular

time, in practice quiescence is observed using timeouts:

the SUT failing to produce output before the timeout

is seen as indicating that the SUT is quiescent. Natu-

rally, the actual time used in the timeouts depends on
properties of the SUT but we assume that it is chosen

to be long enough for the local testers to know that the

system is quiescent. While the local testers might give

different local times to an occurrence of quiescence, we
assume that a single time can be used in a timed trace.

An alternative would be to include δ without a time

in timed traces; this would not change the results but

would make some of our definitions more complicated

since we would have to include additional cases. Note
that, it is straightforward to adapt the definitions and

results in this paper to the situation in which we do not

include quiescence in timed traces.

Definition 4 We consider that the time domain in-

cludes all non-negative real numbers, that is, Time =

IR+. Given (a, t) ∈ Act×Time we have that act(a, t) =

a and time(a, t) = t. Let σ ∈ (Act × Time)∗ be a
sequence of (observable action, time) pairs. Then, we

let untime(σ) denote the trace produced from σ by re-

moving the timestamps associated with actions. For-

mally,

untime(σ) =

{

ǫ if σ = ǫ

a untime(σ′) if σ = (a, t)σ′

Let s ∈ IOTS(I, O,Ports). A timed trace of s is a

sequence σ ∈ (Act×Time)∗ such that there exists σ′ ∈
T r(s) such that σ′ ∼ untime(σ), and for all p ∈ Ports
and j1, j2 such that act(σj1 ), act(σj2) ∈ Ip ∪ Op and

j1 < j2 we have time(σj1) < time(σj2 ). A timed trace

σ is a quiescent timed trace of a process s if σ(δ, t) is a

timed trace of s for some time t.

Let σ be a timed trace of s. We let πp(σ) denote
the projection of σ onto port p and πp(σ) is called a

timed local trace (the formal definition of πp is similar

to the one given in Definition 3 for untimed traces and

we therefore omit it). ⊓⊔

We use σ both to denote timed and untimed traces:

when we use σ we will state what type of sequence
it represents unless this is clear from the context. We

only require that timed traces can be produced by the

system, that is, its untimed version is observationally

equivalent to a trace of the system, and that actions
at a port are sorted according to the available time

information. Note that the timestamps define the exact

order in which actions were produced at a given port.
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2.4 Traces and event sets

A (timed or untimed) global trace defines a set of events

that can be observed. The idea is that we will use infor-

mation regarding timestamps to impose a partial order

on the set of observed events and we therefore reason

about partially ordered sets (posets). We first consider
untimed traces, before generalising the definitions to

timed traces. Since we wish to use a set of events we

need a notation to distinguish between two events with

the same action and we achieve this through defining
a function e from untimed traces to sets of events. We

will compare traces that are equivalent under ∼ and

so we want a representation under which corresponding

events for traces σ ∼ σ′ have the same names; this will

mean that we do not have to rename events when com-
paring traces. We achieve this by adding a label to each

event, with the label for event a, preceded by σ′, being

k if this is the kth instance of a in σ′a.

Definition 5 Let σ = a1 . . . an ∈ Act∗ be an untimed
trace. We define eσ : IN −→ Act × IN as eσ(i) = (ai, k)

(1 ≤ i ≤ n) if there are exactly k − 1 occurrences of

ai in a1 . . . ai−1. In other words, this says that the ith

element of σ is the kth instance of ai in σ. Then we let
e(σ) = {eσ(1), . . . , eσ(n)}. ⊓⊔

Example 2 Consider that we observe the following (qui-

escent) untimed trace

σ =?open1?open2!edit2!edit1?save2!update1!edit1!edit2

?save2!update1!edit1!edit2?save1!update2!edit2!edit1

?save2!update1!edit1!edit2

For example, the second occurrence of ?save2 in σ

is represented by the event eσ(9) = (?save2, 2) and the

event set associated with σ is

e(σ) =







































(?open1, 1), (?open2, 1), (!edit2, 1),

(!edit1, 1), (?save2, 1), (!update1, 1),

(!edit1, 2), (!edit2, 2), (?save2, 2),
(!update1, 2), (!edit1, 3), (!edit2, 3),

(?save1, 1), (!update2, 1), (!edit2, 4),

(!edit1, 4), (?save2, 3), (!update1, 3),

(!edit1, 5), (!edit2, 5)







































⊓⊔

The tester at port p observes a projection of a global

trace σ and so can place a total order on the events

at p. We can combine these orders to obtain a partial

order <σ.

Definition 6 Let σ = a1 . . . an ∈ Act∗ be an untimed

trace. We define the partial order <σ by: given 1 ≤

i, j ≤ n we have that eσ(i) <σ eσ(j) if and only if i < j

and there exists a port p such that ai, aj ∈ Actp.

Given a partially ordered set (E,<), where E =

{e1, . . . , en}, we let L(E,<) denote the set of linearisa-

tions of (E,<), that is, the set of sequences eρ(1) . . . eρ(n)
that are permutations of e1 . . . en and that are consis-

tent with <: if ei < ej then this ordering is preserved

by the permutation (ρ−1(i) < ρ−1(j)).

In a slight abuse of notation, given σ, σ′ ∈ Act∗,
with σ′ = a1 . . . an, we say that σ′ ∈ L(e(σ), <σ) if

there exists σ′′ ∈ L(e(σ), <σ) and k1, . . . , kn ∈ IN such

that σ′′ = (a1, k1), . . . , (an, kn).

Given a timed trace σ = (a1, t1), . . . , (an, tn), we

let e(σ) denote e(untime(σ)) and <σ denote <untime(σ).
Given 1 ≤ i ≤ n and event e = eσ(i), we let ησ(e) = ti,

that is, the timestamp associated with e. ⊓⊔

Note that (e(σ), <σ) is a partially ordered set; <σ

is irreflexive, transitive and antisymmetric.

Example 3 Consider the following untimed trace: σ =
?open1?open2!edit2!edit1. The set of linearisations of

the partially ordered set (e(σ), <σ) is

L(e(σ), <σ) =































?open1!edit1?open2!edit2,

?open1?open2!edit1!edit2,

?open1?open2!edit2!edit1,

?open2?open1!edit1!edit2,
?open2?open1!edit2!edit1,

?open2!edit2?open1!edit1































For the sake of clarity, we have omitted the occur-

rences of the events because all of the events are labelled
with 1. Note that all the traces included in L(e(σ), <σ)

preserve the order of the events in each port, as it is im-

posed by the partial order <σ. For example, a permu-

tation such as ?open1!edit2?open2!edit1 is not allowed
because it modifies the original order of the events at

port 2. ⊓⊔

We have an interesting property, that will allow us
to simplify several definitions and results, indicating

that we can quantify over all traces equivalent to σ

under ∼ by considering the set L(e(σ), <σ).

Proposition 1 Given σ, σ′ ∈ Act∗, we have that σ ∼
σ′ if and only if L(e(σ), <σ) = L(e(σ′), <σ′).

Proof First assume that σ ∼ σ′. It is clear that e(σ) =
e(σ′) and so it is sufficient to prove that <σ=<σ′ . How-

ever, this must be the case since σ and σ′ have the same

projection at each port and so define the same total or-

der at each port.
Now assume that L(e(σ), <σ) = L(e(σ′), <σ′). It is

sufficient to prove that for each port p we have that

πp(σ) = πp(σ
′). Since L(e(σ), <σ) = L(e(σ′), <σ′) we
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must have that the same sets of events occur at p in

σ and σ′. In addition, we must have that <σ=<σ′ and

so the total orders defined by restricting <σ and <σ′

to the events observed at p must be identical. Thus,

πp(σ) = πp(σ
′) as required.

⊓⊔

3 Implementation relations in the (untimed)

distributed test architecture

In this section we present the different implementation

relations that will be used in this paper as the basis to

construct our implementation relations for distributed
timed systems. While some of these relations have al-

ready appeared in the literature (ioco [40], pdioco and

dioco [21]) the implementation relations diocoF and

diocoN , where we consider that communication can be

asynchronous, are original and introduced in this paper.
While there is work that has investigated MBT through

asynchronous channels [3,7,4,2], this has not explored

distributed testing.

First, we present the standard implementation rela-

tion for testing from an IOTS where information about
different ports is not taken into account: ioco. We ini-

tially give some auxiliary notation.

Definition 7 Let s = (Q, I,O, T, qin) be an IOTS. Let
q ∈ Q be a state and σ ∈ Act∗ be a trace. We introduce

the following concepts.

1. q after σ =

{

{r ∈ Q|q
σ

==⇒ r} if q
σ

==⇒

∅ otherwise

2. out(q) = {o ∈ O ∪ {δ}|q
o

==⇒}

The function out can be extended to deal with sets
in the expected way, that is, given Q′ ⊆ Q we define

out(Q′) = ∪q∈Q′out(q). ⊓⊔

Intuitively, given a trace σ ∈ Act∗, s after σ de-

notes the set of states that can be reached from the

initial state of s and after performing σ; given a state

q, out(q) denotes the set of outputs (including quies-

cence) that can be performed from q, possibly preceded
by the performance of τ actions.

Definition 8 Given r, s ∈ IOTS(I, O,Ports), we write

r ioco s if for every sequence σ ∈ T r(s) we have that
out(r after σ) ⊆ out(s after σ). ⊓⊔

The idea behind the definition of ioco is that the
SUT should not exhibit a behaviour, in terms of the

observed outputs, that was not allowed in the speci-

fication. This implementation relation was adapted to

the distributed test architecture [21] under different as-

sumptions but always keeping in mind the concepts be-

hind the ioco relation.

We start by defining an implementation relation for

the situation in which the agents that will interact with
the ports of the SUT are entirely independent in that

no external agent will receive information, regarding ob-

servations made of the SUT, from more than one such

agent. In such a situation, it is sufficient that each agent
observes a local trace that is consistent with the spec-

ification and this leads to the pdioco implementation

relation.

Definition 9 Given r, s ∈ IOTS(I, O,Ports), we write
r pdioco s if for every (finite) trace σ ∈ T r(r) and for

every port p ∈ Ports there exists some trace σ′ ∈ T r(s)

such that πp(σ) = πp(σ
′). ⊓⊔

Under pdioco the tester at port p compares the lo-
cal trace it observes with the projections of the traces

of the specification. It is therefore possible for the trace

σ′ in Definition 9 to vary: the testers might use different

traces of the specification s. Sometimes, however, there

is the potential for observations made at the different
ports to be combined later. To see the effect of this, con-

sider the situation in which the specification allows the

global traces σ1 =?i1!o1!o2 and σ2 =?i1!o
′

1!o
′

2 and the

SUT produces the trace σ =?i1!o1!o
′

2. Under pdioco
this is acceptable: the local trace observed at port 1 is

equal to π1(σ1) and the local trace observed at port 2

is equal to π2(σ2). However, if we bring together these

local traces then we can deduce that the global trace

produced by the SUT was not one allowed by the speci-
fication. The implementation relation dioco [19–21] al-

lows the set of local traces observed to be compared

with the global traces of the specification.

Definition 10 Given r, s ∈ IOTS(I, O,Ports), we write
r dioco s if and only if for every quiescent trace σδ ∈
T r(r), there exists a trace σ′ ∈ T r(s) such that σ′ ∼ σδ.

⊓⊔

As pointed out in the previous section, the imple-
mentation relation dioco only considers quiescent traces,

that is, traces that reach a quiescent state. The mo-

tivation for this restriction is that it is necessary to

compare sets of local traces with global traces, while

ensuring that the local traces are all projections of the
same (unknown) global trace of the implementation. If

this trace ends in quiescence then it is possible to check

the appropriateness of the projections and, indeed, the

testers might stop testing at this point. It is straight-
forward to prove that for the processes that we consider

in this paper, input-enabled and non output divergent,

r ioco s implies r dioco s but the reverse implication
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?i1

?i2

!o2

?i2

?i1

!o1

?i1

?i1/?i2

?i1/?i2

?i2

?i1/?i2

?i1/?i2

?i1

?i2

!o1

?i2

?i1

!o2

?i1

?i1/?i2

?i1/?i2

?i2

?i1/?i2

?i1/?i2

Fig. 6 r (left) and s (right) are not related under ioco but
are related under dioco.

does not hold. Figure 6 shows two processes r (left) and

s (right) such that r dioco s holds but r ioco s does
not hold.

Even though the implementation relation dioco cap-

tures a general notion of conformance, it is not adequate
if we consider systems where communication is asyn-

chronous. Therefore, it is necessary to adapt dioco to

deal with this feature. We consider two variants: FIFO

and non-FIFO asynchronous communication.

The new relation diocoF , standing for FIFO dioco,

differs from dioco in one important way: the observa-

tion of output might have been delayed.4 As with dioco
we will require that observations are made in quies-

cent states; testing might finish in such a state and the

testers then know that the local traces they have ob-

served all relate to the same global trace of the SUT.

There is an asymmetry in the effect of having asyn-
chronous communications: the observation of an out-

put might be delayed but it cannot be early. Thus, the

relation that we will use to compare traces, instead of

∼, is not symmetric. We first define a relation ⊑p on a
sequence of observations made by tester p; we will use

this to define a relation on global traces. Intuitively,

given a port p and two local traces at p, σ and σ′, we

have that σ ⊑p σ′ holds if and only if σ can be formed

from σ′ by delaying output.

Definition 11 Given p ∈ Ports we define ⊑p to be the

smallest reflexive and transitive binary relation on Act∗p
that includes all pairs of the form (σ?ip!opσ

′, σ!op?ipσ
′)

for ?ip ∈ Ip, !op ∈ Op and σ, σ′ ∈ Act∗p.

We define the relation ⊑ on Act∗ by σ ⊑ σ′ if and

only if for all p ∈ Ports we have that πp(σ) ⊑p πp(σ
′).
⊓⊔

It is now straightforward to define a version of dioco

for asynchronous FIFO communications.

4 We assume that an output cannot be delayed past qui-
escence but it is straightforward to change the definition in
order to remove this assumption.

Definition 12 Let r, s be IOTSs. We write r diocoF s

if and only if for every quiescent trace σδ ∈ T r(r) there

exists a quiescent trace σ′ ∈ T r(s) such that σ ⊑ σ′.

⊓⊔

Example 4 Consider our running example and an SUT

in an asynchronous scenario with FIFO communica-

tions. If the SUT produces the sequence

σ =?open1?open2!edit1!edit2?save1?save2

!update2!edit2!edit1!update1!edit1!edit2

then we cannot claim that the system is incorrect ac-

cording to diocoF with respect to our specification

since the trace

σ′ =?open1?open2!edit1!edit2?save1!update2

!edit2!edit1?save2!update1!edit1!edit2

belongs to T r(EDShared) and σ ⊑ σ′. The trace σ is

produced from σ′ by delaying the observation of the

two consecutive outputs !update2 and !edit2. ⊓⊔

We also have to define a variant of dioco for the

case where communications are asynchronous and non-

FIFO. The framework is slightly different if communica-

tions need not be FIFO since the tester at port p might
observe output !op before output !o′p in cases where !o′p
was produced by the SUT before !op; !o

′

p might over-

take !op. Similarly, inputs can overtake one another. We

first define a relation ⊑N
p on a sequence of observations

made by tester p and then use this to define a relation

on global traces. Intuitively, σ ⊑N
p σ′ holds if and only

if the local trace σ might be formed from the local trace

σ′ by delaying output or by input or output overtaking

one another.5

Definition 13 Given p ∈ Ports, we define ⊑N
p to be

the smallest reflexive and transitive binary relation on

Act∗p that includes all pairs of the form

1. (σ?ip!opσ
′, σ!op?ipσ

′) for ?ip ∈ Ip, !op ∈ Op and

σ, σ′ ∈ Act∗p.

2. (σ?ip?i
′

pσ
′, σ?i′p?ipσ

′) for ?ip, ?i
′

p ∈ Ip and σ, σ′ ∈
Act∗p.

3. (σ!op!o
′

pσ
′, σ!o′p!opσ

′) for !op, !o
′

p ∈ Op and σ, σ′ ∈
Act∗p.

We then define ⊑N on Act∗ by σ ⊑N σ′ if and only

if for all p ∈ Ports we have that πp(σ) ⊑N
p πp(σ

′). ⊓⊔

5 Again we assume that an output cannot be delayed past

quiescence but it is straightforward to change the definition
in order to remove this assumption.
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The second and third rules are a result of communi-

cations being non-FIFO. For example, if the SUT pro-

duces output sequence !o1!o
′

1 then the output !o′1 might

be observed before !o1.

Next we present the adaption of dioco for asyn-

chronous non-FIFO communications.

Definition 14 Let r, s be IOTSs. We write r diocoN s

if and only if for every quiescent trace σδ ∈ T r(r) there

exists a quiescent trace σ′ ∈ T r(s) such that σ ⊑N σ′.

⊓⊔

Example 5 Consider our running example and an SUT

in an asynchronous scenario with non-FIFO communi-

cations. If the SUT produces the sequence

σ =?open1?open2?save1!edit1!edit2?save2

!edit2!update2!edit1!update1!edit1!edit2

we have then we cannot infer that the system is incor-

rect with respect to diocoN since the trace

σ′ =?open1?open2!edit1!edit2?save1!update2

!edit2!edit1?save2!update1!edit1!edit2

belongs to T r(EDShared) and σ ⊑N σ′. The trace σ

might show a delay in the first observation of !edit1
and the observation of the outputs !update2 and !edit2.

⊓⊔

4 Implementation relations for clocks with

imprecision bounded by a constant

In this section we study approaches to adapt our previ-

ous implementation relation dioco in order to take into

account time information obtained from observing the
behaviour of the SUT. We assume that each tester has

a local clock but there is no global clock. Under dioco

we cannot order the events at different ports but in this

section we will show that more can be done if we have

additional information regarding how the local clocks
relate.

First, note that the addition of time does not modify

our implementation relation pdioco. This implementa-

tion relation assumes a framework where the agents at

the ports of the SUT are entirely independent: no exter-

nal agent or system can receive information regarding
observations made at more than one port of the SUT.

In determining whether the behaviour of the SUT is

acceptable, all an agent can do is compare the observed

local trace with the local traces that can be produced
by the specification. Therefore, in this framework, po-

tential causalities between events at different ports are

of no interest and the addition of time does not change

the implementation relation. However, this is not the

case for the implementation relation dioco and in this

section we show how timestamps give raise to alterna-

tive implementation relations.

Recall that given an untimed trace σ we have the
partial order<σ on e(σ) and that L(e(σ), <σ) is the cor-

responding set of linearisations. Based on this we have

the following alternative characterisation of dioco.

Proposition 2 Given r, s ∈ IOTS(I, O,Ports), we have
that r dioco s if and only if for every quiescent trace

σδ ∈ T r(r), there exists a quiescent trace σ′ ∈ T r(s)
such that σ′ ∈ L(e(σ), <σ).

Proof First observe that σ′ ∈ L(e(σ), <σ) holds if and

only if we have that L(e(σ′), <σ′) = L(e(σ), <σ). The

result thus follows from Proposition 1.

⊓⊔

Next we present how timed traces, instead of just

traces, can be used to provide a more refined imple-

mentation relation. The idea is simple: if we have times-

tamps then we can try to determine the order in which
events were produced at different ports. Consider a spec-

ification that states that a correct system must produce

output !o1 at port 1 followed by !o2 at port 2. If the

SUT produces !o2 followed by !o1 then, since these two
outputs were produced at different ports, we have a cor-

rect system with respect to dioco because we have no

means of determining that the actions were produced

in the wrong order. Assume now that in addition to

the actions produced at each port we are provided with
timestamps. For example, let us suppose that we re-

ceive (!o1, 100) and (!o2, 98). If we have a global clock

or local clocks that work perfectly, then we can claim

that the SUT is not correct since !o2 was performed
before !o1. However, if we consider a more realistic sce-

nario where local clocks need not be synchronised, then

we might consider that the difference is so small that

it might be the case indeed that !o2 was produced after

!o1 but that the clock at port 1 is running faster than
the one placed at port 2. Therefore, we need a variety of

implementation relations to cope with the alternatives.

We first assume the existence of a global clock or,

equivalently, that local clocks work perfectly.

Definition 15 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace. We define ≪σ as the partial
order on e(σ) such that for all 1 ≤ i, j,≤ n with i 6= j

we have that eσ(i) ≪σ eσ(j) if and only if tj > ti.

Let r, s ∈ IOTS(I, O,Ports) and T ∈ P((Act ×
Time)∗) be a set of quiescent timed traces of r where
P denotes the powerset. We write r tdioco(T ) s if

r dioco s and for every σ ∈ T there exists a quies-

cent trace σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),≪σ). ⊓⊔
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This new implementation relation requires dioco to

hold since the intention is to strengthen dioco by in-

cluding a set T of timed traces that have been observed

in testing.

Example 6 Consider our running example and an SUT

producing the sequence

?open1?open2!edit1!edit2?save1!update2!edit1!edit2

Even though this is not a trace of the specification, due
to the second occurrence of !edit1 and !edit2, we have

that the difference in the order between actions hap-

pens at different ports. Therefore, the system is correct

with respect to dioco. However, if we assume that the

clocks used to timestamp actions work perfectly and we
observe the following sequence

(?open1, 1), (?open2, 2), (!edit1, 3), (!edit2, 3.8),
(?save1, 4), (!update2, 4.5), (!edit1, 4.6), (!edit2, 4.8)

we can claim that the system is not correct since we
know that !edit1 was performed before !edit2. ⊓⊔

We now assume that there is a known value α such
that the local clocks differ by at most α. Before defining

a new implementation relation, we will show how this

information can be used to deduce the relative ordering

of some events at different ports. We will express this
through a partial order on the set of events observed.

Definition 16 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and α ∈ IR+. We define ≪α

σ as

the partial order on e(σ) such that for all 1 ≤ i, j,≤ n

with i 6= j we have that eσ(i) ≪α
σ eσ(j) if and only if

one or more of the following holds.

– There exists p ∈ Ports such that ai, aj ∈ Actp and
i < j.

– We have that tj − ti > α.

⊓⊔

This says that we know that event eσ(i) was before

event eσ(j) if either they were observed at the same port

and eσ(i) was observed first or they were observed at

different ports but the timestamp for eσ(i) was earlier
than that for eσ(j) by more than α. In the second case,

our assumption that the local clocks differ by at most α

allows us to know that eσ(i) was observed before eσ(j).

This additional information, regarding the order in

which events occurred, can be used to define a more
refined implementation relation. This operates in the

situation in which a set of timed traces has been ob-

served, with timestamps having been produced using

local clocks that can differ by at most α. As with dioco,
we only consider quiescent traces since for these we

know that the testers have observed projections of the

same trace of the SUT.

Definition 17 Let r, s ∈ IOTS(I, O,Ports), T ∈ P((Act×
Time)∗) be a set of quiescent timed traces of r, and α ∈
IR+ be a positive real number. We write r tdiocoα(T ) s

if r dioco s and for every σ ∈ T there exists a quiescent

sequence σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),≪α
σ). ⊓⊔

Example 7 Let r be an SUT such that r dioco EDShared.

Let T be a set of timed traces obtained from the testing

process of the system and containing, in particular, the
quiescent timed trace

σ =(?open1, 0.2), (?open2, 0.25), (!edit1, 0.26),

(!edit2, 0.27), (?save1, 1.3), (!update2, 1.45),

(!edit2, 1.5), (?save2, 1.7), (!edit1, 1.75),

(!update1, 1.8), (!edit2, 1.9), (!edit1, 2.1)

We have that r tdioco(T ) EDShared does not hold

since, for example, the second occurrence of !edit1 should

be observed before the occurrence of ?save2. However,

if local clocks differ by at most α = 0.2 units of time,
then r tdiocoα(T ) EDShared. In that case, it is possible

that event (!edit1, 1.75) was produced before the input

(?save2, 1.7) was sent, and the outputs (!edit2, 1.9) and

(!edit1, 2.1) were emitted in reverse order, due to the
possible difference between the local clocks. ⊓⊔

We can compare implementation relations using the

following relations. Note that in the following definition
we refer to the concept of an implementation relation

having parameters; by this we mean, for example, that

α and T are parameters of tdiocoα(T ).

Definition 18 Let imp1 and imp2 be two implementa-
tion relations. We write imp1 ⊑ imp2 if and only if for

all IOTSs r, s and parameter values for the implementa-

tion relations we have that r imp2 s implies r imp1 s.

Further, we write imp1 ≡ imp2 if imp1 ⊑ imp2 and
imp2 ⊑ imp1 and we write imp1 ⊏ imp2 if imp1 ⊑
imp2 but we do not have that imp1 ≡ imp2. ⊓⊔

We can now compare our new implementation rela-

tion with dioco.

Proposition 3 Let T be a set of quiescent timed traces

and α ∈ IR+ be a positive real number. We have that

dioco ⊏ tdiocoα(T ). Similarly, for all α ∈ IR+ we have
that dioco ≡ tdiocoα(∅).

Proof First note that we have that dioco ⊑ tdiocoα(T )
follows immediately from the definitions. In order to

show that tdiocoα(T ) ⊑ dioco does not hold, it is suf-

ficient to consider a process s that has the quiescent

trace !o1!o2δ, a process r that has the quiescent trace
!o2!o1δ and a timed trace of r with timestamps that al-

low us to deduce that !o2 was produced before !o1. The

proof of the second result is immediate.
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⊓⊔

If we abuse the notation slightly, to allow α to take

on the value of 0, then we obtain the following result.

Note that where we refer to a set being minimal we
mean that it is minimal under set inclusion.

Proposition 4 Let r be an IOTS. Let T be a minimal

set of timed traces such that for each quiescent trace
σ = a1a2 . . . an ∈ T r(r) there exists t1, t2, . . . , tn ∈
Time such that for all 1 ≤ r1 < r2 ≤ n we have

that tr1 < tr2 and also that the timed trace σ′ =

(a1, t1)(a2, t2) . . . (an, tn) belongs to T . For all IOTS s

we have that r ioco s if and only if r tdioco0(T ) s. In
addition, tdioco0(T ) ≡ tdioco(T ).

Proof First, we prove the left to right implication. Given

IOTSs r, s we assume that r ioco s and we prove the re-

sult by contradiction. Assume that r tdioco0(T ) s does

not hold. Since r ioco s we have that r dioco s [21], we
must have that there exists σ ∈ T such that there does

not exist a quiescent trace σ′ ∈ T r(s) that belongs

to L(e(σ),≪0
σ). Due to the time values considered in

the timed traces belonging to T , we have L(e(σ),≪0
σ

) = {σ}. Therefore, σ /∈ T r(s). Let σ′a be the shortest

prefix of σ such that σ′a /∈ T r(s). Since r and s are

input-enabled we must have that a is an output and by

the minimality of σ′a we have that σ′ ∈ T r(s). Thus,

we have a ∈ out(r after σ′) but a /∈ out(s after σ′).
This fact contradicts r ioco s.

Now let us assume that r tdioco0(T ) s and so we

are required to prove that r ioco s. By contradiction,

assume that r ioco s does not hold. Let σ ∈ T r(s)
be a trace such that out(r after σ) * out(s after σ).

Therefore, there exists a ∈ O∪{δ} such that σa ∈ T r(r)

and σa /∈ T r(s). Since r is not output divergent, σa is a

prefix of some quiescent trace in T r(r). By the hypothe-

ses, for this quiescent trace, there exists a timed trace
σ′ that belongs to T . Moreover, since r tdioco0(T ) s

and L(e(σ′),≪0
σ′ ) = {σ′}, we have σ′ ∈ T r(s). There-

fore, σa ∈ T r(s), and this provides a contradiction as

required.
Finally, tdioco0(T ) ≡ tdioco(T ) follows immedi-

ately from the definitions.

⊓⊔

The following gives a more general condition under

which we can compare two implementation relations
defined using different values for α and T .

Proposition 5 Let r be an IOTS. Given α1, α2 ∈ IR+

and sets T1 and T2 of quiescent timed traces, we have
that tdiocoα1

(T1) ⊑ tdiocoα2
(T2) if for all sequence

σ1 ∈ T1 there exists σ2 ∈ T2 such that e(σ2) = e(σ1)

and ≪α1

σ1
⊆≪α2

σ2
.

Proof We will assume that the hypotheses hold and

that for IOTSs r, s we have that r tdiocoα2
(T2) s. Then

we want to prove that r tdiocoα1
(T1) s. By definition,

we must have that r dioco s. Thus, it is sufficient to

prove that for every timed trace σ1 ∈ T1 there exists a
trace σ′

1 ∈ T r(s) such that σ′

1 ∈ L(e(σ1),≪α1

σ ).

Since the hypotheses hold, there is a timed trace

σ2 ∈ T2 such that e(σ2) = e(σ1) and ≪α1

σ1
⊆≪α2

σ2
. Fur-

ther, since r tdiocoα2
(T2) s there is a trace σ′

2 ∈ T r(s)

such that σ′

2 ∈ L(e(σ2),≪α2

σ2
). But since ≪α1

σ1
⊆≪α2

σ2
we

have that L(e(σ2),≪
α2

σ2
) ⊆ L(e(σ1),≪

α1

σ1
). Thus we can

use σ′

1 = σ′

2 and so the result holds.

⊓⊔

We now say what it means for a set of timed traces

to be valid for a process r given α; these are the set

of timed traces that can be produced if the clocks are

within α of one another.

Definition 19 Given α ∈ IR+ and timed trace σ, we

say that σ is valid for process r given α if there exists

a trace σ′ = a′1 . . . a
′

n ∈ T r(r) with e(untime(σ)) =
e(σ′) such that for all 1 ≤ i < j ≤ n we have that

ησ(eσ′(i))− ησ(eσ′ (j)) ≤ α. ⊓⊔

This condition requires that if event eσ(i) is before

event eσ(j) in σ′ then the timestamp for eσ(i) is less

than the timestamp for eσ(j) in σ or the time difference
is sufficiently small for it to be possible that eσ(i) oc-

curred before eσ(j). We now have the following result.

Proposition 6 Let r, s ∈ IOTS(I, O,Ports), α ∈ IR+

and T be a set of quiescent timed traces that are valid

for r given α. We have that tdiocoα(T ) ⊑ ioco.

Proof We will assume that the hypotheses hold and
that for IOTSs r, s we have that r ioco s. Then we

want to prove that r tdiocoα(T ) s. Since r ioco s we

have that r dioco s [21]. Thus, it is sufficient to prove

that for every quiescent timed trace σ ∈ T there exists
a trace σ1 ∈ T r(s) such that σ1 ∈ L(e(σ),≪α

σ).

By definition, there exists a trace σ′ = a′1 . . . a
′

n ∈
T r(r) with e(untime(σ)) = e(σ′) such that for all 1 ≤
i < j ≤ n we have that ησ(eσ′(i)) − ησ(eσ′(j)) ≤ α.

Therefore, σ′ ∈ L(e(σ),≪α
σ).

Now, assume that σ′ /∈ T r(s). Let σ′′a be the short-

est prefix of σ′ such that σ′′a /∈ T r(s). Since r and s

are input-enabled we must have that a is either an out-
put or δ and by the minimality of σ′′a we have that

σ′′ ∈ T r(s). Thus, we have a ∈ out(r after σ′′) but

a /∈ out(s after σ′′). This fact contradicts r ioco s.

⊓⊔
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We have seen that our new implementation relation

lies between ioco and dioco: it can be more powerful

than dioco and can be less powerful than ioco. We now

give results that explore this issue further, showing how

in the limit it can approach ioco and also how it can be
reduced to dioco even if we have many timed traces.

The following result states that if the set of timed traces

parameterising our implementation relations contains

appropriate instances of all the traces of the system
then the stronger ioco implementation relation can be

fully captured. We also show that irrelevant time values

do not add distinguishing power to the collected set

of traces, so that we still obtain the dioco relation.

The proof of the proposition is similar to the one given
in Proposition 4 since the only difference lies in the

fact that for each trace σ = (a1, 1)(a2, 2) . . . (an, n) ∈
T , the sets L(e(σ),≪σ), used in the first result, and

L(e(σ),≪α
σ), used in the second result, are equal to

{a1a2 . . . an}.

Proposition 7 Let r, s ∈ IOTS(I, O,Ports) and α ∈
IR+ be a positive real number.

Let T be the minimal set of quiescent timed traces
such that for each quiescent trace σ = a1a2 . . . an in

T r(r) we have that σ′ = (a1, 1)(a2, 2) . . . (an, n) belongs

to T . We have r tdioco(T ) s if and only if we have that

r ioco s.

Let T be the minimal set of timed traces such that

for each quiescent trace σ = a1a2 . . . an belonging to

T r(r) we have that the timed trace σ′ = (a1, α+1)(a2, 2·
(α + 1)) . . . (an, n · (α + 1)) belongs to T . We have

r tdiocoα(T ) s if and only if we have that r ioco s.

⊓⊔

The results shown in the previous proposition can

be generalised as follows.

Proposition 8 Let r, s ∈ IOTS(I, O,Ports) and α ∈
IR+ be a positive real number.

Let T be a minimal set of quiescent timed traces

such that for each quiescent trace σ = a1a2 . . . an ∈
T r(r) there exists t1, t2, . . . , tn ∈ Time such that for all

1 ≤ r1 < r2 ≤ n we have that tr1 < tr2 and that the
timed trace σ′ = (a1, t1), (a2, t2), . . . , (an, tn) belongs to

T . We have that r tdioco(T ) s if and only if we have

that r ioco s.

Let T be a minimal set of timed traces such that

for each quiescent trace σ = a1a2 . . . an ∈ T r(r) there

exists t1, t2, . . . , tn ∈ Time such that for all 1 ≤ r1 <

r2 ≤ n we have that tr1 + α < tr2 and that the timed
trace σ′ = (a1, t1), (a2, t2), . . . , (an, tn) belongs to T .

We have that r tdiocoα(T ) s if and only if we have

that r ioco s. ⊓⊔

Finally, the following result states that irrelevant

time values do not add distinguishing power to the col-

lected set of traces, so that we obtain the dioco rela-

tion.

Proposition 9 Let r, s ∈ IOTS(I, O,Ports) and α ∈
IR+ be a positive real number. Let T be the minimal

set of timed traces such that for each quiescent trace
σ = a1a2 . . . an ∈ T r(r) we have that the timed trace

σ′ = (a1, α)(a2, α · 32 ) . . . (an, α ·
∑n−1

j=0
1
2j ) belongs to T .

We have that r tdiocoα(T ) s if and only if we have

that r dioco s. ⊓⊔

The proof of this result is a particular case of the
following result.

Proposition 10 Let r, s ∈ IOTS(I, O,Ports) and α ∈
IR+ be a positive real number. Let T be a minimum
set of timed traces such that for each quiescent trace

σ = a1, a2, . . . , an ∈ T r(r) there exists t1, t2, . . . , tn ∈
Time such that for all 1 ≤ r1 < r2 ≤ n we have

that tr1 + α ≥ tr2 and that the timed trace σ′ =
(a1, t1)(a2, t2) . . . (an, tn) belongs to T . We have that

r tdiocoα(T ) s if and only if we have that r dioco s.

Proof The left to right implication is immediate. In or-

der to prove the right to left implication we assume that

r dioco s and we have to show that r tdiocoα(T ) s.

It is sufficient to prove that for every timed trace σ =

(a1, t1)(a2, t2) . . . (an, tn) ∈ T there exists a trace σ′ ∈
T r(s) such that σ′ ∈ L(e(σ),≪α

σ). Since r dioco s there

is a trace σ′′ ∈ T r(s) such that σ′′ ∈ L(e(σ), <σ). Due

to the fact that for all 1 ≤ r1 < r2 ≤ n we have that

tr1 + α ≥ tr2 , L(e(σ),≪
α
σ) = L(e(σ), <σ). Thus we can

use σ′ = σ′′ and so the result holds.

⊓⊔

5 Clocks with variable imprecision

In the previous section we defined an implementation

relation based on the assumption that there is a known

α ∈ IR+ that is an upper bound on the differences be-

tween the local clocks. However, in practice we expect
there to be drift: some clocks will progress faster than

others. As a result, the potential difference will grow

with time. Therefore, in this section we devise imple-

mentation relations for this more general scenario.

For our next relation we assume that there is a

bound α on the potential difference between the clocks

at the beginning of testing and for the difference to be
able to grow with time based on another value β. Note

that this is a very realistic assumption. For example, it

is well known that processor clocks usually have known
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bounds on their rate of progress with respect to real-

time [34], that is, processor clocks usually satisfy the

linear drift assumption that we consider in this section.

Even though clocks do not work at the same speeds we

can assume that they are similar enough because if we
have a strong evidence that this is not the case, then

we replace them with new ones. As we will see later,

even though we are not able to fully capture the origi-

nal ordering in which events are performed at different
ports, we can still fix the occurrence of actions that were

performed far apart. First we define the corresponding

partial order on events.

Definition 20 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and α, β ∈ IR+. We define

≪α,β
σ as the partial order on e(σ) such that for all 1 ≤

i, j,≤ n with i 6= j we have that eσ(i) ≪α,β
σ eσ(j) if

and only if one or more of the following holds.

– There exists p ∈ Ports such that ai, aj ∈ Actp and
i < j.

– We have that tj − ti > α+ β ·max(ti, tj).

Let r, s ∈ IOTS(I, O,Ports), T ∈ P((Act×Time)∗)

be a set of quiescent timed traces of r, and α, β ∈ IR+

be positive real numbers. We write r tdiocoα,β(T ) s if

r dioco s and for every σ ∈ T there exists a quiescent

trace σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),≪α,β
σ ). ⊓⊔

Example 8 Consider the specification of the collabora-
tive editor depicted in Figure 4. Let r be an SUT such

that its conformance to the EDShared specification with

respect to dioco has been established. Assume that

while testing r we obtained the set T of timed sequences

formed by the following quiescent timed traces:

tr1=(?open1, 0.2), (?open2, 0.25), (!edit1, 0.25),

(?save1, 0.26), (!edit1, 0.27), (!edit2, 0.28)
tr2=(?open1, 1), (?open2, 1.2), (!edit1, 1.3), (?save1, 1.4),

(!edit2, 1.45), (?save2, 2.3), (!update1, 2.4),

(!edit2, 2.42), (!edit1, 2.47)

tr3=(?open1, 0.2), (?open2, 0.25), (!edit1, 0.25),

(!edit2, 0.27), (?save2, 1.1), (!edit2, 1.17),
(!update1, 1.24), (!edit1, 1.27)

The sequences tr2 and tr3 show that the relation

r tdioco(T ) EDShared does not hold since, for example,

the events (!edit2, 2.42), (!edit1, 2.47) in tr2 were pro-
duced in reverse order to the one specified in EDShared.

In the same way, the event (!edit2, 1.17) of tr3 is ob-

served before (!update1, 1.24), (!edit1, 1.27) which, ac-

cording to the specification, must be produced before.
In contrast, r tdiocoα(T ) EDShared holds if α ≥ 0.1;

if α < 0.1 the conformance does not hold. If we assume

that the difference between clocks grows with time, then

for any value assigned to β when α ≥ 0.1, we have that

r tdiocoα,β(T ) EDShared holds. However if, for exam-

ple, α = 0.05 and β < 0.04, then the difference be-

tween the observed times for the actions (!edit2, 1.17)

and (!edit1, 1.27) is greater than the established bound
α+ β ·max(1.17, 1.27) ⊓⊔

The next result, whose proof is easy, compares the

implementation relations tdiocoα,β(T ) and tdiocoα(T ).

Proposition 11 Let T be a set of timed traces and

α, β ∈ IR+. We have tdiocoα,β(T ) ⊏ tdiocoα(T ). ⊓⊔

The next relation is a generalisation of tdiocoα,β(T )

where we consider that potential difference in clocks
can accumulate in a non-linear way. We capture this by

using an increasing function to place a bound on the

relative imprecision of two clocks.

Definition 21 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and h : IR+ −→ IR+ be a

monotonically increasing function. We define ≪h
σ as the

partial order on e(σ) such that for all 1 ≤ i, j,≤ n with

i 6= j we have that eσ(i) ≪h
σ eσ(j) if and only if one or

more of the following holds.

– There exists p ∈ Ports such that ai, aj ∈ Actp and

i < j.

– We have that tj − ti > h(max(ti, tj)).

Let r, s ∈ IOTS(I, O,Ports), T ∈ P((Act×Time)∗)

be a set of quiescent timed traces of r and h : IR+ −→
IR+ be a monotonically increasing function. We write

r tdiocoh(T ) s if r dioco s and for every σ ∈ T
there exists a quiescent trace σ′ ∈ T r(s) such that

σ′ ∈ L(e(σ),≪h
σ). ⊓⊔

We would like to conclude this section by pointing

out that if we consider single-port systems then all the
timed implementation relations previously introduced

coincide with ioco. The proof is easy and relies on

the fact that ioco and dioco are equal for single-port,

input-enabled and non output-divergent systems.

6 Asynchronous FIFO communications

In the previous sections we showed how timestamps

could be used to add causalities between events ob-
served at different ports. However, it was assumed that

communications between the testers and the SUT is

synchronous: an event is observed at the time it was

produced. In some cases this is a reasonable assump-
tion: even if the SUT is physically distributed it may

be possible to have a set of distributed testers such that

the tester at port p interacts with port p of the SUT in



16 Robert M. Hierons et al.

a synchronous manner. However, testers will often in-

teract with the SUT through communications channels

and so in this paper we also consider the asynchronous

case. We will investigate two different types of asyn-

chronous communications. In this section we consider
FIFO communications while Section 7 considers non-

FIFO communications. Note that both approaches are

relevant: while the internet is non-FIFO some networks

enforce FIFO communications. In both sections we as-
sume again that quiescence can be observed by the local

testers and that the testers can wait sufficiently long so

that it is guaranteed that all inputs have been received

and all outputs have been observed. Where this is not

feasible, we can simply remove quiescence from the set
of possible observations.

In order to reason about the causality between events

that have been observed in asynchronous testing it is

necessary to make assumptions regarding message la-
tency. We assume that there is a known lower bound

∆LB on message latency and also a known upper bound

∆UB . We also assume that we have the same bound for

each channel and in each direction; it is straightforward

to adapt the definitions and results to the case where
bounds differ.

We start by discussing the imprecision introduced

by the asynchronous communications only and so anal-

yse the case where we have a global clock; later we
combine this with information regarding imprecision in

the local clocks. Since communications are FIFO, we

can order two inputs provided at port p and also two

outputs observed at p. We have four cases to consider.

– Let us suppose that output !o1 has been observed
at port 1 and that !o2 has been observed at port 2.

Assume also that !o1 was observed at (global) time

t1, !o2 was observed at (global) time t2 and t2 > t1.

Given the bounds on message latency, !o1 must have

been sent by the SUT at a time in the region [t1 −
∆UB , t1−∆LB] and !o2 must have been sent by the

SUT at a time in the region [t2−∆UB, t2−∆LB]. As

a result, we can claim that if these two time intervals

do not overlap then !o1 was sent before !o2 and this
is the case when we have that t1−∆LB < t2−∆UB.

This holds if and only if t2− t1 > ∆UB −∆LB. This

case is shown in Figure 7, in which time progresses

as we move to the right, a solid arc represents a

message (an output), and the dotted arcs represent
the bounds on when a message might have been

sent.

– Let us suppose that input ?i1 is sent at port 1 at

(global) time t1 and that ?i2 is sent at port 2 at
(global) time t2 and we have that t2 > t1. Then

?i1 must arrive at the SUT at a time in the region

[t1 +∆LB, t1 +∆UB ] and ?i2 must arrive at a time

Tester 1

SUT

Tester 2

t1 −∆LB

t1

t2 −∆UB

t2

Fig. 7 Two outputs received by different testers.

Tester 1

SUT

Tester 2

t1

t1 +∆UB

t2

t2 +∆LB

Fig. 8 Two inputs received from different testers.

in the region [t2 +∆LB, t2 +∆UB]. Thus, we know

that if these two time intervals do not overlap then

?i1 arrives before ?i2 and this is the case when t1 +
∆UB < t2+∆LB. This holds if and only if t2− t1 >

∆UB −∆LB. This case is shown in Figure 8.

– Now consider the situation in which we have an in-

put and an output. If the output is observed by

the tester before the input is sent then clearly the
output was produced by the SUT before the input

was received. It is therefore sufficient to consider the

situation in which an input ?i1 is sent at time t1 be-

fore an output !o2 is observed at time t2. Then, ?i1
must be received by the SUT before time t1 +∆UB

and !o2 must have been sent by the SUT after time

t2 − ∆UB . Thus, we know that !o2 was sent after

?i1 was received if t1 + ∆UB < t2 − ∆UB and this

is the case if and only if t2 − t1 > 2∆UB. Similarly,
we know that !o2 was sent before ?i1 was received

if t2 −∆LB < t1 +∆LB and this is the case if and

only if t2 − t1 < 2∆LB. This generalises the situa-

tion in which an output is observed before an input,
showing that we can potentially know that an out-

put was produced before an input was received if

the output is observed less than 2 ∆LB after the in-
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Tester 1

SUT

Tester 2

t1

t1 +∆UB

t2

t2 −∆UB

Fig. 9 An input before an output.

Tester 1

SUT

Tester 2

t2 −∆LB

t2

t1 +∆LB

t1

Fig. 10 An output before an input.

put was sent. These situations are shown in Figures

9 and 10.

Assuming communications are FIFO, we have to

adapt our earlier relations to add this additional im-

precision provided by the asynchronous nature of com-
munications. In the rest of the paper we consider ∆LB

and ∆UB to be global parameters and do not use these

to decorate the notation of the different relations.

The first notion assumes the existence of a global

clock or that local clocks work perfectly. It is based on
the above discussion and the fact that communications

are FIFO.

Definition 22 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace. We define ≪F as the partial
order on e(σ) such that for all 1 ≤ i, j,≤ n with i 6= j

we have that eσ(i) ≪F eσ(j) if and only if one or more

of the following hold:

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Op ∪ {δ}
and ti < tj ;

– We have ai, aj ∈ I, i < j and tj − ti > ∆UB −∆LB;

– We have ai, aj ∈ O, i < j and tj − ti > ∆UB −∆LB;

– We have ai ∈ O, aj ∈ I and tj − ti < 2∆LB;

– We have ai ∈ I, aj ∈ O and tj − ti > 2∆UB .

⊓⊔

The first two cases are due to communications being

FIFO. Cases three and four do not need to take into

account the asymmetry between input and output since
they are dealing with only inputs or only outputs. Case

five is the situation in which an output is observed be-

fore an input is sent and we can deduce that the output

was sent by the SUT before the input will be received.
The final case concerns the sending of an input ai before

an output aj is observed.

The discussion above, used to establish the partial

order, was based about reasoning about the latest time

event ai might have been produced/observed by the
SUT and the earliest time that aj might have been pro-

duced/observed. We might therefore define functions

latest and earliest that compute these bounds.

Definition 23 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and 1 ≤ i ≤ n such that ai ∈
I ∪ O. We define the values earliest(ai) and latest(ai)

as:

– If ai ∈ I then earliest(ai) = ti+∆LB and latest(ai) =

ti +∆UB .
– If ai ∈ O then earliest(ai) = ti−∆UB and latest(ai) =

ti −∆LB.

⊓⊔

The functions earliest and latest give us an alter-

native characterisation of the partial order ≪F

Proposition 12 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace. We have that eσ(i) ≪F eσ(j)

if and only if one or more of the following hold:

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Op ∪ {δ}
and ti < tj ;

– We have that latest((ai, ti)) < earliest((aj, tj)).

⊓⊔

We will define the remaining implementation rela-

tions in terms of the functions earliest and latest.
First we assume that the local clocks differ by at

most a known value α.

Definition 24 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and α ∈ IR+. We define ≪F

α as
the partial order on e(σ) such that for all 1 ≤ i, j,≤ n

with i 6= j we have that eσ(i) ≪F
α eσ(j) if and only if

one or more of the following hold:
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– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Op ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ Op

and latest((ai, ti)) < earliest((aj, tj)).

– We have that latest((ai, ti))−earliest((aj, tj)) > α.

⊓⊔

The first three rules are about situations in which
two events are observed at the same port; in this situa-

tion we do not have to consider the relative imprecision

of the local clocks and so these rules are equivalent to

rules from the definition of ≪F . The remaining case

involves observations at different ports.

Finally, we adapt the notions ≪α,β and ≪h to the

asynchronous FIFO framework; these are similar to ≪α

but with α replaced by the appropriate terms.

Definition 25 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace. Given α, β ∈ IR+, we define

≪F
α,β as the partial order on e(σ) such that for all 1 ≤

i, j,≤ n with i 6= j we have that eσ(i) ≪F
α,β eσ(j) if

and only if one or more of the following hold:

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Op ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ Op

and latest((ai, ti)) < earliest((aj, tj)).
– We have that latest((ai, ti)) − earliest((aj , tj)) >

α+ β ·max(ti, tj).

Given a monotonically increasing function h : IR+ −→
IR+, we define ≪F

h as the partial order on e(σ) such

that for all 1 ≤ i, j,≤ n with i 6= j we have that

eσ(i) ≪F
h eσ(j) if and only if one or more of the fol-

lowing hold:

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Op ∪ {δ}
and ti < tj ;

– There exists p ∈ Ports such that ai, aj ∈ Ip ∪ Op

and latest((ai, ti)) < earliest((aj, tj)).

– We have that latest((ai, ti)) − earliest((aj , tj)) >

h(max(ti, tj)).

⊓⊔

In the next definition we introduce implementation

relations for systems with asynchronous FIFO commu-

nications.

Definition 26 Let r, s ∈ IOTS(I, O,Ports) and T ∈
P((Act × Time)∗) be a set of quiescent timed traces

of r. We write r tdiocoF (T ) s if r diocoF s and for

every σ ∈ T there exists a quiescent trace σ′ ∈ T r(s)

such that σ′ ∈ L(e(σ),≪F ).

Let α ∈ IR+ be a positive real number. We write

r tdiocoF
α (T ) s if r diocoF s and for every σ ∈ T

there exists a quiescent trace σ′ ∈ T r(s) such that σ′ ∈
L(e(σ),≪F

α ).

Let α, β ∈ IR+ be positive real numbers. We write

r tdiocoF
α,β(T ) s if r diocoF s and for every σ ∈ T

there exists a quiescent trace σ′ ∈ T r(s) such that σ′ ∈
L(e(σ),≪F

α,β).

Let h : IR+ −→ IR+ be a monotonically increasing

function on IR+. We write r tdiocoF
h (T ) s if r diocoF s

and for every σ ∈ T there exists a quiescent trace σ′ ∈
T r(s) such that σ′ ∈ L(e(σ),≪F

h ). ⊓⊔

Example 9 Consider the specification of the collabora-

tive editor depicted in Figure 4 and presented in Ex-
ample 1. Let r be an SUT such that its conformance

to the EDShared specification with respect to diocoF

has been previously established. Consider that the set

of traces T , conformed by the traces tr1 and tr2, has

been observed while testing the system:

tr1 = (?open1, 0.2), (?open2, 0.25), (!edit1, 0.25),
(!edit2, 0.27), (?save2, 1), (?save1, 1.05),

(!update2, 1.11), (!edit2, 1.14), (!edit1, 1.15),

(!update1, 1.16), (!edit1, 1.2), (!edit2, 1.3)

tr2 = (?open1, 1), (?open2, 1.2), (!edit1, 1.3),

(!edit2, 1.4), (?save1, 2), (?save2, 2.3),
(!edit1, 2.4), (!update2, 2.5), (!update1, 2.6),

(!edit2, 2.7), (!edit2, 2.8), (!edit1, 2.9)

If we consider big values for the message latency, for
example ∆LB = 0.5 and ∆UB = 0.9 (∆UB − ∆LB =

0.4), then these traces cannot be used to conclude that

the system r is an incorrect implementation of the EDShared

specification with respect to any of the implementation
relations given in Definition 26. It is possible that the

observation of the subsequence

?save2?save1!update2!edit2!edit1!update1!edit1!edit2

appearing in trace tr1 was due to message latency, in the

case of the inputs (?save2, 1), (?save1, 1.1), and to the
delay of the outputs (!update2, 1.11), (!edit2, 1.14) and

(!edit1, 1.15). In the same way in trace tr2 it can hap-

pen that the outputs (!edit1, 2.4), (!update2, 2.5) and

(!update1, 2.6) were delayed with respect to the input
(?save2, 2.3); in particular, the output (!edit1, 2.4) could

have been produced after the outputs (!update2, 2.5)

and (!update1, 2.6)
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On the contrary, if we have that message latency

is small, for example ∆LB = 0.025 and ∆UB = 0.05

(∆UB −∆LB = 0.025), none of the previous implemen-

tation relations hold.

This example shows an interesting property of the

asynchronous framework: when ∆UB − ∆LB tends to

zero we have that the asynchronous FIFO implemen-
tation relations tend to be equal to their synchronous

counterparts. ⊓⊔

Results similar to the ones shown at the end of the

previous section hold for the new relations. For the sake
of brevity, we do not present all of these.

Proposition 13 Let T be a set of timed traces and
α, β ∈ IR+. We have tdiocoF

α (T ) ⊏ tdiocoF (T ) and

tdiocoF
α,β(T ) ⊏ tdiocoF

α (T ). ⊓⊔

As a final remark, note that in this section we as-

sumed that bounds on message latency are identical for
all channels and in both directions. In practice, differ-

ent channels might have different timing properties but

it is straightforward to adapt the definitions and results

given here to this situation.

7 Asynchronous non-FIFO communications

In this section we consider a communications frame-

work where the FIFO hypothesis is not assumed. In

order to adapt our relations we change the rules that

differentiate between observations at a single port. We

still need to distinguish between the cases where events
are at different ports and when they are at the same

port; in the latter case the timestamps are produced on

the basis of the same local clock.

The following notion is suitable if we assume the

existence of a global clock or that local clocks work

perfectly.

Definition 27 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace. We define ≪N as the partial
order on e(σ) such that for all 1 ≤ i, j ≤ n with i 6= j

we have that eσ(i) ≪N eσ(j) if and only if one or more

of the following hold:

– We have ai = δ or aj = δ and tj > ti;

– We have ai, aj ∈ I∪O and latest(ti) < earliest(tj).

⊓⊔

We no longer have separate rules for the cases, in

the definition of ≪F , where two inputs or two outputs
are at the same port. This is because these rules were

a result of using FIFO channels. We do, however, have

to separately consider the observation of quiescence; an

alternative would be to extend the definition of latest

and earliest to deal with quiescence.

We now adapt ≪α to incorporate the delay intro-

duced by non-FIFO communications.

Definition 28 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and α ∈ IR+. We define ≪N

α

as the partial order on e(σ) such that for all 1 ≤ i, j,≤ n
with i 6= j we have that eσ(i) ≪N

α eσ(j) if and only if

one or more of the following hold:

– We have ai = δ or aj = δ and tj > ti;

– We have ai, aj ∈ Ip ∪ Op for some p ∈ Ports and

earliest(tj) > latest(ti).
– We have ai, aj ∈ I∪O and earliest(tj)−latest(ti) >

α.

⊓⊔

Finally, we adapt ≪α,β and ≪h to the new frame-

work.

Definition 29 Let σ = (a1, t1) . . . (an, tn) ∈ (Act ×
Time)∗ be a timed trace and α, β ∈ IR+. We define

≪N
α,β as the partial order on e(σ) such that for all 1 ≤

i, j,≤ n with i 6= j we have that eσ(i) ≪N
α,β eσ(j) if

and only if one or more of the following hold:

– We have ai = δ or aj = δ and tj > ti;

– We have ai, aj ∈ Ip ∪ Op for some p ∈ Ports and

earliest(tj) > latest(ti).

– We have ai, aj ∈ I∪O and earliest(tj)−latest(ti) >
α+ β ·max(ti, tj).

Given a monotonically increasing function h : IR+ −→
IR+, ≪N

h is the partial order on e(σ) such that for all

1 ≤ i, j,≤ n with i 6= j we have that eσ(i) ≪N
h eσ(j) if

and only if one or more of the following hold:

– We have ai = δ or aj = δ and tj > ti;

– We have ai, aj ∈ Ip ∪ Op for some p ∈ Ports and

earliest(tj) > latest(ti).
– We have ai, aj ∈ I∪O and earliest(tj)−latest(ti) >

h(max(ti, tj)).

⊓⊔

The combination of the previously defined partial

orders and the diocoN relation allows us to define im-

plementation relations for non-FIFO communications.

Definition 30 Let r, s ∈ IOTS(I, O,Ports) and T ∈
P((Act × Time)∗) be a set of quiescent timed traces

of r. We write r tdiocoN (T ) s if r diocoN s and for

every σ ∈ T there exists a quiescent trace σ′ ∈ T r(s)
such that σ′ ∈ L(e(σ),≪N ).

Let α ∈ IR+ be a positive real number. We write

r tdiocoN
α (T ) s if r diocoN s and for every σ ∈ T
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there exists a quiescent trace σ′ ∈ T r(s) such that σ′ ∈
L(e(σ),≪N

α ).

Let α, β ∈ IR+ be positive real numbers. We write

r tdiocoN
α,β(T ) s if r diocoN s and for every σ ∈ T

there exists a quiescent trace σ′ ∈ T r(s) such that σ′ ∈
L(e(σ),≪N

α,β).

Let h : IR+ −→ IR+ be a monotonically increasing
function on IR+. We write r tdiocoN

h (T ) s if r diocoN s

and for every σ ∈ T there exists a quiescent trace σ′ ∈
T r(s) such that σ′ ∈ L(e(σ),≪N

h ). ⊓⊔

Results similar to the ones shown at the end of Sec-

tion 5 hold again for the new relations. For the sake of

brevity, we present only one of them.

Proposition 14 Let T be a set of timed traces and

α, β ∈ IR+. We have that tdiocoN
α (T ) ⊏ tdiocoN (T )

and tdiocoN
α,β(T ) ⊏ tdiocoN

α (T ). ⊓⊔

Finally, we compare the synchronous, FIFO, and

non-FIFO cases.

Proposition 15 The following results hold.

1. tdiocoN (T ) ⊏ tdiocoF (T ) ⊏ tdioco(T )

2. tdiocoN
α (T ) ⊏ tdiocoF

α (T ) ⊏ tdiocoα(T )

3. tdiocoN
α,β(T ) ⊏ tdiocoF

α,β(T ) ⊏ tdiocoα,β(T )

4. tdiocoN
h (T ) ⊏ tdiocoF

h (T ) ⊏ tdiocoh(T )

⊓⊔

8 The Oracle problem in timed distributed

testing

This paper defined several implementation relations but

we have not yet discussed the Oracle Problem: that of

determining whether an observation made in testing (a

timed trace) is allowed under one of these implemen-
tation relations. It is known that the Oracle Problem

is NP-complete for untimed distributed testing from an

FSM [16]. In this section we explain how one could show

that the Oracle Problem is also NP-complete for any of

the implementation relations defined in this paper as
long as the membership problem can be solved in poly-

nomial time for the specification6.

The first observation that can be made is that it

is possible to take an instance of the Oracle Problem

for an FSM and convert it into an equivalent instance
of the Oracle Problem for an implementation relation

given in this paper: we simply add timestamps that

are sufficiently close together for one not to be able to

deduce any additional ordering information from the

6 The membership problem is that of determining whether
a given trace is a trace of the specification.

timestamps. Thus, the Oracle Problem being NP-hard

for the implementation relations given in this paper is a

consequence of it being NP-hard for distributed testing

from an FSM.

We now explain how we can show that the Oracle
Problem is in NP. A first step in solving the Oracle

Problem for a given timed trace and implementation

relation is to determine the partial order defined over

the events in the timed trace. It is clear that this can be
decided in polynomial time unless the implementation

relation is parameterised by a function h that cannot

be computed in polynomial time (we will assume that

this is not the case). Having done this, the problem

is to determine whether there is some linearisation of
the partial order that is allowed by the specification (is

in the language defined by the specification). A non-

deterministic Turing machine can guess a linearisation

and then check this against the specification, a process
that can be performed in polynomial time as long as

the membership problem can be solved in polynomial

time. Thus, we know that the Oracle Problem is in NP

(and so is NP-complete) as long as the following two

conditions hold:

1. The membership problem can be solved in polyno-

mial time for the specification.

2. If the implementation relation is parameterised by

a function h then h can be computed in polynomial

time.

Naturally, if either of these conditions were not to

hold then we could not expect the Oracle Problem to

be in NP.

9 Conclusions and future work

Many systems interact with their environment at phys-

ically distributed interfaces, which we call ports. In dis-
tributed testing we place a separate tester at each port

and the tester at port p only observes events that occur

at p. As a result, it may not be possible to determine

the relative order of events observed at different ports
and this has led to the development of implementation

relations such as dioco that reflect this.

This paper has explored the situation in which each

tester has a local clock and adds timestamps to the ob-

servations it makes. If we have no information regarding
how the local clocks relate then this does not help us.

However, in practice we are likely to have some infor-

mation regarding how much the local clocks can differ

and we can represent this using assumptions. We con-
sidered several such assumptions. In one extreme case

the local clocks are known to agree and so we can recon-

struct the sequence of events. However, this assumption
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appears to be unrealistic. We also considered the case

where there is a known upper bound α on how much

the clocks can differ. An alternative scenario is when

there is an initial bound α and the bound on the dif-

ferences between the clocks can grow linearly. We also
considered the generalisation when there is a monoton-

ically increasing function h, from the positive reals to

the positive reals, such that at time t the differences be-

tween the clocks is at most h(t). For each scenario we
defined a corresponding implementation relation and

we explored how these relate.

The above approach assumes that each tester inter-

acts synchronously with the corresponding port of the
SUT. However, sometimes a tester will interact with

the SUT through a network and this can lead to an in-

put being received by the SUT after it was sent by the

tester and an output being observed by a tester after it

was produced by the SUT. This can result in the tester
at port p not observing the local trace produced by the

SUT at p: instead the tester observes a version of this

produced by delaying output. Naturally, this leads to

different implementation relations. We considered the
cases where communications are FIFO and where they

are non-FIFO and produced implementation relations

for each of the assumptions, regarding how the local

clocks relate, described above.

There are several possible lines of future work. First,

we would like to explore relationships in extreme cases,

that is, the consequence of assuming that the discrep-

ancies between clocks tend to zero/infinity. We can in-

tegrate our approach with methods for establishing lo-
cal clocks through message exchange. A possible way to

implement this could consist in having some sort of gen-

eral synch event that returns precision to within α. We

might consider the case where the specification contains
timing requirements. Distributed testing in the situa-

tion in which there are timing requirements is likely to

be challenging, especially if there are requirements re-

garding the relative timing of events at different ports.
In the same line, there is a need to consider the impli-

cations of time for test generation. Another direction

worth investigating is to study the limits of timed im-

plementation relations. By taking into account time we

are able to distinguish processes that cannot be dis-
tinguished under dioco but it would be interesting to

explore implementation relations closer to ioco in the

current framework. One issue that we did not consider

in this paper is the computational complexity of decid-
ing the different implementation relations, in particular,

it would be important to consider the trade-off between

distinguishing power and the complexity of checking

whether a given relation holds.
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test cases for the distributed test architecture. In: 6th
Int. Symposium on Automated Technology for Verifica-
tion and Analysis, ATVA’08, LNCS 5311, pp. 201–215.
Springer (2008)

20. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementa-
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