
The Oracle Problem When Testing
from MSCs

Haitao Dan and Robert M. Hierons

School of Information Systems, Computing & Mathematics
Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Email: {haitao.dan, rob.hierons}@brunel.ac.uk

Message Sequence Charts (MSCs) form a popular language in which scenario-
based specifications and models can be written. There has been significant interest
in automating aspects of testing from MSCs. This paper concerns the Oracle
Problem, in which we have an observation made in testing and wish to know
whether this is consistent with the specification. We assume that there is an
MSC specification and consider the case where we have entirely independent local
testers (local observability) and where the observations of the local testers are
logged and brought together (tester observability). It transpires that under local
observability the Oracle Problem can be solved in low-order polynomial time if
we use sequencing, loops and choices but becomes NP-complete if we also allow
parallel components; if we place a bound on the number of parallel components
then it again can be solved in polynomial time. For tester observability, the
problem is NP-complete when we have either loops or choices. However, it can
be solved in low-order polynomial time if we have only one loop, no choices, and
no parallel components. If we allow parallel components then the Oracle Problem
is NP-complete for tester observability even if we restrict to the case where there

are at most two processes.

Keywords: Testing; Oracle Problems; Message Sequence Charts

1. INTRODUCTION

Software testing is an important part of the software
development process but is typically expensive, manual,
and error prone. This observation has led to significant
interest in test automation, with model-based testing
(MBT) being one approach to this. In MBT, a modelM
is produced and testing is then based on this model. For
example, test cases might be generated from M and M
can be used to help direct testing. An important benefit
of MBT is that M can be used as the basis of a test
oracle: we can check that observations made in testing
are consistent with M . Recent work has reported the
results of a major industrial project involving hundreds
of software engineers, with it being found that the use of
MBT led to significant benefits [1]. Most approaches to
MBT use behavioural models written in languages that
are either state-based or scenario-based. In this paper,
we focus on the Oracle Problem when testing from
Message Sequence Charts (MSCs): this is the problem
of deciding whether a given observation is consistent
with an MSC specification.

MSCs form a popular scenario-based language that
is suitable for describing the behaviour of distributed
systems [2]. MSCs are widely used for requirements
analysis and system design in the telecommunications
and software industries [3, 4, 5, 6, 7]. MSCs include

M2 M3

H1

M1

P1

M1

P3P2

CR

Creq
M1 M2

H2

par

FIGURE 1. Examples of bMSC and HMSC

two forms of graphical models: basic MSCs (bMSCs)
and High-level MSCs (HMSCs). Generally, a bMSC
is used to represent message interactions among users
and multiple processes (sub-systems). An example of
a bMSC is given in the left-hand side of Figure 1 in
which process P1 starts a connection request to process
P3. HMSCs are designed for the description of scenarios
with complex structures such as choices, loops and
even parallel compositions. They therefore allow one to
define a, potentially infinite, set of bMSCs. An HMSC
can be seen as being a graph that has a start node,
termination nodes and MSC nodes which refer to other
bMSCs or HMSCs. HMSC H1 given in the middle of
Figure 1 is an example of an HMSC with a choice and

The Computer Journal, Vol. ??, No. ??, ????

2 Haitao Dan and Robert M. Hierons

a loop structure. In the right-hand side of Figure 1, H2

is an HMSC with a parallel composition in which there
are two parallel components that refer to HMSCs.

In the early 1990s, MSCs began to be used in MBT,
initially for describing the test purpose [8, 9]. A
test purpose describes the type of test case required;
test cases were then generated in TTCN format1 from
a state-based specification written in System Design
Languages (SDL). A tool called Autolink [12] was
developed not only to implement such an approach [8]
but also to generate TTCN test cases directly from
MSCs where an SDL model is not available.

In MBT it is necessary to define an implementation
relation that states what it means for a behaviour
to be allowed by a model and a number of
implementation relations have been proposed in existing
research on testing from MSCs. Two relatively weak
implementation relations for an MSC specification
M containing a set of MSCs were proposed in
[13]: behavioural conformance and non-deterministic
conformance. Given an MSC specification M,
behavioural conformance is satisfied if and only if
for every bMSC M ∈ M the SUT can perform a
sequence w of events such that w is a linearisation of
M . Non-deterministic conformance actually extends
behavioural conformance by saying that, if selected
pair of events e and f are unordered in M, they
must also be unordered in the SUT. An alternative
and more intuitive implementation relation requires all
observations of the SUT to be consistent with partial
orders described in the given MSC specification [14].
Since MSCs are used to describe the interaction between
multiple processes, they are often used for distributed
systems and a distributed test architecture might then
be applied. There are then multiple testers and a
range of options regarding the observational power
of these testers. This leads to three implementation
relations: under border event conformance each tester
only observes the events that it is directly involved
in; under tester conformance each tester shares its
observations with the other testers during testing; and
under all conformance each tester observes all of the
events, including the exchange of messages by internal
processes [15]. In addition to these, Boroday et al. [16]
proposed the inclusion of quiescence as an observation.

Another line of research concerned controllability
problems, where a tester might not know when to send
a message to the SUT because it does not observe the
events that involve the other testers [17]. It has been
shown that the notion of a controllability problem when
testing from an MSC specification is related to MSC
pathologies [18]. In this paper, we discuss another
critical issue in conformance testing with MSCs: the
Oracle Problem. Both the controllability problem and
the Oracle Problem need to be addressed in testing a

1TTCN was initially an acronym for Tree and Tabular
Combined Notation [10] and later for Testing and Test Control
Notation [11].

distributed system. Possible controllability problems
have to be resolved in running distributed tests so that
correct input is sent to the SUT. A test coordinator may
help to overcome the controllability problem by sending
and receiving additional control messages [18]. We
have to solve the Oracle Problem when we have made
observations in testing and wish to assign a verdict
that states whether a failure has occurred. The Oracle
Problem has to be answered with or without a test
coordinator. Therefore, the two problems are relevant
but different.

There have been several other lines of work regarding
MSC-based testing. Lee et al. [19] proposed an
approach that first transformed an MSC specification
to a state-based model and then tested from the
state-based model. In [20], a model checker was
used to generated test cases to cover all possible
execution paths of an MSC specification. There has
also been interest in testing from Live Sequence Charts
(LSCs), where the test cases can be generated by
interacting with a Play-Engine tool [21, 22]. The play-
out specifications may lead to a very complex model,
so Kugler et al. [23] proposed to use restrictions
and execution configurations to simplify the LSC-based
testing process. In [24], a TTCN-3 based conformance
testing approach was proposed for a broadcast business
management system. An extension of MSCs, namely
Symbolic Message Sequence Charts (SMSCs), has been
proposed; testing from SMSCs required extra steps to
generate templates and abstract test cases [25].

Sequence Diagrams (SDs) form a scenario based
language that is similar to MSCs and is part of the
UML. There are a number of lines of work that
investigate testing from SDs [26, 27, 28, 29, 30]. Most of
these generate test cases based on both a static model
(Class model) and behavioural models or concentrate
on specific problems, for example stress testing [27],
test input generation for specific parameters [29] and
integration testing [30].

This paper makes the following contributions. First,
we provide a formal definition of the Oracle Problem
for HMSCs (Definition 3.1), adapting it to different
types of observability that might be used in testing.
We then focus on the computational complexity of
the Oracle Problem and we consider a number of
restrictions. Towards the end of the paper the results
are summarised in Tables 1 and 2. A general pattern
is that the computational complexity becomes higher
when the testers have greater observational ability
(tester observability or global observability) and also
if we allow parallel composition. We show that the
Oracle Problem is NP-complete for testing from HMSCs
even with only choices or loops. We also show that the
complexity can be reduced by introducing restrictions
such as a bound on the size of the observation set or
considering HMSCs which are safely realisable. With
either restriction, the Oracle Problem for HMSCs with
both choices and loops can be solved in polynomial

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 3

time. Finally, we show that the complexity is NP-
complete for an HMSC with parallel composition and
either choice or loop structures even when the testers
have local observability. However, this complexity can
be reduced to polynomial time by limiting the number
of components in parallel compositions.

The Oracle Problem discussed in this paper is
essentially caused by parallel/distributed computing
and the inability to establish the global order of events.
The main motivation for our work is to learn more
about the theoretical problems of modelling distributed
computing and detecting faults in distributed systems.
We believe that this will lead to practical applications
in the future. For example, there is a potential to
use MSCs to explore synchronisation related faults in
distributed software systems. In addition, the results
given in the paper can be used to provide practitioners
with guidance regarding features that can complicate
testing. We believe that such results have the potential
to lead to notions of testability for the testing of
distributed systems.

The remainder of the paper is organised as follows.
In the next section, we give preliminary definitions
of MSCs. Section 3 introduces the Oracle Problem
for testing from MSCs and formally defines this. In
Sections 4 and 5, we investigate the complexity of the
Oracle Problem for MSC specifications without or with
parallel compositions, respectively. Finally, Section 6
presents conclusions.

2. PRELIMINARIES

In this section we provide definitions of bMSCs and
HMSCs and their semantics. The graphical form
of bMSCs contains processes and messages as shown
in Figure 1. A process in a distributed system is
represented by a vertical line. Messages are horizontal
or sloped lines exchanged between the processes and the
direction of a message is denoted by the arrow at the
end of the line. Events, usually only the sending and the
receiving of messages, are represented by the end points
of messages. Time progresses from top to bottom along
the vertical lines [2]. A bMSC thus defines a partial
order among the events. The formal representation of
bMSCs is as follows.

Definition 2.1. (bMSCs) A bMSC M is a tuple
〈E,C,P, l,msg,<〉 where: E is a set of events, C is
a message alphabet and P = {P1, . . . , Pn} is a set of
processes; E is partitioned into a set S of send events
and a set R of receive events, E = S ∪ R; l : E 7→ A
is a labelling function and A = AS ∪ AR where AS =
{send(i, j, a) : 1 ≤ i, j ≤ n ∧ a ∈ C} is the set
of sending of messages and AR = {receive(i, j,m) :
1 ≤ i, j ≤ n ∧ m ∈ C} is the set of receiving
of messages; send(i, j,m) represents the sending of
message m from Pi to Pj and receive(i, j,m) the

receiving of the corresponding message2; Ai represents
the set of labels on process Pi; msg : S 7→ R is
a bijection between send and receive events, matching
each send with its corresponding receive; the inverse
mapping is msg−1 : R 7→ S between receive and send
events; there is a helper mapping p : E 7→ [1, n] that
maps each event e ∈ E to the index of the process on
which e occurs; for each 1 ≤ i ≤ n, a total order <i

on the events of process Pi, i.e., on the elements of
p−1(i), such that the transitive closure of the relation
< =̇

⋃
1≤i≤n <i ∪ {(s,msg(s)) : s ∈ S} is a partial

order on E, namely, visual order (<∗). Note that, since
<i is a total order, it is antisymmetric.

In terms of testing from MSCs, the trace semantics
of bMSCs are particular useful because the observations
of testers can be captured by sequences of event labels.
The trace semantics can be described as follows [31].

Definition 2.2. (Word of bMSC) Given a bMSC
M , a word of M is a string w = w1 · · ·w|E| over A if
and only if there exists a total order e1 · · · e|E| of the
events in E such that whenever ei <

∗ ej we have i < j,
and for 1 ≤ i ≤ |E|, wi = l(ei).

Assume that the non-degeneracy condition, also
called weak-FIFO, is satisfied.3 A well-formed and
complete word uniquely characterises a bMSC [31]. A
word is well-formed if all of its receive events have
earlier matching sends and a word w is complete if
all send events have matching receives. A bMSC M
describes a set of well-formed and complete words and
the set of words is the language of the bMSC, denoted as
L(M). We use pref(w) and pref(L) to denote the set
of prefixes of word w and the set of prefixes of language
L, respectively.

HMSCs is a popular way to organise MSC
specifications [32]. HMSCs are formalised as a graph
with nodes labelled by bMSCs or other HMSCs as
shown in Figure 1. In addition, HMSCs may contain
nodes with parallel composition. Events from different
components of a parallel composition can interleave
with any event from other components, but the
only restriction is that the event order within each
component will be preserved. The semantics of an
HMSC is given by the weak sequencing of the nodes on
the paths of the HMSC. Weak sequencing means that
the individual processes of bMSCs are concatenated
and there is no synchronisation at concatenation points
between bMSCs. Therefore, an HMSC defines a set
of member bMSCs and the set of bMSCs can be
infinite due to the loop structure in the graph. The
trace semantics of a complex MSC specification can be
defined as follows.

2We will use !m and ?m as abbreviations of send(i, j,m) and
receive(i, j,m), respectively, where i, j are clear.

3MSC M is non-degenerate if M does not contain two send
events e1 and e2 such that l(e1) = l(e2), e1 < e2 and msg(e2) <
msg(e1).

The Computer Journal, Vol. ??, No. ??, ????

4 Haitao Dan and Robert M. Hierons

Definition 2.3. (Semantics of MSC specifica-
tion) For an MSC specification M4, the language of
M, L(M), is the union of the sets of words of all mem-
ber bMSCs in M, L(M) =

⋃
M∈M L(M).

MSCs implicitly define process behaviours. The
process behaviour can be extracted from MSC
specifications by projection.

Definition 2.4. (Process language) Given a word
w which characterises bMSC M and process Pi in M ,
w|Pi denotes the projection of w on process Pi. For an
MSC specification, behaviours of process Pi are captured
by the projection of the language L(M) on Pi, denoted
as L(M)|Pi, namely the process language.

From the tester’s point of view, w|Pi thus represents
the sequence of event labels observed on Pi. For
the observation set, we can generalise this in the
following way: given set o ⊆ {P1, . . . , Pn} we let
w|o denote the tuple of projections of w on processes
whose labels are in o. It is worth noting that process
languages are regular if M contains only choice and
loop structures and may be non-regular if M contains
parallel composition. Where process languages are
regular, they can be represented by finite automata,
namely process automata. The definition of process
automata is given as follows.

Definition 2.5. (Process automata) A process
automaton Ai is a finite automaton that accepts a
process language L(M)|Pi where the MSC specification
M contains no parallel composition.

From an HMSC specification H with no parallel
composition, a process automaton Ai can be generated
by projecting H on process Pi. The projection of
H is basically a relabelling process: using the event
labels on Pi of a bMSC node to label the corresponding
transitions. The generated automaton has a similar
structure to the HMSC, but the transitions of the
automaton are labelled by event labels.

3. ORACLES FOR TESTING FROM MSCS

Having run a test we have a set of observations and need
to check these observations against the specification:
this is the Oracle Problem. Before defining the
Oracle Problem for HMSCs, we will describe a general
framework that allows us to capture alternative testing
scenarios that differ in the observational power of the
environment (testers).

Previous work has described a general architecture
for testing from MSCs and three scenarios, or notions
of observability: local observability, tester observability,
and global observability [15]. For testing from MSCs,
testers simulate the users’ behaviour and check the
conformance by comparing the observation of the SUT

4We also use H to refer an MSC specification as most MSC
specification discussed in this paper are organised by HMSCs.

with behaviour described in the MSC specification.
In order to distinguish the behaviour of testers and
the SUT, we partition P into Pu and Ps: the first
represents the set of user processes and the second
represents the set of system processes. Under local
observability there is an independent tester at each
user process in Pu and the tester at process Pi ∈ Pu

observes the sequence of events at Pi and compares this
sequence with those it might observe according to the
specification. In contrast, under tester observability the
sequences of events at a process in Pu is logged, the logs
are brought together, and this set of sequences (local
traces) is compared with the specification. Finally,
under global observability the projections observed at
each process in P are logged and brought together and
this information is sufficient to define a bMSC. Clearly,
we can order these scenarios in terms of their ability to
distinguish an implementation from a specification and
under this ordering we have that global observability is
the strongest and local observability the weakest [15].

We can generalise the above scenarios in the following
way. Given set P of processes we will let any subset
of the power set of P be called an observation set.
An observation set O = {o1, . . . , ok} will represent
a situation in which each oi (1 ≤ i ≤ k, oi ⊆
P) represents a tester that can observe the processes
whose labels are in oi. The tester corresponding to oi
observes the sequences of events on processes in oi and
compares this set of local traces to the specification.
It is straightforward to see that the three scenarios
described above can be represented in this manner: for
local observability we let O = {{Pi}|Pi ∈ Pu}; for
tester observability and global observability, as different
testers have the same observability we let O = {{Pu}}
or {{P}}, respectively. We call processes in subsets of
O observable processes. We can now say what it means
for a word w to be acceptable given MSC specification
M and observation set O.

Definition 3.1. (Oracle Problem of MSC
specification) Given MSC specification M and
observability set O, a word w is acceptable if for all
o ∈ O there exists a word wo ∈ L(M) such that
w|o = wo|o.

Given MSC specification M and observation set O,
the Oracle Problem is to determine whether a word w
is acceptable. We now explore the complexity of this
problem for different features of HMSCs.

4. COMPLEXITY WITHOUT PARALLEL
COMPOSITION

This section examines the complexity of the Oracle
Problem without considering parallel compositions;
parallel composition is considered in Section 5. First,
we consider the Oracle Problem with local observability.
We then examine the two other types of observability
(tester and global). In this we discussing two simpler

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 5

cases: HMSCs with only choices and with only loops.
We then adapt previous results [31, 33] to show that
there are polynomial algorithms to solve the Oracle
Problem for HMSCs with a bound on the number of
processes and also for safely realisable HMSCs.

4.1. Complexity with local observability

In this section we briefly discuss the case where O
is a set of singletons, which corresponds to local
observability. We show that for MSC specifications with
just choices and loop structures the Oracle Problem can
be efficiently solved by Algorithm 1. The complexity of
Algorithm 1 is given in the following theorem.

Input: H, w, O
/*H is the input HMSC without

parallel compositions, w is an

observed word and O is the

observation set */

Output: True/False
/*The algorithm returns True if w is

acceptable, otherwise False is

returned */

foreach oi ∈ O with oi = {Pi} do1

Ai = project(H, Pi) /*Generate2

process automaton Ai by

projecting H to Pi which is the

only item in oi */

wi = w|Pi /*Generate projection on3

Pi from w */

if reject(Ai, wi) /*Check if Ai4

rejects wi */

then5

return False6

end7

end8

return True9

Algorithm 1: checkLocalHMSC

Theorem 4.1. Under local observability, the Oracle
Problem for HMSC H that uses no parallel compositions
can be solved in time O(|H||w|), where |H| is the size
of the HMSC, |w| is the length of w.

Proof. The first step of the algorithm is to generate
process automata and this can be achieve in linear time.
The second step, which checks whether w|Pi is a word
of Ai can be solved in time O(|Hi||w|Pi|) where |Hi| is
the size of the projection of H onto the process Pi and
|w|Pi| is the length of the projection of w on process
Pi. As a result, the overall algorithm operates in time
O(

∑n
i=1 |Hi||w|Pi|) = O(|H||w|).

Consider now the HMSC given in Figure 2. There is
a loop around bMSC M1 in which processes U1 and
U2 are simulated by testers with local observability.
The algorithm accepts an observation {{?a?a}, {?b}} as

M1

M1
U1 U2 P1

b

a

FIGURE 2. Issue of the local observability

?a?a and ?b are both valid behaviours according to the
corresponding process languages. However, no scenario
described by the HMSC generates such an observation.
This illustrates how weak local observability can be and
why we are therefore also interested in the stronger
notions of observability.

4.2. Complexity with stronger observability

With tester or global observability, testers can observe
events on the same set of processes Pu or P,
respectively. It is straightforward to see that the Oracle
Problem can be solved in polynomial time if M is a
single bMSC and so we explore what happens if we add
loops and choice in HMSCs. We leave the consideration
of parallel composition to Section 5, since it transpires
that this feature can make the Oracle Problem NP-
complete even if we are using local observability.

4.2.1. HMSCs with choice
Previous work has considered the membership problem
for HMSCs, where we are allowed to have choices
and loops but not parallel composition. We therefore
start by considering choices and loops. It has been
shown that the membership problem for HMSCs is NP-
complete, even if the HMSC is acyclic [33]. This extends
immediately to the Oracle Problem if we set Pu = P
and O = {P}; if all events are observed. However, we
can show that the Oracle Problem for HMSCs is NP-
complete even without the restriction that Pu = P and
we allow only sequencing and choice. This still holds if
we either require that no user process sends a message
or that no user process receives a message. We will
prove this by reducing the one-in-three SAT problem,
which is NP-complete [34], to the Oracle Problem for
MSCs.

Definition 4.1. (One-in-three SAT problem)
Let us suppose that z1, . . . , zv are boolean variables and
C1, . . . , Cc are sets of three literals, where a literal is
either a variable or its negation. The one-in-three SAT
problem is to decide whether there is an assignment to
the variables such that each Cj, 1 < j < c, contains
exactly one true literal.

The Computer Journal, Vol. ??, No. ??, ????

6 Haitao Dan and Robert M. Hierons

a

M1
T

P1 PcP2 P3

a

Pc+1

H1

M1
T M1

F

H1

Hv

H2

FIGURE 3. HMSC constructed with choices

Theorem 4.2. The following problem is NP-
complete: given a word w, observation set O and HMSC
H that uses only choices and sequencing, is w accept-
able for H. Further, this still holds if we restrict H so
that either no messages are sent by user processes or so
that no messages are received by user processes.

Proof. We first show that the problem is in NP. Given
word w, a non-deterministic Turing Machine can guess a
word of H with the same length as w and check whether
it is observationally equivalent to w (it has the same set
of projections onto the individual processes). We can
guess such a word in polynomial time and the process
of checking equivalence to w also takes polynomial time
since we just generate the local projections and compare
these. Thus, a non-deterministic Turing machine can
solve this problem in polynomial time and so the
problem is in NP as required.

It is now sufficient to prove that the problem
is NP-hard. We will assume that an instance of
the one-in-three SAT problem has been given with
variable set z1, . . . , zv and sets C1, . . . , Cc in which
each Cj contains three literals and will construct a
corresponding instance of the Oracle Problem for an
acyclic HMSC H and a particular observation w. We
will construct H and w so that w is allowed by H if
and only if there is a solution to this instance of the
one-in-three SAT problem.

We will define an HMSC as shown in Figure 3 in
which there are c+1 processes; the processes with labels
1, . . . , c will be user processes and the process with label
c+1 will be the unique system process. We will also let
O = {{1, . . . , c}}. We will initially construct H so that
no messages are sent by user processes.

The HMSC H will be formed of a sequence

H1, . . . ,Hv of HMSCs where Hi will represent a choice
for the value of variable zi. The ith choice, 1 ≤ i ≤ v,
will have two cases and so Hi contains two bMSCs MT

i

and MF
i . In MT

i there is a message a sent from system
process c + 1 to every process j such that Cj contains
the literal zi. In MF

i there is a message a sent from
system process c + 1 to every process j such that Cj

contains the literal ¬zi. These model the two possible
values for zi.

Consider a bMSC in H. Such a bMSC M ′ is of the
form M b1

1 . . .M bv
v and represents boolean variable zi

taking on the value bi, 1 ≤ i ≤ v. In addition, process
j receives a message in M bi

i if and only if one of the
following holds:

1. bi is true (T) and the clause Cj contains the
literal zi; or

2. bi is false (F) and the clause Cj contains the
literal ¬zi.

As a result, the number of messages received by process
j in M ′, 1 ≤ j ≤ c, is equal to the number of literals in
Cj that are true when we have the valuation in which
zi = bi, 1 ≤ i ≤ v.

Now consider the word w in which each process in Pu

observes the reception of exactly one message. Then w
is acceptable given H and O if and only if there is a
bMSC M ′ = M b1

1 . . .M bv
v such that w is an observation

allowed by M ′. In addition, since w has each process
j receiving exactly one message, we have seen that this
is the case if and only if the valuation in which zi = bi,
1 ≤ i ≤ v, is such that each Cj contains exactly one
literal that is true. Thus, w is allowed by H if and only
if there is a solution to this instance of the one-in-three
SAT problem. Thus, if we can solve this type of Oracle
Problem for HMSCs in polynomial time then we can
also solve the one-in-three SAT problem in polynomial
time. Since we can construct H in polynomial time, the
result follows from the one-in-three SAT problem being
NP-complete.

To show that the result also holds if we require that
no messages are received by user processes we simply
reverse the direction of messages.

4.2.2. HMSCs with loops
If we have an HMSC that is in the form of a single loop
that contains a sequence then the Oracle Problem can
be solved in polynomial time: given o ∈ O we look at
the observation on one process in o in which the loop
has a non-empty word and we can then determine the
number of iterations the loop must have taken. We then
check the other processes in o.

Let us consider an HMSC with a single loop H with
n observable processes. We can generalise the above
as shown in Figure 4: one bMSC M1 before the loop
structure, M2 is in the loop structure andM3 is after the
loop structure. Let wj

i represent the sequence of event
labels of Mj on Pi, where j ∈ 1, 2, 3. The algorithm that
checks whether observation w is acceptable is given in

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 7

M1

M3

M2

FIGURE 4. HMSC with a single loop

Algorithm 2. In the algorithm, given words u, v and
w, function isSuffix(v,w) returns true if and only if v is
a suffix of w; function isPrefix(v,w) returns true if and
only if v is a prefix of w; function trimPrefixSuffix(w,
u, v) returns a word formed by removing prefix u and
suffix v from w; function isRepetition(v,w) returns true
if and only if v = wn where n >= 1; repetition(v,w)
returns integer n if v = wn. Algorithm 2 compares the
number of iterations of the loop for all processes. This
is because there is a possibility that different processes
take varying numbers of iterations. In this case, the
observation should be rejected. The complexity of
Algorithm 2 is given in the following theorem.

Theorem 4.3. Under tester observability with n
observable processes, the Oracle Problem for word w
and HMSC H that contains a single loop and does not
use choices or parallel composition can be solved in time
O(n|H||w|).

Proof. There are n iterations of the outer loop. The
iteration for Pi starts by removing w1

i and w3
i from

w|Pi, if this is possible, and so takes O(|w|) time. The
loop count is then determined by simulating Hi with
w′i and this takes O(|Hi||w′i|) time. Thus, the overall
complexity is O(n|H||w|) as required.

In general, however, the Oracle Problem is NP-
complete for HMSCs in which we have loops and
sequencing, the following adapting the proof of
Theorem 4.2. Essentially, we can use loops to simulate
choices through the cases where the body of the loop is
not executed and where it is executed exactly once.

Theorem 4.4. The following problem is NP-
complete: given a word w, observation set O and HMSC
H that uses only loops and sequencing, is w acceptable
for H. Further, this still holds if we restrict H so that
either no messages are sent by user processes or so that
no messages are received by user processes.

Proof. The proof that the problem is in NP is equivalent
to that in the proof of Theorem 4.2. We therefore
need to prove that the problem is NP-hard and again

Input: H, w, o
/*H is the input HMSC with a single

loop, w is an observed word and o
is the only subset in O where

o = Pu for tester observability;

o = P for global observability */

Output: True/False
lastLC = 0 /*Initialise the last loop1

counter */

foreach Pi ∈ o do2

wi = w|Pi /*Generate projection on3

Pi from w */

if not isPrefix(w1
i , wi) then4

return False5

end6

if not isSuffix(w3
i , wi) then7

return False8

end9

w′i = trimPrefixSuffix(wi, w
1
i , w

3
i)10

if not isRepetition(w′i, w
2
i) then11

return False12

end13

if w2
i = ε then14

continue15

end16

lc = repetition(w′i, w
2
i)17

if (lastLC 6= lc) ∧ (lastLC 6= 0) then18

return False19

end20

lastLC = lc21

end22

return True23

Algorithm 2: checkSingleLoopHMSC

we assume that an instance of the one-in-three SAT
problem has been given with variable set z1, . . . , zv and
sets C1, . . . , Cc of three literals and will construct a
corresponding instance of the Oracle Problem for an
HMSC that makes no use of choice. We will define an
HMSC in which there are c+ 2 processes; the processes
with labels 0, 1, . . . , c will be user processes and the
process with label c+ 1 will be the system process. We
also let O = {{0, 1, . . . , c}} and will initially construct
H so that no messages are sent by user processes.

The HMSC H will be formed of a sequence of v
HMSCs as shown in Figure 5. There are two loops
for each variable in each HMSC. The first loop of Hi,
1 ≤ i ≤ v, will have an MSC MT

i in which there is a
message with label a sent from system process c+ 1 to
every process j such that Cj contains the literal zi and
also a message with label i sent from c + 1 to process
0. In the second loop (MF

i), there is a message a sent
from system process c+ 1 to every process j such that
Cj contains the literal ¬zi and also a message with label
i sent from c + 1 to process 0. These loops model the
two possible values for zi.

Now consider the word w in which each process in

The Computer Journal, Vol. ??, No. ??, ????

8 Haitao Dan and Robert M. Hierons

H1

Hv

H2

a

P0 PcP1 P2

a

Pc+1

i

H1

M1
T

M1
F

M1
T

FIGURE 5. HMSC constructed with loops

{1, . . . , c} receives a and process 0 receives 1, . . . , v. The
observation on process 0 ensures that we must have
entered the body of a loop corresponding to a value
for each zi, 1 ≤ i ≤ v, and have done this exactly once.
Then w is acceptable given H and O if and only if there
is an assignment to the boolean variables z1, . . . , zv such
that each Cj contains exactly one true literal. Since we
can construct H in polynomial time, the result follows
from the one-in-three SAT problem being NP-complete.

To show that the result also holds if we require that
no messages are received by user processes, we simply
reverse the direction of messages.

4.3. Complexity with other restrictions

In this section, we discuss two restrictions on HMSCs
which reduce the complexity of the Oracle Problem for
testing from HMSCs. One is where there is a bound
on the number of processes. The other is that either
the HMSC specification H is safely realisable 5 or H is
not safely realisable but the implied scenarios of H are
acceptable in testing.

Alur et al. [33] showed that the membership problem
can be solved in polynomial time if we place a bound
on the number of processes. We can adapt this to
show that when we have choices and loops the Oracle
Problem can be solved in polynomial time if we place a
bound on the size of O.

Theorem 4.5. Given an HMSC H, observation w
and a bound k on the size of sets in O, the Oracle
Problem can be solved in time O(|H||w|k).

5The concept of safely realisable is introduced later in this
section.

Proof. This theorem follows the membership results
given in Theorem 5 in Alur et al. [33].

This result is especially useful with tester observabil-
ity as there often are a limited number of testers in a
distributed test environment. The corresponding solu-
tion is given in Algorithm 3 which is a recursive proce-
dure that is run for each o ∈ O. Basically, it searches
HMSC H by matching each next MSC node according
to observation w. The extreme case is that the search
process has to traverse |H||w|k nodes to give the deci-
sion.

Input: H, w, o, c
/*H is the input HMSC, w is an

observed word, o is the set in O
containing k processes and c is

current node in H which initially

is the start node */

Output: True/False
tc = c /*Backup c */1

while w 6= ε do2

foreach M ∈ H /*M is next3

possible MSC node in H */

do4

if ∃w′ ∈ L(M)|o is head of w then5

w = w − w′ /*Remove the head6

of w */

c = M7

call checkBoundedHMSC (H, w,8

o, c)
end9

end10

if c = tc /*Cannot find a successive11

node */

then12

break13

end14

end15

if w = ε ∧ isTermination(c) /*Check if c16

is a termination node and w is an

empty string */

then17

return True18

end19

Algorithm 3: checkBoundedHMSC

The second restriction is based on research on implied
scenarios in HMSC specification. The definition of
implied scenario can be found in [31].

Definition 4.2. (Implied Scenarios) w represents
an implied scenario of MSC specification M if w is a
well-formed word and for each w|Pi i ∈ [n], a word
v ∈ pref(L(M)) exists such that w|Pi = v|Pi, but
w /∈ pref(L(M)).

According to [31, 35], the synthesised model from an
HMSC specification may exhibit additional behaviours

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 9

which are not described by the original specification
even though each process follows its local specification;
these are the implied scenarios. For example, consider
the MSC specification described by H1 in Figure 6. M3

is an implied scenario of H1 since the behaviours of all
processes follows the specification. The behaviours of
P1 and P2 conform to the left branch of H1 and the
behaviours of P3 and P4 conform to the right branch of
H1. However, M3 is not described by H1.

An HMSC specification M is said to be safely
realisable if and only if there exists a synthesised model
whose behaviour contains no implied scenarios and also
no deadlocks [31]. The decision problem regarding
whether an HMSC is safely realisable is generally
undecidable but it is in EXPSPACE and is PSPACE-
hard if the number of pending messages is limited to
be a finite number since all the loops of the HMSC are
roughly synchronised [33].

The Oracle Problem and the safely realisable decision
problem are different. However, safely realisable HMSC
specifications have the following property: a word w is
in the language of an MSC specification M if and only
if for every process Pi we have that the projection of
w on Pi is a word of the process language of M at
Pi. Therefore, to solve the Oracle Problem with the
second restriction, for each o ∈ O and Pi ∈ o it is
sufficient to check that the projection of the word on Pi

is in the corresponding process language. The algorithm
is given in Algorithm 4 which is similar to Algorithm
1. Note that Algorithm 4 is applied with each o ∈ O.
Both algorithms work on process behaviours and the
difference is the observabilities of testers.

Input: H, w, o
/*H is the input HMSC which is

safely realisable, w is an

observed word and o is the set in

O */

Output: True/False
foreach Pi ∈ o do1

Ai = project(H, Pi) /*Generate2

process automaton Ai by

projecting H */

wi = w|Pi /*Generate projection on3

Pi from w */

if reject(Ai, wi) /*Check if Ai4

rejects wi */

then5

return False6

end7

end8

return True9

Algorithm 4: checkSafelyRealisableHMSC

Theorem 4.6. Given a safely realisable HMSC H,
observation w, the Oracle Problem can be solved in time
O(|H||w|) where |H| is the size of the HMSC, |w| is the

length of w.

Proof. This theorem can be proven as follows. There
are two steps in the algorithm. First, building an
automaton representing a process language of HMSC
H without parallel compositions can be done in linear
time. Second, checking whether the projection of
observed word w|Pi is in the corresponding process
language can then be done in time O(|Hi||w|Pi|) where
|Hi| is the size of the projection of H onto the process
Pi. Thus the total time is of O(|H||w|)

4.4. Summary

Table 1 summarises the complexity results given in this
section. A cell of the table shows the complexity of
the class of Oracle Problem for HMSCs with particular
features given by the column and row headers. Different
columns represent HMSCs with different types of
constructs, for example column 3 represents HMSCs
with only choice structures. Rows of the table introduce
other configurations such as the type of observability
(Obser.) or other restrictions (Other restr.) such as
row 3 representing the MSC being safely realisable and
row 4 representing there being a bound on the size of
the observation set. We use “tester+” to represent both
tester and global observability as there is no difference,
in terms of complexity results, between these two types
of observability with each observation set containing
multiple processes. For local observability there is only
one row because the results do not change if we assume
that an MSC is safely realisability or there is a bound
on the number of processes.

For the first three rows of the table, we have proved
that the complexity of these instances of the Oracle
Problem for HMSCs with choice and loop structures
(the last column) can be solved in polynomial time.
Thus, this result holds immediately for HMSCs with
only choice, single loop or loop structures.

5. PARALLEL COMPOSITION

From Section 4.1, we know that the Oracle Problem
with local observability and no use of the parallel
feature can be solved in polynomial time. We now
explore the effect of the parallel composition under local
observability.

5.1. HMSCs with choices or loops

We use a similar approach to that given in Section 4
to discuss the complexity of the Oracle Problem for
HMSCs with parallel compositions plus choices or loops.

Theorem 5.1. Under local observability, if we allow
specifications to contain the choice and parallel features
then the Oracle Problem is NP-complete. This is the
case even if we restrict attention to MSCs with only
two processes.

The Computer Journal, Vol. ??, No. ??, ????

10 Haitao Dan and Robert M. Hierons

a

c

P1 P2 P3
M1H1

M1 M2

e

P4

b

c

P1 P2 P3
M2

d

P4

a

c

P1 P2 P3
M3

d

P4

FIGURE 6. Example of implied scenarios

TABLE 1. Complexities of Oracle Problem without parallel compositions

Obser. Other restr. Choice Single Loop Loop Choice+Loop

Local None P P P Pa

Tester+
R P P P Pb

BO P P P Pc

None NP-completed Pe NP-completef NP-complete

aTheorem 4.1
bTheorem 4.6
cTheorem 4.5
dTheorem 4.2
eTheorem 4.3
fTheorem 4.4

Proof. The proof that the problem is in NP is equivalent
to that in the proof of Theorem 4.2. To prove that the
problem is NP-hard we again use the one-in-three SAT
problem; we assume that an instance of the one-in-three
SAT problem has been given with variable set z1, . . . , zv
and sets C1, . . . , Cc of three literals and will construct
a corresponding instance of the Oracle Problem for an
HMSC in which we use choice structures and parallel
compositions.

We will form an HMSC as shown in Figure 7 in which
there are two processes P1, P2 and in which P1 is the
system process, P2 is the user process and O = {{P2}}.
We will also use a set {m1, . . . ,mc} of message labels.

We will have v separate choices in parallel. The ith
choice, 1 ≤ i ≤ v, will have two options.

1. Under one option, corresponding to the case
where zi is true, there is a sequence of messages
from P1 to P2, with there being a message with
label mj if and only if Cj contains literal zi. These
messages are received in the order implied by the
subscripts: if both mr and ms are sent and r < s
then mr is received before ms.

2. Under the other option, corresponding to the case
where zi is false, there is a sequence of messages
from P1 to P2, with there being a message with
label mj if and only if Cj contains literal ¬zi.
These messages are received in the order implied
by the subscripts: if both mr and ms are sent and
r < s then mr is received before ms.

We now ask whether user process P2 can observe the
sequence of messages with labels m1, . . . ,mc in that

...

par

M1
T M1

F M2
T M2

F Mv
T Mv

F

m1

M1
T

P1

m3

P2

FIGURE 7. HMSC constructed with parallel compositions

order. Clearly, this is allowed byH if and only if there is
an assignment to the boolean variables (a set of choices)
under which each Cj contains exactly one literal that is
true. The result now follows from the one-in-three SAT
problem being NP-complete and the fact that we can
form H in polynomial time.

As with the proof of Theorem 4.4, it is possible to use

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 11

loops to simulate choices. It is therefore straightforward
to prove the following.

Theorem 5.2. Under local observability, if we allow
specifications to contain the loop and parallel features
then the Oracle Problem is NP-complete. This is the
case even if we restrict attention to MSCs with only
two processes.

5.2. Complexity with other restrictions

Since the proofs of Theorem 5.1 and 5.2 used a
specification with only two processes, the problem is
still NP-complete if we place bounds on the number of
processes. However, if we place bounds on the number
of components we have in the parallel composition
then the problem becomes polynomial with local
observability.

Theorem 5.3. Let us suppose that specification H
with n observable processes is in the form of a parallel
composition of at most k HMSCs that do not contain the
parallel feature. Under local observability, the Oracle
Problem with word w can be solved in O(n|H|k|w|) time.

Proof. Let H denote the specification and assume that
H is the parallel composition of H1, . . . ,Hk. For tester
process Pi and Hj , 1 ≤ j ≤ k, let Aij be the finite
automaton formed by taking the projection of Hj on
process Pi. Then we define a finite automaton Ai in the
following way. A state of Ai is of the form (s1, . . . , sk)
where sl is a state of Ail for 1 ≤ l ≤ k. If Aij has a
transition from sj to s′j with label a then we include in
Ai transitions of the following form: there is a transition
with label a from (s1, . . . , sj−1, sj , sj+1, . . . , sk) to
(s1, . . . , sj−1, s

′
j , sj+1, . . . , sk). A state (s1, . . . , sk) of Ai

is a final state if and only if sj is a final state ofAij for all
1 ≤ j ≤ k. Then L(Ai) is the set of interleavings of the
words in L(Aij) and this is exactly the set of words that
are allowed byH at Pi. Thus, given word w we can solve
the Oracle Problem by constructing the Ai and solving
the membership problem for w|Pi and Ai for each
tester process Pi. Now observe that each Aij can be
constructed in linear time and has size of O(|H|) and so
the Ai have at most |H|k states. The result now follows
from there being O(n) membership problems, one per
process, and the fact that a membership problem with
a word of length O(|w|) and finite automaton with
O(|H|k) states can be solved in O(|H|k|w|) time.

The algorithm developed based on Theorem 5.3 is
given in Algorithm 5. The first loop structure is used
to generate the set of process automata Aij in parallel.
In the second loop, line 7 generates the set of process
automaton Ai by taking the product of the Aij . It
then checks whether the projection of the observation
on process Pi is accepted by the corresponding Ai.

Now we show that the restriction that requires
HMSCs being safely realisable does not reduce the
complexity.

Input: H, w, O = {{P1}, . . . , {Pn}}
/*H is the only parallel composition

and contains k components */

Output: True/False
foreach Hj ∈ H do1

foreach Pi do2

Aij = project(Hj , Pi) /*Generate3

process automaton of Hj for

Pi */

end4

end5

foreach Pi do6

Ai =
∏k

j=1Aij /*Product automata to7

generate process automata for

the parallel composition */

wi = w|Pi /*Generate projection on8

Pi from w */

if reject(Ai, wi) /*Check if Ai9

rejects wi */

then10

return False;11

end12

end13

return True14

Algorithm 5: checkBoundedParallelHMSC

Theorem 5.4. Let us suppose that specification H
is safely realisable and contains the choice and parallel
features. Under local observability, the Oracle Problem
with H is NP-complete.

Proof. Consider the HMSC used in the proof of
Theorem 5.1. This HMSC does not contain non-
local choices and so is safely realisable according to
Proposition 23 in [36]. The result therefore follows.

We now consider another restriction on HMSCs in
which no event label appears in more than one parallel
component of an HMSC. Then if we consider a word,
for each observed label we can uniquely determine the
parallel component that it must have come from. It
is then possible to solve the Oracle Problem for local
observability in polynomial time since we just compare
the projections of observation to the HMSC H. Let H
be the parallel composition of Hi for 1 ≤ i ≤ k and
let AH be the set of event labels in H. The algorithm
that solves the corresponding Oracle Problem is given
in Algorithm 6.

The complexity of Algorithm 6 is stated in the
following theorem.

Theorem 5.5. Let us suppose that specification H
with n observable processes is in the form of a parallel
composition of HMSCs H1, . . . ,Hk that do not contain
the parallel feature. Further let us suppose that the Hj,
1 ≤ j ≤ k, have disjoint sets of event labels. Under
local observability, the Oracle Problem with word w can
be solved in O(n|H||w|) time.

The Computer Journal, Vol. ??, No. ??, ????

12 Haitao Dan and Robert M. Hierons

Input: H, w, O = {{P1}, . . . , {Pn}}
/*H is the parallel composition of

H1, . . . ,Hk */

Output: True/False
foreach 1 ≤ j ≤ k do1

wj = w|AHj Project w onto the set of2

event labels of Hj

end3

foreach Pi do4

wj
i = wj |Pi5

Aj
i = project(Hj , Pi) /*Process6

automaton Aj
i is generated by

projecting Hj on Pi */

if reject(Aj
i , wj

i) then7

return False8

end9

end10

return True11

Algorithm 6: checkDisjointParallelHMSC

Proof. Let us suppose thatH is the parallel composition
of HMSCs H1, . . . ,Hk. Given word w and Hj we can
form the word wj that is the projection of w on the
set of event labels of Hj and this can be achieved in
linear time. It is then sufficient to solve the Oracle
Problem for each wi and Hj . The Algorithm thus
repeats Algorithm 1 for each parallel component and so
the result follows from Theorem 4.1 and the fact that
|H| is of O(

∑k
j=1 |Hj |).

5.3. Summary

Table 2 summarises the complexity results for HMSCs
with parallel composition. For local observability, it
is shown that HMSCs with choice or loop structures
lead to NP-complete complexity. Therefore, for HMSCs
with both structures, it is clear the Oracle Problem
is NP-complete. As the bound on the number of
parallel components reduces the complexity of the
Oracle Problem to polynomial time for HMSCs with
both choice and loop structures, the corresponding
problem for HMSCs with choice or loop structures can
also be solved in polynomial time.

In terms of tester+ observability, the Oracle Problem
is NP-complete even under the restriction BP. This is
because we have shown that for HMSCs with choice or
loop structures but no parallel composition the problem
is NP-complete.

6. CONCLUSIONS

Message Sequence Charts (MSCs) forms a popular
language in which scenario-based specifications and
models can be written. Since MSCs are widely
used in industry, and are suitable for describing
distributed systems, there has been significant interest
in automating aspects of testing from MSCs. The focus

of previous work has largely been on automated test
generation but this paper concerns a complementary
issue: having an automated test Oracle based on an
MSC.

Before devising a test Oracle one has to decide upon
the observational power of the environment (or tester),
since this determines the nature of the observations we
are considering. This paper defined a general form
of the Oracle Problem and considered three cases of
this: local observability; tester observability; and global
observability. It then considered the complexity of the
Oracle Problem for these forms of observability with
HMSCs that use particular features.

We first considered the case where parallel composi-
tion is not used. It transpired that the Oracle Problem
is simpler with local observability. Specifically, this can
be solved in low-order polynomial time for HMSCs that
contain loops and/or choices. In contrast, for tester and
global observability, the problem is NP-complete when
we have either loops or choices. However, it can be
solved in low-order polynomial time if we have only one
loop or have an HMSC which is safely realisable. In
addition, it was also shown that the complexity can be
reduced to polynomial time by putting a bound on the
number of processes of HMSCs.

We then allowed parallel composition and found
that the Oracle Problem is NP-complete even for local
observability. However, for local observability the
problem can be solved in polynomial time if we place
a bound on the number of parallel components. Under
tester and global observability, the Oracle Problem is
NP-complete even if we restrict attention to HMSCs in
which there are at most two parallel components.

While there has been significant interest in the use of
scenario-based models represented as MSCs or Sequence
Diagrams (SDs), the results in this paper provide a
warning to practitioners. This complements previous
results suggesting that the semantics of scenario-based
models can be difficult to understand, leading to the
potential for subtle mistakes [18]. A tester wishing
to base testing on MSCs must consider the semantic
issue and the results in this paper also show that
the set of features used can have another significant
practical effect in that it influences the computational
complexity of the Oracle Problem. The results thus
provide a warning regarding potential practical issues
and define a type of testability under which these issues
are less significant. It may well be that testers will
wish to restrict attention to sets of features where
semantic misunderstandings are less likely and the
Oracle Problem can be solved in polynomial time.

Finally, it is worth noting that results in this paper
also apply to SDs of UML, which is another popular
scenario-based language [37]. It is clear that we can
construct SDs modelling the behaviours described in
Figures 3, 4, 5 and 7 with the main constructs of SDs:
Lifeline, Message, Occurrence and CombinedFragment
with InteractionOperators seq, opt, par or loop. This

The Computer Journal, Vol. ??, No. ??, ????

The Oracle Problem When Testing from MSCs 13

TABLE 2. Complexities of Oracle Problem with parallel compositions

Obser. Other restr. Paral.+Choic. Paral+Loop Paral.+Choic.+Loop

Local
BP P P Pa

R NP-complete b NP-complete NP-complete

None NP-complete c NP-completed NP-complete

Tester+
BP NP-complete NP-complete NP-complete
None NP-complete NP-complete NP-complete

aTheorem 5.3
bTheorem 5.4
cTheorem 5.1
dTheorem 5.2

means that the key theorems given in the paper
(Theorems 4.2, 4.3, 4.4 and 5.1) apply to SDs with
these main constructs. Therefore, when testing from
SDs, the Oracle Problem for the corresponding test
configurations has at least the same complexity.

There are several lines of future work. First, it
may be possible to identify additional conditions under
which the Oracle Problem can be solved in polynomial
time. In addition, while we considered the main features
of HMSCs, it would be interesting to investigate the
complexity of the Oracle Problem for HMSCs that use
other parts of the language such as time constraints
and data tags. Finally, there is also scope to develop a
model-based testing tool based on MSCs in which the
algorithms given in the paper are implemented to solve
the Oracle Problem.

REFERENCES

[1] Grieskamp, W., Kicillof, N., Stobie, K., and Braber-
man, V. A. (2011) Model-based quality assurance
of protocol documentation: tools and methodology.
Softw. Test., Verif. Reliab., 21, 55–71.

[2] ITU-T (2004). ITU-T Recommendation Z.120 Message
Sequence Chart.

[3] Mauw, S., Reniers, M., and Willemse, T. (2001)
Message Sequence Charts in the software engineering
process. Handbook of Software Engineering and
Knowledge Engineering, 1, 437–464, World Scientific
Publishing.

[4] Haugen, Ø. (2001) MSC-2000 interaction diagrams for
the new millennium. Computer Networks, 35, 721–732.

[5] SDL Forum Society (Accessed in 2012).
http://www.sdl-forum.org/.

[6] Krüger, I., Grosu, R., Scholz, P., and Broy, M.
(1998) From MSCs to statecharts. Proceedings of
International Workshop on Distributed and Parallel
Embedded Systems, Schloss Eringerfeld, Germany, pp.
61–71., Kluwer Academic Publishers Norwell, MA,
USA

[7] Whittle, J., Kwan, R., and Saboo, J. (2005) From
scenarios to code: An air traffic control case study.
Software and Systems Modeling, 4, 71–93.

[8] Grabowski, J., Hogrefe, D., and Nahm, R. (1993)
Test case generation with test purpose specification by

MSCs. Proceedings of the 6th SDL Forum, Darmstadt,
Germany, pp. 253–65.

[9] Grabowski, J. SDL and MSC Based Test Case
Generation – An Overall View of the SAMSTAG
Method. Technical report. IAM-94-0005, University of
Berne, 1994.

[10] ITU-T (1998). Recommendation X.292 OSI confor-
mance testing methodology and framework for proto-
col Recommendations for ITU-T applications The Tree
and Tabular Combined Notation (TTCN).

[11] Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker,
I., Wiles, A., and Willcock, C. (2003) An introduction
to the testing and test control notation (TTCN-3).
Computer Networks, 42, 375 – 403.

[12] Koch, B., Grabowski, J., Hogrefe, D., and Schmitt, M.
(1999) Autolink – a tool for automatic test generation
from SDL specifications. Proceedings of the 2nd IEEE
Workshop on Industrial Strength Formal Specification
Techniques, Boca Raton, FL, USA, 10, pp. 114–25,
IEEE Computer Scoiety.

[13] Chung, I. S., Kim, H. S., Bae, H. S., Kwon, Y. R.,
and Lee, B. S. (1999) Testing of concurrent programs
based on message sequence charts. Proceedings of the
3rd International Symposium on Software Engineering
for Parallel and Distributed Systems, Los Alamitos, CA,
USA, 72–82, IEEE Computer Scoiety.

[14] Baker, P., Bristow, P., Jervis, C., King, D., and
Mitchell, B. (2003) Automatic generation of confor-
mance tests from message sequence charts. Telecom-
munications and beyond: The Broader Applicability of
SDL and MSC, Lecture Notes in Computer Science,
2599, pp. 170–98. Springer Berlin, Heidelberg.

[15] Dan, H. and Hierons, R. M. (2011) Conformance testing
from Message Sequence Charts. Proceedings of the 4th
IEEE International Conference on Software Testing,
Verification and Validation, Berlin, Germany, pp. 279–
288, IEEE Computer Scoiety.

[16] Boroday, S., Petrenko, A., and Ulrich, A. (2009)
Implementing MSC tests with quiescence observation.
Proceedings of the 21st International Conference on
Testing of Software and Communication Systems and
9th International FATES Workshop, Berlin, Germany,
pp. 49–65, Springer Berlin, Heidelberg.

[17] Dan, H. and Hierons, R. M. (2012) Controllability
problems in MSC-based testing. The Computer
Journal, 55, 1270–1287.

The Computer Journal, Vol. ??, No. ??, ????

14 Haitao Dan and Robert M. Hierons

[18] Dan, H. Hierons, R. M., and Counsell, S. (2012) A
framework for pathologies of message sequence charts.
Information and Software Technology, 54, 1283–1295.

[19] Lee, N. H. and Cha, S. D. (2003) Generating test
sequences from a set of MSCs. Computer Networks, 42,
405 – 417. ITU-T System Design Languages (SDL).

[20] Ulrich, A., Alikacem, E.-H., Hallal, H., and Boroday,
S. (2010) From scenarios to test implementations via
promela. In Petrenko, A., Simo, A., and Maldonado, J.
(eds.), Testing Software and Systems, Lecture Notes in
Computer Science, 6435, pp. 236–249. Springer Berlin,
Heidelberg.

[21] Damm, W. and Harel, D. (2001) LSCs: breathing
life into message sequence charts. Formal Methods in
System Design, 19, 45–80.

[22] Harel, D. and Marelly, R. (2003) Specifying and
executing behavioral requirements: the play-in/play-
out approach. Software and System Modeling, 2, 82–
107.

[23] Kugler, H., Stern, M., and Hubbard, E. (2007)
Testing scenario-based models. In Dwyer, M. and
Lopes, A. (eds.), Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, 4422,
pp. 306–320, Springer Berlin, Heidelberg.

[24] Wang, Z., Yin, X., Xiang, Y., Zhu, R., Gao, S., Wu,
X., Liu, S., Gao, S., Zhou, L., and Li, P. (2009)
TTCN-3 based conformance testing of mobile broadcast
business management system in 3G networks. In
Nunez, M., Baker, P., and Merayo, M. (eds.), Testing of
Software and Communication Systems, Lecture Notes
in Computer Science, 5826, pp. 163–178, Springer
Berlin, Heidelberg.

[25] Roychoudhury, A., Goel, A., and Sengupta, B. (2012)
Symbolic message sequence charts. ACM Trans. Softw.
Eng. Methodol., 21, 12:1–12:44.

[26] Briand, L. C. and Labiche, Y. (2002) A UML-based
approach to system testing. Software and Systems
Modeling, 1, 10–42.

[27] Garousi, V., Briand, L. C., and Labiche, Y. (2006) A
quantitative framework for predicting resource usage
and load in real-time systems based on UML models.
Technical Report SCE-06-05. Carleton University.

[28] Pickin, S., Jard, C., Jeron, T., Jezequel, J.-M., and
Le Traon, Y. (2007) Test synthesis from UML Models
of distributed software. Software Engineering, IEEE
Transactions on, 33, 252 –269.

[29] Bandyopadhyay, A. and Ghosh, S. (2009) Test input
generation using UML sequence and state machines
models. Software Testing Verification and Validation,
2009. ICST ’09. International Conference on, april, pp.
121 –130, IEEE Computer Scoiety.

[30] Mussa, M. and Khendek, F. (2012) Towards a model
based approach for integration testing. Proceedings
of SDL 2011: Integrating System and Software
Modeling, Toulouse, France, pp. 106–121. Springer
Berlin, Heidelberg.

[31] Alur, R., Etessami, K., and Yannakakis, M. (2003)
Inference of message sequence charts. IEEE
Transactions on Software Engineering, 29, 623–633.

[32] Mauw, S. and Reniers, M. A. (1997) High-level message
sequence charts. Proceedings of 8th International
SDL Forum, Evry, France, pp. 291–306, Elsevier,
Amsterdam, Netherlands

[33] Alur, R., Etessami, K., and Yannakakis, M. (2005) Re-
alizability and verification of MSC graphs. Theoretical
Computer Science, 331, 97–114.

[34] Schaefer, T. J. (1978) The complexity of satisfiability
problems. Proceedings of the tenth annual ACM
symposium on Theory of computing, New York, NY,
USA STOC ’78, pp. 216–226, ACM, New York, USA.

[35] Uchitel, S., Kramer, J., and Magee, J. (2004) Incre-
mental elaboration of scenario-based specifications and
behavior models using implied scenarios. ACM Trans-
actions on Software Engineering and Methodology, 13,
37–85.

[36] Dan, H., Hierons, R. M., and Counsell, S. (2010) Non-
local choices and implied scenarios. Proceedings of
the 8th IEEE International Conference on Software
Engineering and Formal Methods, Pisa, Italy, pp. 53–
62, IEEE Computer Scoiety.

[37] OMG (2009). OMG UML Superstructure, Version 2.2.

The Computer Journal, Vol. ??, No. ??, ????

