Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/11391
Title: The impact of nonlinear dynamics on the resilience of a grocery supply chain
Authors: Spiegler, VLM
Potter, AT
Naim, MM
Towill, DR
Keywords: Logistics;Grocery retailers;Supply chain resilience
Issue Date: 2014
Citation: The 19th International Symposium on Logistics (ISL), Ho Chi Minh, Vietnam, (6-9 July 2014)
Abstract: Purpose of this paper: In an effort to improve operational and logistical efficiencies, UK grocery retailers combined primary and secondary distribution increasing the importance of designing resilient replenishment systems in the distribution centre. This paper has the purpose to analyse the resilience performance of the distribution centre stock ordering system within a grocery retailer. Design/methodology/approach: A system dynamics approach is used for framing and building a credible representation of the real system. Mathematical analysis of the nonlinear model based on nonlinear control engineering techniques in combination with system dynamics simulation have been used to understand the behaviour of stock and shipment output responses in the distribution centre given step and periodic demand signals. Findings: Preliminary mathematical analysis through nonlinear control theory techniques has been undertaken in order to gain initial insights in the understanding of the replenishment control model. This practice allowed the researcher to identify specific behaviour change in the DC stock and shipment responses, which are key indicators for assessing supply chain resilience, without going through a time-consuming simulation process. Transfer function analysis and describing function serve as a guideline for undertaking system dynamics simulation. Value: This paper aims to fill the gap in the literature of supply chain resilience by using quantitative system dynamics methods to assess the resilience performance of a grocery retailer. In this way, we also supplement the literature with empirical data. Moreover, we explore different analytical methods since simulation is the predominant method for quantitative analysis of system dynamics. Research limitations/implications (if applicable): This research is limited to the dynamics of single-echelon supply chain systems. Although the EPOS sales data and the store replenishment system have been considered in the validation process, this study has focused on analysing the resilience performance of the DC replenishment system only. Considering the multi-echelon supply chain is intended for further research activities. Practical implications (if applicable): The findings suggest that the distribution centre replenishment system can be re-designed in order to improve the supply chain resilience performance. The ‘As Is’ scenario produces slow response of stock levels and inventory targets are never recovered due to a permanent offset.
URI: http://www.isl21.org/home/19th-isl-ho-chi-minh-2014/
http://bura.brunel.ac.uk/handle/2438/11391
Appears in Collections:Brunel Business School Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.04 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.