Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/21782
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPârvu, O-
dc.contributor.authorGilbert, D-
dc.contributor.authorHeiner, M-
dc.contributor.authorLiu, F-
dc.contributor.authorSaunders, N-
dc.contributor.authorShaw, S-
dc.date.accessioned2020-11-03T18:09:55Z-
dc.date.available2015-05-06-
dc.date.available2020-11-03T18:09:55Z-
dc.date.issued2015-05-06-
dc.identifier13-
dc.identifier.citationACM Transactions on Modeling and Computer Simulation, 2015, 25(2): Article 13 (25 pp.)en_US
dc.identifier.issn1049-3301-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/21782-
dc.description.abstract2015 Copyright is held by the owner/author(s). This article defines a novel spatial-temporal modelling and analysis methodology applied to a systems biology case study, namely phase variation patterning in bacterial colony growth. We employ coloured stochastic Petri nets to construct the model and run stochastic simulations to record the development of the circular colonies over time and space. The simulation output is visualised in 2D, and sector-like patterns are automatically detected and analysed. Space is modelled using 2.5 dimensions considering both a rectangular and circular geometry, and the effects of imposing different geometries on space are measured. We close by outlining an interpretation of the Petri net model in terms of finite difference approximations of partial differential equations (PDEs). One result is the derivation of the “best” nine-point diffusion model. Our multidimensional modelling and analysis approach is a precursor to potential future work on more complex multiscale modelling.en_US
dc.description.sponsorshipEPSRC Research Grant EP I036168/1; German BMBF Research Grant 0315449H.en_US
dc.format.extent1 - 25 (25)-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.subjectcoloured stochastic Petri netsen_US
dc.subjectpartial differential equationsen_US
dc.subjectordinary differential equationsen_US
dc.subjectspatial-temporal modellingen_US
dc.subjectsystems biologyen_US
dc.subjectpattern analysisen_US
dc.subjectmultidimensionalen_US
dc.subjectbiomodel engineeringen_US
dc.titleSpatial-temporal modelling and analysis of bacterial colonies with phase variable genesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1145/2742546-
dc.relation.isPartOfACM Transactions on Modeling and Computer Simulation-
pubs.issue2-
pubs.publication-statusPublished-
pubs.volume25-
dc.identifier.eissn1558-1195-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf1.02 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.