Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/23301
Title: Mode coalescence and the Green’s function in a two-dimensional waveguide with arbitrary admittance boundary conditions
Authors: Perrey-Debain, E
Nennig, B
Lawrie, JB
Keywords: duct acoustics;guided waves;exceptional point;puiseux series;Green’s function;non-Hermitian physics
Issue Date: 2-Oct-2021
Publisher: Elsevier
Citation: Perrey-Debain, E., Nennig, B. and Lawrie, J.B. (2022) 'Mode coalescence and the Green’s function in a two-dimensional waveguide with arbitrary admittance boundary conditions', Journal of Sound and Vibration, 516, 116510, pp. 1 - 13. doi: 10.1016/j.jsv.2021.116510.
Abstract: This study focuses on sound attenuation in a two-dimensional waveguide with arbitrary admittance boundary conditions on both sides of the guide. The emphasis is on understanding the formation and potential applications of the exceptional points (EPs) which arise when two (EP2) or three (EP3) modes degenerate into a single mode. A perturbation approach is used to obtain asymptotic expressions for the trajectories of the axial wavenumbers in the complex plane as they coalesce to form an EP. The numerical results presented herein suggest that the first triple root (EP3) assures maximum modal attenuation along the waveguide. Further, it is demonstrated that the classical Green’s function is degenerate at an EP. Modified Green’s functions which are valid at EP2 and EP3 are presented.
URI: https://bura.brunel.ac.uk/handle/2438/23301
DOI: https://doi.org/10.1016/j.jsv.2021.116510
ISSN: 0022-460X
Other Identifiers: ORCID iD: E. Perrey-Debain https://orcid.org/0000-0003-0445-8492
ORCID iD: B. Nennig https://orcid.org/0000-0002-0309-7165
ORCID iD: J.B. Lawrie https://orcid.org/0000-0003-3674-5605
116510
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2021 Elsevier. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.jsv.2021.116510, made available on this repository under a Creative Commons CC BY-NC-ND attribution licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).1.69 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons