Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/23590
Title: Diffuse field cross-correlations: Scattering theory and electromagnetic experiments
Authors: Davy, M
Besnier, P
del Hougne, P
de Rosny, J
Richalot, E
Sarrazin, F
Savin, DV
Mortessagne, F
Kuhl, U
Legrand, O
Keywords: disordered systems and neural networks (cond-mat.dis-nn);applied physics (physics.app-ph);Article number: 044204
Issue Date: 12-Oct-2021
Publisher: American Physical Society (APS)
Citation: Davy, M. et al. (2021) Physical Review E, 104 (4), 044204. doi: 10.1103/physreve.104.044204.
Abstract: The passive estimation of impulse responses from ambient noise correlations arouses increasing interest in seismology, acoustics, optics and electromagnetism. Assuming the equipartition of the noise field, the cross-correlation function measured with non-invasive receiving probes converges towards the difference of the causal and anti-causal Green’s functions. Here, we consider the case when the receiving field probes are antennas which are well coupled to a complex medium – a scenario of practical relevance in electromagnetism. We propose a general approach based on the scattering matrix formalism to explore the convergence of the cross-correlation function. The analytically derived theoretical results for chaotic systems are confirmed in microwave measurements within a mode-stirred reverberation chamber. This study provides new fundamental insights into the Green’s function retrieval technique and paves the way for a new technique to characterize electromagnetic antennas.
Description: A preprint version of the article is available at arXiv:2109.11912v1 [cond-mat.dis-nn], https://arxiv.org/abs/2109.11912 ([v1] Fri, 24 Sep 2021 12:03:00 UTC (2,069 KB)) under a CC BY license.
URI: https://bura.brunel.ac.uk/handle/2438/23590
DOI: https://doi.org/10.1103/physreve.104.044204
ISSN: 2470-0045
Other Identifiers: ORCiD: Matthieu Davy https://orcid.org/0000-0002-8023-6456
ORCiD: Philippe Besnier https://orcid.org/0000-0002-8398-7028
ORCiD: Philipp del Hougne https://orcid.org/0000-0002-4821-3924
ORCiD: Elodie Richalot https://orcid.org/0000-0001-8866-6621
ORCiD: François Sarrazin https://orcid.org/0000-0003-1533-417X
ORCiD: Dmitry V. Savin https://orcid.org/0000-0002-2362-1913
ORCiD: Ulrich Kuhl https://orcid.org/0000-0002-1797-4683
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Preprint.pdfCopyright © 2021 The Author(s). This work, arXiv:2109.11912v1 [cond-mat.dis-nn], is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).2.38 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons