Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/26955
Title: A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications
Authors: Cai, Q
Fang, C
Lordan, E
Wang, Y
Chang, ITH
Cantor, B
Keywords: suction casting;aluminium alloys;thermal stability;intermetallic eutectics
Issue Date: 8-Aug-2023
Publisher: Elsevier
Citation: Cai, Q. et al. (2023) 'A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications', Scripta Materialia, 237, 115707, pp. 1 - 7. doi: 10.1016/j.scriptamat.2023.115707.
Abstract: Copyright © 2023 The Authors. A novel near-eutectic Al-15.0Si-4.1Ni-1.9Fe (wt%) alloy with a ternary eutectic reaction of Liquid→α-Al+Si+(Al,Si)5(Fe,Ni) was investigated. Eutectic Si and (Al,Si)5(Fe,Ni) phases exhibit short nanoscale fibrous morphologies with volume fractions of 14.3 ± 1.6% and 15.1 ± 1.9%, respectively. The (Al,Si)5(Fe,Ni) phase has a tetragonal Al2.7FeSi2.3-type crystal structure with excellent thermal stability, which contributes to high mechanical properties at room and elevated temperatures. First-principles density-functional theory (DFT) calculations reveal its chemical composition of tetragonal (Al4.75Si0.25)(Fe0.5Ni0.5) having Si solution at the Al sites with two Fe neighbours contributes to the lowest solution energy. The newly developed alloy has superior mechanical properties at room and elevated temperatures compared with other typical heat-resistant aluminium alloys, which has great potential for industrial applications.
Description: Supplementary materials are available online at https://www.sciencedirect.com/science/article/pii/S135964622300430X?via%3Dihub#sec0002 .
URI: https://bura.brunel.ac.uk/handle/2438/26955
DOI: https://doi.org/10.1016/j.scriptamat.2023.115707
ISSN: 1359-6462
Other Identifiers: ORCID iDs: Changming Fang https://orcid.org/0000-0003-0915-7453; Ewan Lordan https://orcid.org/0000-0001-8890-4634; Yun Wang https://orcid.org/0000-0003-2367-7666; Isaac T. H. Chang https://orcid.org/0000-0003-4296-1240.
115707
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/).13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons