Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/26983
Title: The metabolic cost of inspiratory muscle training in mechanically ventilated patients in critical care
Authors: Jenkins, TO
MacBean, V
Poulsen, MK
Karbing, DS
Rees, SE
Patel, BV
Polkey, MI
Keywords: physical therapy modalities;critical care;oxygen consumption;respiration;artificial;rehabilitation
Issue Date: 7-Jul-2023
Publisher: BioMed Central (part of Springer Nature)
Citation: Jenkins, T.O. et al. (2023) 'The metabolic cost of inspiratory muscle training in mechanically ventilated patients in critical care', Intensive Care Medicine Experimental, 2023, 11 (1), 41, pp. 1 - 14. doi: 10.1186/s40635-023-00522-6.
Abstract: Copyright © 2023 The Author(s). Background: Diaphragmatic dysfunction is well documented in patients receiving mechanical ventilation. Inspiratory muscle training (IMT) has been used to facilitate weaning by strengthening the inspiratory muscles, yet the optimal approach remains uncertain. Whilst some data on the metabolic response to whole body exercise in critical care exist, the metabolic response to IMT in critical care is yet to be investigated. This study aimed to quantify the metabolic response to IMT in critical care and its relationship to physiological variables. Methods: We conducted a prospective observational study on mechanically ventilated patients ventilated for ≥ 72 h and able to participate in IMT in a medical, surgical, and cardiothoracic intensive care unit. 76 measurements were taken on 26 patients performing IMT using an inspiratory threshold loading device at 4 cmH2O, and at 30, 50 and 80% of their negative inspiratory force (NIF). Oxygen consumption (VO2) was measured continuously using indirect calorimetry. Results: First session mean (SD) VO2 was 276 (86) ml/min at baseline, significantly increasing to 321 (93) ml/min, 333 (92) ml/min, 351(101) ml/min and 388 (98) ml/min after IMT at 4 cmH2O and 30, 50 and 80% NIF, respectively (p = 0.003). Post hoc comparisons revealed significant differences in VO2 between baseline and 50% NIF and baseline and 80% NIF (p = 0.048 and p = 0.001, respectively). VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Every increase in P/F ratio of 1 decreased the intercept VO2 by 0.41 ml/min (CI − 0.58 to − 0.24 p < 0.001). NIF had a significant effect on the intercept and slope, with every 1 cmH2O increase in NIF increasing intercept VO2 by 3.28 ml/min (CI 1.98–4.59 p < 0.001) and decreasing the dose–response slope by 0.15 ml/min/cmH2O (CI − 0.24 to − 0.05 p = 0.002). Conclusions: IMT causes a significant load-dependent increase in VO2. P/F ratio and NIF impact baseline VO2. The dose–response relationship of the applied respiratory load during IMT is modulated by respiratory strength. These data may offer a novel approach to prescription of IMT. Take home message: The optimal approach to IMT in ICU is uncertain; we measured VO2 at different applied respiratory loads to assess whether VO2 increased proportionally with load and found VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Baseline NIF has a significant effect on the intercept and slope, participants with a higher baseline NIF have a higher resting VO2 but a less pronounced increase in VO2 as the inspiratory load increases; this may offer a novel approach to IMT prescription. Trial registration: ClinicalTrials.gov, registration number: NCT05101850. Registered on 28 September 2021, https://clinicaltrials.gov/ct2/show/NCT05101850
Description: Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Supplementary Information is available online at https://icm-experimental.springeropen.com/articles/10.1186/s40635-023-00522-6#Sec19 .
URI: https://bura.brunel.ac.uk/handle/2438/26983
DOI: https://doi.org/10.1186/s40635-023-00522-6
Other Identifiers: ORCID iDs: Timothy O. Jenkins http://orcid.org/0000-0002-8631-0725; Vicky MacBean http://orcid.org/0000-0003-0268-2693.
41
Appears in Collections:Dept of Health Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 The Author(s). Rights and permissions; Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.1.11 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons