Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/27764
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRenfrew, D-
dc.contributor.authorVasilaki, V-
dc.contributor.authorNika, E-
dc.contributor.authorHarris, E-
dc.contributor.authorKatsou, E-
dc.date.accessioned2023-11-29T12:45:26Z-
dc.date.available2023-11-29T12:45:26Z-
dc.date.issued2023-11-20-
dc.identifierORCID iD: D. Renfrew https://orcid.org/0000-0001-9399-9279-
dc.identifierORCID iD: V. Vasilaki https://orcid.org/0000-0002-4670-5618-
dc.identifierORCID iD: E. Harris https://orcid.org/0000-0002-7102-8305-
dc.identifierORCID iD: Evina Katsou https://orcid.org/0000-0002-2638-7579-
dc.identifier120901-
dc.identifier.citationRenfrew, D. et al. (2024) 'Tracing wastewater resources: unravelling the circularity of waste using source, destination, and quality analysis', Water Research, 250, 120901, pp. 1 - 13. doi: 10.1016/j.watres.2023.120901.en_US
dc.identifier.issn0043-1354-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/27764-
dc.descriptionData availability: Data will be made available on request.en_US
dc.descriptionSupplementary materials are available online at: https://www.sciencedirect.com/science/article/pii/S0043135423013416#sec0037 .-
dc.description.abstractCopyright © 2023 The Authors. Current circularity assessment terminology restricts application to wastewater processes due to the focus on technical systems. Waste stream and wastewater discharge circularity definitions lead to paradoxical assessments that generate results of little value for evidence-based decision making. Therefore, a classification approach was developed to measure inflow and outflow circularity of the main wastewater resource flows using the principle of traceability, adopting the attitude that not all waste is created equally. Applying it to a wastewater treatment plant (12,000 m3/d load) showed how upstream agricultural, industrial, and human practices impact downstream treatment, and the effectiveness of resource cycling within the natural environment. Industrial actions increasing fossil carbon concentration (400 m3/d effluent at 1000 mgC/l) reduced inflow and outflow circularity by 16 % and 10.6 % respectively, as secondary and sludge treatment fossil emissions increase significantly. Alternatively, changes to human and agricultural practices (50 % reduction of detergent and synthetic fertiliser usage) improved phosphorus inflow and nitrogen outflow circularity by 5.2 % and 20.1 % respectively. This approach can educate and assign responsibility to water users for developing robust circular economy policy, shifting the pattern from promoting circularity to discouraging linear actions, overcoming the shared economic and environmental burden of linear water use.en_US
dc.description.sponsorshipThis research was supported by the Horizon 2020 research and innovation programme DEEP PURPLE. The H2020 DEEP PURPLE project has received funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 837998. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.en_US
dc.format.extent1 - 13-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectcircular economyen_US
dc.subjectcircularity assessmenten_US
dc.subjectresource traceabilityen_US
dc.subjectassessment indicatorsen_US
dc.subjectmaterial flow analysisen_US
dc.titleTracing wastewater resources: unravelling the circularity of waste using source, destination, and quality analysisen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.watres.2023.120901-
dc.relation.isPartOfWater Research-
pubs.issuein press, pre-proof-
pubs.publication-statusPublished-
pubs.volume0-
dc.identifier.eissn1879-2448-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).1.64 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons