Brunel University Research Archive (BURA) >
Research Areas >
Computer Science >

Please use this identifier to cite or link to this item:

Title: Combinatorial Optimization And Metaheuristics
Authors: Consoli, S
Darby-Dowman, K
Keywords: Metaheuristics
Combinatorial optimization
Publication Date: 2007
Series/Report no.: Department of Mathematical Sciences/Nov 2006;TR/01/06
Abstract: Today, combinatorial optimization is one of the youngest and most active areas of discrete mathematics. It is a branch of optimization in applied mathematics and computer science, related to operational research, algorithm theory and computational complexity theory. It sits at the intersection of several fields, including artificial intelligence, mathematics and software engineering. Its increasing interest arises for the fact that a large number of scientific and industrial problems can be formulated as abstract combinatorial optimization problems, through graphs and/or (integer) linear programs. Some of these problems have polynomial-time (“efficient”) algorithms, while most of them are NP-hard, i.e. it is not proved that they can be solved in polynomial-time. Mainly, it means that it is not possible to guarantee that an exact solution to the problem can be found and one has to settle for an approximate solution with known performance guarantees. Indeed, the goal of approximate methods is to find “quickly” (reasonable run-times), with “high” probability, provable “good” solutions (low error from the real optimal solution). In the last 20 years, a new kind of algorithm commonly called metaheuristics have emerged in this class, which basically try to combine heuristics in high level frameworks aimed at efficiently and effectively exploring the search space. This report briefly outlines the components, concepts, advantages and disadvantages of different metaheuristic approaches from a conceptual point of view, in order to analyze their similarities and differences. The two very significant forces of intensification and diversification, that mainly determine the behavior of a metaheuristic, will be pointed out. The report concludes by exploring the importance of hybridization and integration methods.
Appears in Collections:School of Information Systems, Computing and Mathematics Research Papers
School of Information Systems, Computing and Mathematics Research Papers
Mathematical Science
Computer Science

Files in This Item:

File Description SizeFormat
Nov06 BrunelReport TR-01-06 - metaheuristics.pdf704.55 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.