Brunel University Research Archive (BURA) >
University >
Brunel University Theses >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6380

Title: Shear controlled orientation effects with injection mouldings produced by the SCORIM process
Authors: Rawson, Keith
Keywords: Shear controlled orientation injection moulding (SCORIM)
Surface weld lines
Aluminium flake pigmented plastics
Bright surface moulding (BSM)
Gonio spectrophotometer (GSP)
Publication Date: 1997
Abstract: Injection moulding using the process of Shear Controlled Orientation Injection Moulding (SCORIM) to enhance the aesthetic characteristics of plastics was investigated. Unsightly surface weld lines were successfully removed from highly reflective aluminium flake pigmented plastics by the application of a single macroscopic SCORIM shear when used in series with Bright Surface Moulding (BSM). A gonio spectrophotometer (GSP) was used for the quantitative characterisation of the Al flake pigmented mouldings as a measure of surface reflectivity and preferred angle of reflection. The different directional properties of surface reflectivities to either side of a conventional weld line are unacceptable, but were successfully reoriented approximately uniformly with the use of SCORIM and BSM moulding (i. e. SBM) used in series. SBM therefore provided an acceptable quality of surface finish for mouldings originally containing a weld line, without deterioration of mechanical properties. Indeed, some improvements in mechanical properties were observed. Translucent two-colour mouldings were used to successfully demonstrate the flow paths taken by sheared material during the application of macroscopic shears. The use of intermittent shearing to encapsulate shear oriented material in the solidifying layers, manifested original and profound aesthetic effects. This resulted from mixing the two colours and was reproducible and widely variable. The morphology of isotactic polypropylene (iPP) processed in this way and examined by light and electron microscopy revealed how only one or two intermittent shears were required to orient a large volume of the moulding in the shear direction. Moreover, U-shaped flow paths demonstrated that the easiest shear route was close to the mouldings edges, an observation supported by x-ray analysis. The addition of Al flake pigment was found to act as a heterogeneous nucleant for ß-spherulites. This acted as a suitable marker for the clear identification of the displaced weld interface using polarised light microscopy, of filled and unfilled iPP. y-phase was identified with the use of only one or two intermittent shears which reflects an increase in molecular alignment and consequent improved mechanical properties. The intensity of the y-phase increased with the volume of material sheared. Strong evidence was also obtained of a linear relationship between the logarithm of the time lapse between two intermittent shears and the corresponding values of a-phase index, crystallinity index and percentage crystallinity. The values of each increasing proportionally with the length of time used. Microhardness characterisation revealed anisotropy within SCORIM samples consistent with preferred orientation and increased modulus in the shear direction. The skin layers were characterised as the softest region through the thickness of SCORIM mouldings. The results of this work were used to provide the basis of a computer simulation of the SCORIM process under development at the University of Wales Swansea.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
URI: http://bura.brunel.ac.uk/handle/2438/6380
Appears in Collections:Brunel University Theses
Materials Engineering

Files in This Item:

File Description SizeFormat
FulltextThesis.pdf21.74 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan