Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6620
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDonaldson, JD-
dc.contributor.authorJafari, Ahmad-
dc.date.accessioned2012-09-12T14:47:39Z-
dc.date.available2012-09-12T14:47:39Z-
dc.date.issued2000-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/6620-
dc.descriptionThis thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.en_US
dc.description.abstractThe harmful effects of air pollutants on human beings and environment have been the major reason for efforts in sampling, analysis and control of their sources. The major pollutants emitted to atmosphere from stationary combustion processes are nitrogen oxides, inorganic acids, carbon dioxide, carbon monoxide, hydrocarbon and soot. In the current work two methods are developed for sampling and analysis of volatile chlorinated aromatic hydrocarbons and semi-volatile chlorinated aromatic hydrocarbons for example 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) by using solid sorbent, thermal desorption and high resolution GC-MS. The capacity of several solid sorbents is compared by breakthrough value and percentage recovery ofthe analyte from the sorbent. The thermal stability of polyvinyl chloride (PVC) and PVC in the presence of metals is studied because PVC is a polymer commonly found in solid waste derived from medical waste, car recycling and electrical cable. Harmful pollutant emissions from combustion and pyrolysis of PVC are measured using the novel method developed in this work. The main inorganic volatile is HCl while benzene is the major volatile organic formed under pyrolysis and combustion conditions. The thermal degradation of PVC produces a large number of chlorinated aromatic hydrocarbon, aromatic hydrocarbon and short chain linear gases. A study is designed for control of harmful pollutants from combustion of PVC including HCl, aromatic hydrocarbon, chlorinated aromatic hydrocarbons and soot. It is reported that the presence of metal oxides have the ability to control the level of harmful emissions by facilitating the producing of more short chain linear gases. A study is designed for control of harmful pollutants from combustion of PVC including HCl, aromatic hydrocarbon, chlorinated aromatic hydrocarbons and soot. It is reported that the presence of metal oxides have the ability to control the level of harmful emissions by facilitating the producing of more short chain linear gases. Two methods are developed for the control of soot from liquid and gas combustion process by using applied fields, Magnetic and electric fields. In this study, it is shown that an increase in applied field strength leads to an increase in flame temperature but a decrease in the length of flame. The level of soot emission was decreased in presence of an applied field. A discussion of the effect of applied fields on the combustion process is given.en_US
dc.description.sponsorshipThis work is funded by the Ministry of Health and Medical Education of the Islamic Republic of Iranen_US
dc.language.isoenen_US
dc.publisherBrunel University Institute for the Environment PhD Theses-
dc.relation.urihttp://bura.brunel.ac.uk/bitstream/2438/6620/1/FulltextThesis.pdf-
dc.titleAnalysis and control of harmful emissions from combustion processesen_US
dc.typeThesisen_US
Appears in Collections:Institute for the Environment

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf16.54 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.