A Top-Down Method of Patent Mapping
Zheng Li, Mark Atherton
School of Engineering and Design, Brunel University, UB8 3PH, UK

Abstract
Patent mapping [1] is an attempt to present competitive patent information in graphical form for strategic decision-making purposes. Currently, patent mapping is a bottom-up process, starting from the structured data recorded in patents, through data mining, and ending at multidimensional graphs. A problem is that, as databases expand and consequently mining methods become complicated, the resultant increase in dimensions of visualisations make interpretations more difficult. In fact patent mapping need not be a bottom-up process, as we propose a new top-down approach that is based upon the widely accepted Theory of Innovative Problem Solving (TRIZ) [2]. In order to avoid statistical analysis of many patents, this TRIZ-led patent mapping, first, begins with comprehension of patent competition rules using simple gaming models before visualising competitive environments and technical correlations; then key patents are probed for relevant techniques finally reaching an analysis of technical innovation (Figure 1 below). The research addresses: (i) a critical review of current patent mapping; (ii) explanation of how TRIZ can inform a new patent mapping method; and (iii) application of this new method to a case study in aluminium beverage can manufacturing. The conclusion is that a TRIZ-led mapping method reveals synergistic relationships between patents that are not identified by current methods. [205 words]

Keyword Patent Map; TRIZ; Design Management, Innovation, Can Manufacturing

Biography
Zheng Li received his MEng degree in Mechanical Engineering in China and MA degree in Design Strategy and Innovation in the UK. He is a PhD student at Brunel University, interested in design research including patent strategy and design evaluation. Zheng.Li@brunel.ac.uk

Dr Mark Atherton has a BSc (Hons) in Mechanical Engineering (Aston), an MSc in Industrial Robotics and Manufacturing Automation, and PhD in Mechanical Engineering Design. He is a Reader in Engineering Design at Brunel University with particular interests in robustness and design optimisation. Mark.Atherton@brunel.ac.uk

Reference