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Abstract

This paper explores confidence intervals for the family of proportional reversed hazard

distributions based on lower record values. The proposed procedure can be extended

to the family of proportional hazard distributions based on upper record values. Nu-

merical results show that the method is promising.

Key words: Confidence interval, proportional reversed hazard distribution, record

value, sample size.

MR Subject Classification: 62N05, 62F25

1 Introduction

An important topic in survival and reliability analyses is the study of parametric proba-

bility distributions in order to model the faults in a product or the lifetime of a product or

entity. Many lifetime distributions are related to extreme values, e.g. a series system stops

working when the first component breaks while a parallel system stops working when the
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last component breaks. Moveover, in big data scenarios, which are becoming more and more

relevant these days, there may be a specific interest in record values only, such as extreme

weather events, and no other aspects of the data may be stored or reported.

Since Chandler (1952) introduced the topic of record values and studied their basic prop-

erties, a substantial literature has appeared devoted to record values, for example see Glick

(1978), Smith (1988), Carlin and Gelfand (1993), Feuerverger and Hall (1996), Chan (1998),

Sultan et al. (2008), Wong and Wu (2009), Tavangara and Asadia (2011), Cramer and

Naehrig (2012). Record statistics are widely used in many real life application areas, such

as weather forecast (Chandler, 1952; Coles and Tawn, 1996), maximum water levels in hy-

drology (Katz et al., 2002), sports and economics (Balakrishnan et al., 1993; Robinson and

Tawn, 1995; Balakrishnan and Chan, 1998; Raqab, 2002; Einmahl and Magnus, 2008), life-

tests (Soliman et al., 2006; Ahmadi et al., 2009), stock markets (Wergen, 2014) and so on.

Due to the commonality and the importance, there has been a number of literature on prob-

abilistic modeling and statistical inference for record data. For a book-length account on

this topic, see Arnold et al. (1998) and Ahsanullah (2004).

Sample size is an important issue in statistical testing and confidence intervals because it

has such a significant impact on the validity of analytic results and is so often misunderstood.

Without a sufficiently large sample, a statistical test or confidence interval may not have the

targeted statistical properties, if the derivation of the test procedure or interval depends

on assumptions which are only asymptotically justified. Therefore, as data sets consisting

of record values often lack sufficient data for statistical inference based on asymptotically

justified methods, it is important to develop exact inferential methods which apply for any

sample size. This paper presents a new method of exact inference for interval estimation

for a family of proportional reversed hazard distributions based on data consisting of lower

record values.

Let {Xn, n = 1, 2, ...} be a sequence of independent and identically distributed (i.i.d.)

random variables with cumulative distribution function (cdf) F (x) and probability density

function (pdf) f(x). An observation Xj is called a lower record value if its value is less than

the values of all of previous observations, so if Xj < Xi for each i < j. Then the record

times sequence {Tn, n ≥ 1} is defined in the following manner: T1 = 1 (with probability 1)

and for n ≥ 2, Tn = min{j : Xj < XTn−1}. The sequence {Rn = XTn , n = 1, 2, ...} is called

the sequence of lower record values of the original sequence.
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In this paper, new exact interval estimation is presented based on record values for the

following family of probability distributions, which provides a flexible family to model lifetime

variables. Let F (x;λ, α) denote the cdf of a probability distribution with parameters λ and

α. Consider parameter estimation for the family of probability distributions specified by

F (x;λ, α) = [G(x;λ)]α, x > 0, (1)

where G(·;λ) is a cdf dependent only on λ. These families of distributions — without nec-

essarily confining attention to a one-parameter G — are discussed by Marshall and Olkin

(2007, Section 7.E. & ff.). They call (1) a ‘resilience parameter’ or ‘proportional reversed

hazard’ family. When α is an integer, (1) is the distribution function of the maximum

of a random sample of size α from the distribution G(·;λ). Examples of families (1) in-

clude the inverse Weibull distribution, and generalized exponential distribution (Gupta and

Kundu, 1999). The latter can be used as an alternative to gamma or Weibull distributions

in many situations and has attracted much attention in the literature recently, it arises when

G(x;λ) = 1− e−x/λ in family (1).

In Section 2 of this paper exact interval estimation for the parameters λ and α is pre-

sented, as well as some characteristics of F (x;λ, α). In Section 3 the results of a simulation

study in order to investigate the performance of the proposed method are presented, while

an example with data from the literature is presented in Section 4.

2 Interval estimation

In this section new methods for interval estimation for the proportional inversed hazards

family are presented. In order to do so, the following lemmas are needed.

Lemma 1 Let R1, R2, ..., Rn be the lower record values observed from the standard uniform

distribution U(0, 1), then − log(R1), log(R1)− log(R2), ..., log(Rn−1)− log(Rn) are i.i.d. stan-

dard exponential random variables.

Proof: Let Y1 = − log(R1), Y2 = log(R1) − log(R2), ..., Yn = log(Rn−1) − log(Rn). Notice

that the pdf of R1, R2, ..., Rn is given by

f(r1, r2, ..., rn) = f(rn)
n−1∏
i=1

f(xi)[F (ri)]
−1 =

n−1∏
i=1

r−1
i , 0 < rn < ... < r1 < 1,
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that the Jacobian of transformation is given by

∂(R1, ..., Rn)

∂(Y1, ..., Yn)
= e−nY1−(n−1)Y2−...−Yn ,

and the pdf of Y1, ..., Yn is given by

f(y1, ..., yn) = e−y1−y2−...−yn , y1 > 0, ..., yn > 0.

Therefore, Y1, ..., Yn are i.i.d. standard exponential random variables.

Lemma 2 Suppose that Y1, Y2, ..., Yn are i.i.d. exponential random variables with mean θ.

Let Si = Y1 + ... + Yi, i = 1, 2, ..., n, then S1/S2, (S2/S3)
2, ..., (Sn−1/Sn)

n−1, Sn are inde-

pendent random variables. Also, S1/S2, (S2/S3)
2, ..., (Sn−1/Sn)

n−1 have standard uniform

distributions and Sn has gamma distribution with shape parameter n and scale parameter 1,

denoted by Γ(n, 1). (see Wang et al., 2010)

2.1 Interval estimation of λ

Let R1, R2 ..., Rn be the lower record values observed from the proportional reversed

hazards family (1), then F (R1;λ, α), F (R2;λ, α), ..., F (Rn;λ, α) are the lower record values

observed from the standard uniform distribution U(0, 1). Thus, we have from Lemma 1 that

Y1 = − logF (R1;λ, α), Y2 = logF (R1;λ, α) − logF (R2;λ, α), ..., Yn = logF (Rn−1;λ, α) −

logF (Rn;λ, α) are i.i.d. standard exponential random variables.

Notice that − logF (Ri;λ, α) = −α logG(Ri;λ), and Y1+ ...+Yi = −α logG(Ri;λ), so we

have from Lemma 2 that U1, ..., Un−1, Un = −α logG(Rn;λ) are independent random vari-

ables. Also, U1, ..., Un−1 have standard uniform distributions and Un has gamma distribution

Γ(n, 1), where

Ui =

(
logG(Ri;λ)

logG(Ri+1;λ)

)i

, i = 1, 2, ..., n− 1.

Therefore,

W1(λ) = −2
n−1∑
i=1

log(Ui) = 2
n−1∑
i=1

log

(
logG(Rn;λ)

logG(Ri;λ)

)
∼ χ2(2n− 2). (2)

If W1(λ) is a strictly increasing or decreasing function of λ, which can be shown case-by-

case, then, for any 0 < β < 1,

[
W−1

1 (χ2
β/2(2n− 2)), W−1

1 (χ2
1−β/2(2n− 2))

]
or
[
W−1

1 (χ2
1−β/2(2n− 2)),W−1

1 (χ2
β/2(2n− 2))

]
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is a 1−β confidence interval for λ, where χ2
β(v) is the β percentile of the χ2 distribution with

v degrees of freedom and, for t > 0, W−1
1 (t) is the solution in λ of the equation W1(λ) = t.

These exact confidence intervals could be simplified for each distribution of the family (1).

When G(x;λ) is a scale distribution family, the following lemma gives a sufficient condi-

tion in which W (λ) is a strictly decreasing function of λ.

Lemma 3 Let G(x;λ) = G1(x/λ) and g1(x) = G′
1(x), where G1(x) and g1(x) are the known

continuous functions. If the reversed failure rate function ρ(x, λ) = ∂G(x;λ)
∂x

/G(x;λ) for the

distribution family G(x;λ) is a strictly decreasing function of the scale parameter λ in (0,∞),

W1(λ) defined as (2) is then a strictly decreasing function of λ.

Proof. Let

h(t) =
tg1(t)

G1(t)
and y(λ) =

logG(Rn, λ)

logG(Ri, λ)
.

Notice that for the scale family G(x;λ) = G1(x/λ), we have

ρ(x, λ) =
g1(x/λ)

λG1(x/λ)
=

1

x
· h(x/λ). (3)

Thus we obtain from (3) that when ρ(x, λ) is a strictly decreasing function of λ, h(t)

is a strictly increasing function of t. Notice that G1(t) is an increasing function, thus

h(t)/(− logG1(t)) is a strictly increasing function. For the function y(λ), we have

y′(λ) =
logG1(Rn/λ)

λ logG1(Ri/λ)

[
h(Rn/λ)

− logG1(Rn/λ)
− h(Ri/λ)

− logG1(Ri/λ)

]
< 0 (4)

Hence y(λ) is a strictly decreasing function of λ. Therefore, we have from (2) that W1(λ) is

a strictly decreasing function of λ.

Example 1: The Inverse Weibull distribution

The cdf of the inverse Weibull distribution IW (λ, α) is

F (x;λ, α) = e−(α/x)λ , x > 0,

where λ > 0 is the shape parameter and α > 0 is the scale parameter. Note that, in the

inverse Weibull case, α in (1) is reparameterized as αλ. In this case, W1(λ) is equal to

W1(λ) = 2λ
n−1∑
i=1

log

(
Ri

Rn

)
. (5)

It is obvious that W1(λ) is an increasing function of λ, thus[
χ2
β/2(2n− 2)

2
∑n−1

i=1 log(Ri/Rn)
,

χ2
1−β/2(2n− 2)

2
∑n−1

i=1 log(Ri/Rn)

]
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is a 1− β confidence interval for the parameter λ.

Remark 1: Similar to the proof in Wang and Ye (2015), the statistics (
∑n−1

i=1 log(Ri/Rn), Rn)

are complete.

Example 2: The generalized exponential distribution

The cdf of the generalized exponential distribution GE(λ, α) is

F (x;λ, α) = (1− e−x/λ)α, x > 0, (6)

where α > 0 is the shape parameter and λ > 0 is the scale parameter. In this case, W1(λ)

is equal to

W1(λ) = 2
n−1∑
i=1

log

(
log(1− e−Rn/λ)

log(1− e−Ri/λ)

)
.

Notice that the reversed failure rate for the generalized exponential distribution is given by

ρ(x, λ) =
(x/λ)e−x/λ

x(1− e−x/λ)

and that xe−x

1−e−x is a strictly decreasing function of x in (0,∞), thus we know from lemma 3

that W1(λ) is a strictly decreasing on (0,∞). Furthermore, we have

lim
λ→0+

W1(λ) = ∞ and lim
λ→∞

W1(λ) = 0.

Thus
[
W−1

1 (χ2
1−β/2(2n− 2)),W−1

1 (χ2
β/2(2n− 2))

]
is a 1 − β confidence interval for the pa-

rameter λ. This confidence interval is the same as one based on Qk,n proposed by Raqab

and Sultan (2014).

Remark 2: Notice that W1(λ) and Un are independent, thus the 1− β joint confidence

region of (λ, α) is obtained by

P
(
χ2

1−
√

1−β
2

(2n− 2) < W1(λ) < χ2
1+

√
1−β
2

(2n− 2), χ2
1−

√
1−β
2

(2n) < 2Un < χ2
1+

√
1−β
2

(2n)
)
= 1−β.

2.2 Interval estimation of α and other quantities

Below we derive generalized confidence intervals for the parameter α, mean, quantiles

and reliability function of the proportional reversed hazard family.

Suppose that W1(λ) is a strictly monotone function of λ. Let g(W,R) be the unique

solution of W1(λ) = W , where R = (R1, R2, ..., Rn) and W ∼ χ2(2n − 2)). Notice that

V1 = 2Un = −2α logG(Rn;λ) has the χ
2 distribution with 2n degrees of freedom, therefore

we have that

α = − V1
2 logG(Rn;λ)

.
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Using the substitution method presented by Weerahandi (2004), we substitute g(W,R)

for λ in the expression for α and obtain the following generalized pivotal quantity for α:

W2 = − V1
2 logG(rn; g(W, r))

(7)

=
α logG(Rn; g(W,R))

logG(rn; g(W, r))
, (8)

where r = (r1, r2, ..., rn) is the observed value of R = (R1, R2, ..., Rn).

It is obvious from (7) that the distribution of W2 is free of any unknown parameters. It

is also obvious from (8) that W2 reduces to α when R = r. Thus W2 is a generalized pivotal

quantity. The cdf of W2 is given by

FW2(w) =

∫ ∞

0

P (W2 ≤ w|W = x)fW (x)dx

= 1−
∫ ∞

0

Fχ2(2n) (−2w logG(rn; g(x, r))) fχ2(2n−2)(x)dx, (9)

where Fχ2(v)(x) and fχ2(v)(x) are the cdf and the pdf of the χ2 distribution with v degrees

of freedom, respectively. Percentiles of the generalized pivotal quantity W2 can be obtained

from the cdf (9). Another way to obtain the percentiles is based on the following simulation

algorithm. For a given data set (n, r), generate W ∼ χ2(2n− 2) and V1 ∼ χ2(2n), indepen-

dently. Using these values, we compute the values of W2 in (7). This process of generating

the value of W2 is repeated m(≥ 10, 000) times for the fixed values of (n, r). Based on the

generated values of W2, the percentiles of W2 can be estimated. Let W2,β denote the β

percentile of W2, then [W2,β/2,W2,1−β/2] is a 1− β generalized confidence interval for α.

Notice that the mean, pth quantile (0 < p < 1) and reliability function of the pro-

portional inverse hazards family are respectively given by µ =
∫∞
0
xdF (x;λ, α) ≡ h(λ, α),

xp = G−1[p1/α, λ] and R(x0) = [G(x0;λ)]
α, where h(·, ·) is a known function, and G−1(t, λ)

is the solution of G(x;λ) = t. Similar to the derivation of W2 for α, we obtain the following

generalized pivotal quantities W3, W4 and W5 for µ, xp and R(x0) respectively:

W3 = h (g(W, r),W2) ,

W4 = G−1
(
p1/W2 , g(W, r)

)
,

W5 = [G(x0; g(W, r))]
W2 .

Similar to W2, the cdf of W4 is given by

FW4(w) = 1−
∫ ∞

0

Fχ2(2n) (−2G(w; g(x, r)) logG(rn; g(x, r))/ log(p)) fχ2(2n−2)(x)dx.
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Let W3,β,W4,β and W5,β denote the β percentiles of W3,W4 and W5, respectively. Then

W3,β,W4,β,W5,β are the 1− β lower confidence limits for µ, xp and R(x0), respectively. Just

as in the case of W2, the percentiles of W3,W4,W5 can also be obtained by Monte Carlo

simulations.

Example 1 continued

For the inverse Weibull distribution, µ = αΓ(1 − λ−1) when λ > 1, xp = α(− log p)−1/λ

and R(x0) = 1− e−(α/x0)λ , thus we have

W2 =

(
V1
2

) 2
∑n−1

i=1
log(ri/rn)

W

rn,

W3 = W2 · Γ

(
1− 2

∑n−1
i=1 log(ri/rn)

W

)
,

W4 = W2(− log p)−
2
∑n−1

i=1
log(ri/rn)

W ,

W5 = 1− exp

[
−
(
W2

x0

) W

2
∑n−1

i=1
log(ri/rn)

]
.

Remark 3: Let T1 = n∑n−1
i=1 log(ri/rn)

log(W2/rn). Then T1 = 2n
W

log(V1/2). Hence T1 is a

pivotal quantity. Similarly, T2 =
n∑n−1

i=1 log(ri/rn)
log(W4/rn) is also a pivotal quantity.

Remark 4: Let T1,γ is the β percentile of T1. Then a 1− β confidence interval for α is

given by [
Rne

T1,β/2
∑n−1

i=1
log(Ri/Rn)

n , Rne
T1,1−β/2

∑n−1
i=1

log(Ri/Rn)

n

]
.

Using (5) and V1 = 2(α/Rn)
λ ∼ χ2(2n), the average length of the confidence interval for α

is given by

αΓ(n− λ−1)

Γ(n)

[(
1−

T1,1−β/2

nλ

)−n

−
(
1−

T1,β/2
nλ

)−n
]
.

It is obvious that for small λ, the average length of the confidence interval for α may be

infinite. For the confidence interval of xp, there is the similar results.

Remark 5: 1− 2
∑n−1

i=1 log(ri/rn)

W
may be less than 0 due to W ∼ χ2(2n− 2), so we ignore

W3 in this case.

Example 2 continued

For the generalized exponential distribution GE(λ, α), µ = [ψ(α + 1) − ψ(1)]/λ, xp =

−λ−1 log(1− p1/α) and R(x0) = 1− (1− e−λx0)α, where ψ(·) is the digamma function. Thus

we have

W2 = − V1
2 log[1− exp(−g(W, r)rn)]

,
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W3 = [ψ(W2 + 1)− ψ(1)]/g(W, r),

W4 = −[g(W, r)]−1 log(1− p1/W2),

W5 = 1− (1− e−g(W,r)x0)W2 .

Remark 6: Via simulations we find that for small α or n, the average length of the

confidence intervals for α and µ may be infinite.

Because the coverage probabilities of their generalized confidence intervals may depend on

nuisance parameters, we study the performance of coverage probabilities of these confidence

intervals via simulations in Section 3.

2.3 Prediction interval

While inference for characteristics of the underlying probabilit distributions in case of

record value observations is of interest, it is also important to derive inferential methods

for prediction as one is often interested in the value of the next record(s) based on the

current record values. Providing a prediction interval with good frequentist properties is a

challenging issue for many existing methods but such a prediction is most useful and highly

expected. Below we present a new method to predict the (n+ k)th lower record value Rn+k

based on n existing lower record values R = (R1, R2, ..., Rn).

To derive a prediction interval for Rn+k, we continue to use the earlier definition of

Y1, · · · , Yn and we further define

Yn+1 = α[logG(Rn;λ)− logG(Rn+1;λ)], ..., Yn+k = α[logG(Rn+k−1;λ)− logG(Rn+k;λ)].

Then Y1, Y2, · · · , Yn+k are i.i.d. standard exponential random variables. Recall that we have

defined Un =
∑n

i=1 Yi = −α logG(Rn;λ), and that 2Un ∼ χ2(2n). So Un+k = Un+
∑n+k

i=n+1 Yi,

where 2
∑n+k

i=n+1 Yi ∼ χ2(2k) and it is independent of Un. Therefore

V2 ≡ Un/Un+k =
logG(Rn;λ)

logG(Rn+k;λ)

follows the beta distribution Beta(n, k) with pdf

f(v) =
Γ(n+ k)

Γ(n)Γ(k)
vn−1(1− v)k−1, 0 < v < 1.

Thus we have

Rn+k = G−1([G(Rn;λ)]
1/V2 ;λ).
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We now define the generalized pivotal prediction quantity

W6 = G−1([G(rn; g(W, r))]
1/V2 ; g(W, r)).

Similar to W2, the cdf of W6 is given by

FW6(w) =

∫ ∞

0

FBeta(n,k) (logG(rn; g(x, r))/ logG(w; g(x, r))) fχ2(2n−2)(x)dx, (10)

where FBeta(n,k)(x) is the cdf of the Beta distribution Beta(n, k).

In particular, for the inverse Weibull distribution, we have

W6 = rnV
2
∑n−1

i=1
log(ri/rn)

W
2 ,

and for the generalized exponential distribution, we have

W6 = −[g(W, r)]−1 log
[
1− (1− exp{−g(W, r)rn})1/V2

]
.

Let W6,β denote the β percentile of W6. Then W6,β is the 1−β lower prediction limit for

Rn+k. Just as in the case of W2, the percentiles of W6 can be obtained from the cdf (10) or

by Monte Carlo simulations. The performance of the generalized prediction interval, based

on the coverage probabilities, will again be investigated by simulations in Section 3.

Remark 7: Let T3 = n∑n−1
i=1 log(ri/rn)

log(W6/rn) in the inverse Weibull distribution case.

Then T3 =
2n log(V2)

W
. Hence T3 is a pivotal prediction quantity.

Remark 8: Notice that, for the inverse Weibull distribution, W2 can be rewritten as

W2 =

(V1
2

) 2
∑n−1

i=1
log(rλi /rλn)

W

rλn

1/λ

,

where rλi is the record value from the inverse Weibull distribution with shape parameter 1,

thus the coverage probability of the generalized confidence interval for α does not depend

on the shape parameter λ. Similar results hold for the generalized confidence interval of xp

and the prediction interval of Yn+k. However, the coverage probability of the generalized

confidence interval for R(x0) does depend on the shape parameter λ in this case.

Remark 9: Let R1, R2 ..., Rn be the upper record values observed from the proportional

hazards family with the cdf F (x;λ, α) = 1 − [1 − G(x;λ)]α, x > 0, where G(x;λ) is a

cdf dependent only on λ. Then R−1
1 , R−1

2 ..., R−1
n be the lower record values observed from

the proportional reverse hazards family with the cdf F (x;λ, α) = [1 − G(x−1;λ)]α, x > 0.

Therefore, it is obvious that the proposed procedure is extended to the proportional hazards

family for the upper record values.
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3 Simulation study

To assess the performance of the proposed generalized confidence intervals and prediction

intervals, we performed a simulation study with lower record values generated via various

scenarios. Because the proposed generalized confidence intervals and prediction intervals are

scale equivariant and invariant, we take, without loss of generality, α = 1 for the inverse

Weibull distribution and λ = 1 for the generalized exponential distribution in our simulation

study. For each scenario, 10,000 replicates of the lower record values were generated from

the inverse Weilbull distribution or the generalized exponential distribution. The quantiles

of Wi are obtained by Monte Carlo methods with m = 10, 000. The simulation results are

reported in Tables 1 and 2. The corresponding interval lengths are provided in parentheses.

Table 1: The coverage probabilities of the generalized confidence intervals for the inverse Weibull distribution.

α x0.1 R(1) Rn+1

λ n 90% 95% 90% 95% 90% 95% 90% 95%

2 5 0.9032 0.9496 0.8956 0.9480 0.9035 0.9485 0.8994 0.9470

(14.7993) (71.2156) (1.7440) (3.3927) (0.6990) (0.7775) (0.1639) (0.2070)

10 0.8984 0.9463 0.8967 0.9492 0.8968 0.9467 0.9026 0.9496

(3.5945) (5.9931) (1.1441) (1.6692) (0.6702) (0.7503) (0.0523) (0.0659)

3 5 0.9033 0.9496 0.8956 0.9480 0.9035 0.9485 0.8994 0.9470

(3.7094) (8.5065) (0.9912) (1.6069) (0.6990) (0.7775) (0.1500) (0.1939)

10 0.8984 0.9463 0.8967 0.9492 0.8968 0.9467 0.9026 0.9496

(1.6653) (2.4256) (0.7256) (0.9903) (0.6702) (0.7503) (0.0520) (0.0661)

7 5 0.9031 0.9496 0.8956 0.9480 0.9035 0.9485 0.8994 0.9470

(0.8119) (1.2440) (0.3889) (0.5564) (0.6990) (0.7775) (0.0936) (0.1248)

10 0.8984 0.9463 0.8967 0.9492 0.8968 0.9467 0.9026 0.9496

(0.5283) (0.6942) (0.3078) (0.3970) (0.6702) (0.7503) (0.0353) (0.0454)

Table 2: The coverage probabilities of the generalized confidence intervals for the generalized exponential distribution.

α µ x0.1 R(1) Rn+1

α n 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1 5 0.8971 0.9475 0.8964 0.9480 0.8989 0.9504 0.9024 0.9520 0.8987 0.9529

(∞) (∞) (∞) (∞) (5.5037) (46.5421) (0.7770) (0.8566) (0.0279) (0.0305)

10 0.8994 0.9507 0.8990 0.9463 0.9055 0.9490 0.9012 0.9475 0.8972 0.9501

(1.3279) (1.5924) (∞) (∞) (11.1331) (64.5724) (0.7851) (0.8620) (0.0008) (0.0009)

3 5 0.8975 0.9473 0.8975 0.9486 0.8992 0.9508 0.9009 0.9504 0.8982 0.9529

(∞) (∞) (35.6392) (188.8644) (2.7610) (5.3734) (0.6367) (0.7135) (0.1981) (0.2286)

10 0.9006 0.9506 0.9004 0.9467 0.9067 0.9497 0.9030 0.9497 0.8958 0.9499

( 5.0104) (6.0964) (12.0362) (23.1565) (2.5522) (4.1923) (0.6361) (0.7117) (0.0347) (0.0404)

7 5 0.8981 0.9490 0.8970 0.9483 0.8993 0.9516 0.8993 0.9505 0.8997 0.9528

(∞) (∞) (12.0561) (24.8339) (2.7345) (4.2736) (0.3310) (0.3982) (0.4107) (0.4975)

10 0.8986 0.9500 0.9009 0.9473 0.9047 0.9497 0.9022 0.9501 0.8954 0.9497

(18.1846) (23.2668) (6.3463) (9.2714) (2.3266) (3.2333) (0.3145) (0.3742) (0.1264) (0.1537)
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Tables 1 and 2 show the 90% and 95% generalized confidence intervals for the parameters

and further quantities considered in Section 2 of these two probability distributions, as well as

prediction interval forRn+1. However, we do not include µ for the inverse Weibull distribution

here due to the possibly negative value of 1− 2
∑n−1

i=1 log(ri/rn)

W
. Clearly, this simulation study

shows that, even if the number of observed record values is very small, such as n = 5, 10, the

coverage probabilities of the 90% and 95% confidence intervals resulting from the method

presented in this paper are close to 0.9 and 0.95, respectively.

4 An illustrative example

Madi and Raqab (2007) presented a data analysis of the amount of annual rainfall (in

inches) recorded at the Los Angeles Civic Center for 127 years, from 1878 to 2005 (season July

1 – June 30). They found that these data can be fitted well by the generalized exponential

distribution. They used six lower record values up to 1959 as follows: 11.35, 10.40, 9.21,

6.73, 5.59, 5.58, and they presented Bayesian prediction for the next two lower records. The

actually observed next two lower records were set in 1960 and 2001, and were 4.85 and 4.35,

respectively. We use the method presented in this paper to re-analyze these data, using only

this small set of six lower record values. The results are presented in Table 3. Compared with

the Bayesian interval estimation in Madi and Raqab (2007), the Bayesian interval for α has

shorter interval length than the generalized confidence interval, but the Bayesian interval for

λ has longer interval length than the generalized confidence interval. In particular, we obtain

95% prediction intervals for the next two lower record values, R7 and R8, as (3.2836, 5.5676)

and (2.3595, 5.4770), respectively, using m = 1, 000, 000 in the simulations. It is interesting

to compare these prediction intervals to the 95% Bayesian prediction intervals presented by

Madi and Raqab (2007) for R7 and R8, which are (1.4824, 5.5383) and (0.6788, 5.2447),

respectively. Both the Bayesian prediction intervals and the new prediction intervals based

on our method contain the true record values, but our prediction intervals have substantially

shorter length due to much larger lower limits of the intervals. As the actual number of

observations is small, any Bayesian method for such prediction will be influenced by the

choice of the prior distribution, which will typically be rather difficult to assess meaningfully

due to the complex nature of record values. From this perspective, the presented method in

this paper has the advantage of not requiring additional input beyond the data.

Table 3: The confidence intervals and prediction intervals based on the Los Angeles rainfall data.
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λ α µ x0.1 R7 R8

0.90 [1.6917, 11.4370] [4.8600, 164.9770] [9.0279, 28.2269] [5.9390, 14.1814] [3.7793, 5.5548] [2.9102, 5.4276]

0.95 [1.5080, 15.9885] [3.6350, 250.5091] [8.5560, 35.9129] [5.4487, 16.7153] [3.2836, 5.5676] [2.3595, 5.4770]
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