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t. When the number of events asso
iated with a signal pro
ess is estimated in parti
lephysi
s, it is 
ommon pra
ti
e to extrapolate ba
kground distributions from 
ontrol regions to aprede�ned signal window. This allows a

urate estimation of the expe
ted, or average, numberof ba
kground events under the signal. However, in general, the a
tual number of ba
kgroundevents 
an deviate from the average due to �u
tuations in the data. Su
h a di�eren
e 
anbe sizable when 
ompared to the number of signal events in the early stages of data analysisfollowing the observation of a new parti
le, as well as in the analysis of rare de
ay 
hannels.We report on the development of a data-driven te
hnique that aims to estimate the a
tual, asopposed to the expe
ted, number of ba
kground events in a prede�ned signal window. Wedis
uss results on toy Monte Carlo data and provide a preliminary estimate of systemati
un
ertainty.1. Introdu
tionThe task of data analysis in parti
le physi
s often deals with data sets 
omprising 
ollision eventsthat 
ontain the signature of a s
attering of interest as well as ba
kground events that 
orrespondto uninteresting pro
esses mimi
king the signal. When estimating the number of signal events,ba
kground probability density fun
tions (PDFs) are often extrapolated from 
ontrol regionsto a prede�ned signal window and subsequently used in template �ts. However, this 
an onlyprovide an estimate of the expe
ted, or average, number of ba
kground events under the signal,and 
annot take into a

ount the e�e
t of �u
tuations. In pra
ti
e, when the number of signalevents, S, is mu
h higher than the size of the typi
al �u
tuations on the number of ba
kgroundevents, σB =
√

〈B〉, 〈B〉 being the expe
ted number of ba
kground events in the signal window,the dis
repan
y between B and 〈B〉 
an be negle
ted.Nonetheless, when the number of signal events is low enough, the di�eren
e 
an be sizable.This 
an o

ur in the early stages of data analysis following the dis
overy of a new parti
le, orin the analysis of low-
ross se
tion pro
esses. In su
h 
ases, the expe
ted number of ba
kgroundevents in the signal window 
an be a biased estimate of the a
tual number.We report on the development of a data-driven te
hnique that aims to estimate the a
tualnumber of ba
kground events under an observed signal, as opposed to the expe
ted number. Ouralgorithm makes it possible to de
ompose an input mixture of signal and ba
kground events, e.g.a 
olle
tion of events that pass all sele
tion 
riteria 
orresponding to the end-point of a givenanalysis. This allows the shape of the ba
kground PDF to be estimated from the data, therebytaking into a

ount the e�e
t of statisti
al �u
tuations. The development of this te
hnique was



in�uen
ed by a number of statisti
al methods, most notably the Gibbs Sampler [1℄ for mixturemodel de
omposition, Expe
tation Maximisation [2℄, and Data Augmentation [3℄.2. The algorithmThe algorithm that we use to de
ompose the input mixture of signal and ba
kground eventsis related to a method that we have proposed with referen
e to a di�erent appli
ation to dataanalysis at high-luminosity hadron 
olliders [4, 5℄.The PDF of the underlying statisti
al model has the form F = α0f0(x) + α1f1(x), where α0and α1 are the fra
tions of ba
kground and signal events in the input data set, respe
tively, with
α0 + α1 = 1, and where f0 (f1) is the ba
kground (signal) PDF. In the 
ontext of this study, thevariable x is interpreted as the invariant mass of a set of �nal state parti
les.A notable feature of our approa
h, when 
ompared to 
lassi
al mixture models whereprede�ned subpopulation PDF shapes are typi
ally enfor
ed a priori, is the nonparametri
de�nition of the subpopulation PDFs, fj. At every iteration of the algorithm, individualevents are mapped to signal or ba
kground on a probabilisti
 basis, and the estimate ϕj ofthe subpopulation PDF fj at that iteration is obtained by means of spline interpolation1 ofthe histograms of x 
orresponding to those events that are mapped to signal or ba
kground atthat iteration. This allows the algorithm to estimate generi
 deviations of the PDF shapes fromthe 
orresponding 
ontrol sample templates due to �u
tuations in the data. The shapes of thesignal and ba
kground distributions in the data set analysed are ultimately estimated as splinedhistograms averaged over a prede�ned number of iterations.The pseudo
ode of the algorithm is given below, subs
ripts �sig� and �bkg� relating to signaland ba
kground, respe
tively. The value of quantity v at iteration t is denoted by v(t) throughout.(i) Initialization: Set αbkg = α

(0)
bkg = αsig = α

(0)
sig = 0.5, where αbkg = α0 and αsig = α1 =

1− αbkg. Initial estimates ϕ
(0)
j of the subpopulation PDFs fj, j = 0, 1, are given by splinedone-dimensional histograms of x obtained from high-statisti
s 
ontrol samples.(ii) Iteration t:(a) Generate z

(t)
ij for all events i and distributions j a

ording to P (z

(t)
ij =

1|α
(t−1)
j , ϕ

(0)
j , xi) =

α
(t−1)
j

ϕ
(0)
j

(xi)

α
(t−1)
0 ϕ

(0)
0 (xi)+α

(t−1)
1 ϕ

(0)
1 (xi)

. Both the nonparametri
 treatment ofthe PDFs and the use of ϕ
(0)
j instead of ϕ

(t−1)
j to map individual events to signalor ba
kground distinguish this implementation from the 
lassi
al Gibbs sampler formixture models.(b) Set α

(t)
j =

∑N
i=1 z

(t−1)
ij /N , j = 0, 1.We used a total number of 6,000 iterations, and averaged the PDF estimates, ϕj , over thelast 4,000. These settings allowed the algorithm to rea
h 
onvergen
e in all runs performed inthis study, and no signi�
ant di�eren
e in the results was observed by 
hanging them.A more detailed des
ription of this implementation of the algorithm 
an be found in [6℄. Theexe
ution time was ∼ 50 s per run on the data sets analysed using a 2 GHz Intel Pro
essor with1 GB RAM, whi
h we 
onsider reasonable for o�ine use.3. ResultsWe illustrate this te
hnique on a toy Monte Carlo data set obtained superimposing a gaussiansignal with a �rst-order polyomial ba
kground. In the following, we will interpret the signaldistribution as an invariant mass distribution 
orresponding to the de
ay of a parti
le with mass

1 We have used the alglib C++ library [7℄ with this implementation of the algorithm.
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(d)Figure 1: (a) True ba
kground distribution (points) superimposed with the PDF obtained fromthe high-statisti
s 
ontrol sample (
urve). (b) The same true ba
kground distribution (points)superimposed with the ba
kground PDF estimated from the data using the algorithm (
urve). (
)Ratio between the ba
kground PDF obtained from the 
ontrol sample and the true distribution.(d) Ratio between the ba
kground PDF estimated using the algorithm and the true distribution.
m = 125 GeV/
2 and width 1 GeV/
2. We superimposed S = 200 signal events to a totalof 4,200 ba
kground events in the region 115 GeV/
2 < m < 135 GeV/ 
2, 
orrespondingto an average of 〈B〉 = 1, 600 ba
kground events in the signal region, whi
h is de�ned by
120 GeV/
2 < m < 130 GeV/
2.Due to statisti
al �u
tuations in the data, di�erent samples 
orrespond to di�erent numbersof ba
kground events in the signal window. In this study, the standard deviation on the numberof ba
kground events with 120 GeV/
2 < m < 130 GeV/
2 is σB =

√

〈B〉 = 40 events, whi
his sizable when 
ompared to the number of signal events generated, S = 200. This illustratives
enario is not dissimilar from the early stages of data analysis following the observation of aHiggs boson in the γγ �nal state at the Large Hadron Collider (LHC) at CERN [8, 9℄.High-statisti
s 
ontrol samples were generated 
orresponding to 30,000 signal and 30,000ba
kground events, and were used to obtain initial 
onditions on the signal and ba
kgroundPDF shapes. The fun
tion of the algorithm is essentially to iteratively re�ne those initial
onditions based on the data, thereby taking into a

ount the e�e
t of statisti
al �u
tuations.As a 
onsisten
y 
he
k, the estimated fra
tion of ba
kground events in the input data set, α̂0,was found to be in agreement with the true value within 2% in all runs used in this study.The performan
e of the algorithm in terms of estimating the shape of the ba
kground PDFin the data set analysed is illustrated in �gure 1. Figure 1 (a) displays the true ba
kgrounddistribution (points) superimposed with the PDF obtained from the high-statisti
s 
ontrol sample(
urve). The dis
repan
ies due to statisti
al �u
tuations in the data are apparent. The pointsin �gure 1 (b) show the same true ba
kground distribution as in �gure 1 (a), but in this 
ase the



superimposed 
urve is the PDF estimated from the data using the algorithm, averaged over thelast 4,000 iterations from a total of 6,000.The ratio between the ba
kground 
ontrol sample PDF and the true PDF is displayed in�gure 1 (
), whi
h again highlights the e�e
t of �u
tuations. The 
orresponding ratio betweenestimated and true PDF is shown in �gure 1 (d), and shows a signi�
antly-improved agreement.It is worth re
alling that, for the purpose of this study, what we are interested in is the shape ofthe ba
kground PDF. In fa
t, our obje
tive is to estimate the a
tual number of ba
kground eventsunder the signal as opposed to the expe
ted number. The signal-related plots 
orresponding to�gure 1 showed good agreement between the estimated and the true distribution, and were usedtogether with the estimated fra
tion of ba
kground events in the data in order to 
he
k the
onsisten
y of the results obtained using the algorithm.The plots in �gure 1 refer to a run of the algorithm on a data set with B = 1, 571 ba
kgroundevents in the signal region 120 GeV/
2 < m < 130 GeV/
2. The 
orresponding number of eventsestimated with that run of the algorithm was B̂ = 1586.5.The algorithm was also run on multiple toy Monte Carlo data sets, 
orresponding to di�erentnumbers of ba
kground events in the signal window. Our preliminary estimate of the un
ertaintyon B̂, i.e. on the estimated number of ba
kground events under the signal, is ∼ 50 events. Workis underway to redu
e this un
ertainty below the size of typi
al ba
kground �u
tuations in thedata, σB =
√

〈B〉 = 40 events. Our studies suggest that the un
ertainty on B̂ is dominated bythe un
ertainty on the estimated fra
tion of ba
kground events in the data set, α̂0. In fa
t, whenthe algorithm is run with α0 kept �xed at the 
orresponding true value, the un
ertainty on B̂drops from 50 to 12 events.The results obtained running the algorithm on the di�erent input data sets are summarisedin table 1, where Bgen denotes the true number of ba
kground events in the signal window atgeneration, B̂ is the 
orresponding number estimated using the algorithm, and ∆B = B̂ −Bgen.The quantities B̂∗ and ∆B∗ in the table have a similar meaning as B̂ and ∆B, but the valueswere obtained running the algorithm with α0 kept �xed at its true value. The average andstandard deviation of B̂ a
ross the runs are referred to as 〈B〉 ( 〈B〉∗) and σB (σ∗

B), respe
tively.4. Con
lusions and outlookWe have reported on the development of a data-driven te
hnique that aims to estimate thea
tual, as opposed to the expe
ted, number of ba
kground events under an observed signal inparti
le physi
s. Established methods that rely on the extrapolation of ba
kground distributionsfrom 
ontrol regions to a prede�ned signal window allow a pre
ise estimation of the expe
ted,or average, number of ba
kground events under the signal. However, the a
tual numberof ba
kground events in the signal window 
an deviate from the average due to statisti
al�u
tuations in the data. Although the dis
repan
y is often negligible when 
ompared to thenumber of signal events, it is not ne
essarily so in the early stages of data analysis following thedis
overy of a new parti
le, or more generally in the analysis of low-
ross se
tion pro
esses.We have des
ribed an algorithm that uses the data to estimate the shape of the ba
kgrounddistribution in a prede�ned signal window, e.g. using the end-point of a given analysis i.e. a
olle
tion of events that pass all sele
tion 
riteria. Control samples are used only to provideinitial 
onditions for the ba
kground PDF, but the PDF shape is otherwise estimated dire
tlyfrom the same data set that 
ontains the observed ex
ess of signal events. We have dis
ussedresults on toy Monte Carlo data, with referen
e to an illustrative s
enario that is not dissimilarfrom the early stages of data analysis following the dis
overy of a Higgs boson in the γγ 
hannel.We have provided a preliminary estimate of the un
ertainty asso
iated with the estimatednumber of ba
kground events in the signal window at the level of 50 events, out of a totalaverage number 〈B〉 = 1, 600. Although we 
onsider these results en
ouraging, the un
ertaintyis still larger than the size of the typi
al ba
kground �u
tuations in the data, whi
h is given



Run Bgen B̂ ∆B B̂∗ ∆B∗1 1536 1618.2 82.2 1549.3 13.32 1569 1645.0 76.0 1592.3 23.33 1579 1615.2 36.2 1584.7 5.74 1625 1637.7 12.7 1630.2 5.25 1558 1579.7 21.7 1548.0 -10.06 1576 1602.5 26.5 1588.2 12.27 1571 1586.5 15.5 1579.1 8.18 1584 1628.6 44.6 1584.8 0.89 1597 1664.1 67.1 1604.4 7.410 1644 1621.9 -22.1 1640.4 -3.711 1631 1688.9 57.9 1636.6 5.612 1573 1661.4 88.4 1586.9 13.913 1626 1655.6 29.6 1616.3 -9.714 1583 1641.2 58.2 1592.8 9.815 1613 1663.2 50.2 1635.8 22.816 1593 1663.7 70.7 1606.1 13.117 1583 1604.9 21.9 1585.2 2.218 1603 1646.8 43.8 1586.8 -16.219 1624 1667.8 43.8 1630.4 6.420 1580 1604.5 24.5 1575.4 -4.6
〈∆B〉 = 42.5 σB = 27.3 〈∆B∗〉 = 5.3 σ∗

B = 10.4

Table 1: Results ob-tained running the al-gorithm on di�erenttoy Monte Carlo datasets. The quantities
Bgen and B̂ refer tothe true and to theestimated number ofba
kground events inthe signal region, re-spe
tively, and ∆B =
B̂ −Bgen. The quanti-ties B̂∗ and ∆B∗ havea similar meaning as
B̂ and ∆B, but thevalues were obtainedkeeping α0 �xed at itstrue value. The aver-age and standard devi-ation of B̂ a
ross theruns are representedby 〈B〉 ( 〈B〉∗) and σB(σ∗

B), respe
tively.by σB =
√

〈B〉 = 40 events. Work is underway to improve the performan
e of the algorithmin this respe
t. It should also be emphasised that, sin
e the above un
ertainty is expe
ted todepend signi�
antly on B, the assessment of the performan
e of this method will have to takeinto a

ount the spe
i�
s of the analysis in question.A
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