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Abstract. When the number of events associated with a signal process is estimated in particle
physics, it is common practice to extrapolate background distributions from control regions to a
predefined signal window. This allows accurate estimation of the expected, or average, number
of background events under the signal. However, in general, the actual number of background
events can deviate from the average due to fluctuations in the data. Such a difference can
be sizable when compared to the number of signal events in the early stages of data analysis
following the observation of a new particle, as well as in the analysis of rare decay channels.
We report on the development of a data-driven technique that aims to estimate the actual, as
opposed to the expected, number of background events in a predefined signal window. We
discuss results on toy Monte Carlo data and provide a preliminary estimate of systematic
uncertainty.

1. Introduction

The task of data analysis in particle physics often deals with data sets comprising collision events
that contain the signature of a scattering of interest as well as background events that correspond
to uninteresting processes mimicking the signal. When estimating the number of signal events,
background probability density functions (PDFs) are often extrapolated from control regions
to a predefined signal window and subsequently used in template fits. However, this can only
provide an estimate of the expected, or average, number of background events under the signal,
and cannot take into account the effect of fluctuations. In practice, when the number of signal
events, S, is much higher than the size of the typical fluctuations on the number of background
events, op = \/(B), (B) being the expected number of background events in the signal window,
the discrepancy between B and (B) can be neglected.

Nonetheless, when the number of signal events is low enough, the difference can be sizable.
This can occur in the early stages of data analysis following the discovery of a new particle, or
in the analysis of low-cross section processes. In such cases, the expected number of background
events in the signal window can be a biased estimate of the actual number.

We report on the development of a data-driven technique that aims to estimate the actual
number of background events under an observed signal, as opposed to the expected number. Our
algorithm makes it possible to decompose an input mixture of signal and background events, e.g.
a collection of events that pass all selection criteria corresponding to the end-point of a given
analysis. This allows the shape of the background PDF to be estimated from the data, thereby
taking into account the effect of statistical fluctuations. The development of this technique was



influenced by a number of statistical methods, most notably the Gibbs Sampler [1] for mixture
model decomposition, Expectation Maximisation [2|, and Data Augmentation [3].

2. The algorithm

The algorithm that we use to decompose the input mixture of signal and background events
is related to a method that we have proposed with reference to a different application to data
analysis at high-luminosity hadron colliders [4, 5].

The PDF of the underlying statistical model has the form F' = ag fo(z) + a1 f1(z), where g
and oy are the fractions of background and signal events in the input data set, respectively, with
ap+ ag; =1, and where fy (f1) is the background (signal) PDF. In the context of this study, the
variable x is interpreted as the invariant mass of a set of final state particles.

A notable feature of our approach, when compared to classical mixture models where
predefined subpopulation PDF shapes are typically enforced a priori, is the nonparametric
definition of the subpopulation PDFs, f;. At every iteration of the algorithm, individual
events are mapped to signal or background on a probabilistic basis, and the estimate ¢; of
the subpopulation PDF f; at that iteration is obtained by means of spline interpolation® of
the histograms of x corresponding to those events that are mapped to signal or background at
that iteration. This allows the algorithm to estimate generic deviations of the PDF shapes from
the corresponding control sample templates due to fluctuations in the data. The shapes of the
signal and background distributions in the data set analysed are ultimately estimated as splined
histograms averaged over a predefined number of iterations.

The pseudocode of the algorithm is given below, subscripts “sig” and “bkg” relating to signal
and background, respectively. The value of quantity v at iteration ¢ is denoted by v throughout.

(i) Initialization: Set cpry = O‘I(;?c)g = Qgig = ag(;; = 0.5, where aprg = ap and agy = a1 =

1 — appg- Initial estimates gog-o) of the subpopulation PDFs f;, j = 0,1, are given by splined

one-dimensional histograms of x obtained from high-statistics control samples.
(ii) Iteration ¢:

(a) Generate zz(;) for all events ¢ and distributions j according to P(zi(;) =
1ot o0 4 ol o0 ()

. X, =
3 1P T ol 50 () ral Do (2,

Both the nonparametric treatment of

the PDFs and the use of gog»o) instead of gog-tfl) to map individual events to signal
or background distinguish this implementation from the classical Gibbs sampler for
mixture models.

(b) Set agt) —0> A z-(t-_l)/N, j=0,1.
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We used a total number of 6,000 iterations, and averaged the PDE estimates, ¢;, over the
last 4,000. These settings allowed the algorithm to reach convergence in all runs performed in
this study, and no significant difference in the results was observed by changing them.

A more detailed description of this implementation of the algorithm can be found in [6]. The
execution time was ~ 50 s per run on the data sets analysed using a 2 GHz Intel Processor with
1 GB RAM, which we consider reasonable for offline use.

3. Results

We illustrate this technique on a toy Monte Carlo data set obtained superimposing a gaussian
signal with a first-order polyomial background. In the following, we will interpret the signal
distribution as an invariant mass distribution corresponding to the decay of a particle with mass

! We have used the alglib C++ library [7] with this implementation of the algorithm.
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Figure 1: (a) True background distribution (points) superimposed with the PDF obtained from
the high-statistics control sample (curve). (b) The same true background distribution (points)
superimposed with the background PDF estimated from the data using the algorithm (curve). (c)
Ratio between the background PDF obtained from the control sample and the true distribution.
(d) Ratio between the background PDF estimated using the algorithm and the true distribution.

m = 125 GeV/c* and width 1 GeV/c?. We superimposed S = 200 signal events to a total
of 4,200 background events in the region 115 GeV/c> < m < 135 GeV/ ¢?, corresponding
to an average of (B) = 1,600 background events in the signal region, which is defined by
120 GeV/c? < m < 130 GeV /2.

Due to statistical fluctuations in the data, different samples correspond to different numbers
of background events in the signal window. In this study, the standard deviation on the number
of background events with 120 GeV/c* < m < 130 GeV/c® is o5 = \/(B) = 40 events, which
is sizable when compared to the number of signal events generated, S = 200. This illustrative
scenario is not dissimilar from the early stages of data analysis following the observation of a
Higgs boson in the v+ final state at the Large Hadron Collider (LHC) at CERN [8, 9].

High-statistics control samples were generated corresponding to 30,000 signal and 30,000
background events, and were used to obtain initial conditions on the signal and background
PDF shapes. The function of the algorithm is essentially to iteratively refine those initial
conditions based on the data, thereby taking into account the effect of statistical fluctuations.
As a consistency check, the estimated fraction of background events in the input data set, &g,
was found to be in agreement with the true value within 2% in all runs used in this study.

The performance of the algorithm in terms of estimating the shape of the background PDF
in the data set analysed is illustrated in figure 1. Figure 1 (a) displays the true background
distribution (points) superimposed with the PDF obtained from the high-statistics control sample
(curve). The discrepancies due to statistical fluctuations in the data are apparent. The points
in figure 1 (b) show the same true background distribution as in figure 1 (a), but in this case the



superimposed curve is the PDF estimated from the data using the algorithm, averaged over the
last 4,000 iterations from a total of 6,000.

The ratio between the background control sample PDF and the true PDF is displayed in
figure 1 (c), which again highlights the effect of fluctuations. The corresponding ratio between
estimated and true PDF is shown in figure 1 (d), and shows a significantly-improved agreement.

It is worth recalling that, for the purpose of this study, what we are interested in is the shape of
the background PDF. In fact, our objective is to estimate the actual number of background events
under the signal as opposed to the expected number. The signal-related plots corresponding to
figure 1 showed good agreement between the estimated and the true distribution, and were used
together with the estimated fraction of background events in the data in order to check the
consistency of the results obtained using the algorithm.

The plots in figure 1 refer to a run of the algorithm on a data set with B = 1,571 background
events in the signal region 120 GeV/ ¢ <m < 130 GeV/ ¢?. The corresponding number of events
estimated with that run of the algorithm was B = 1586.5.

The algorithm was also run on multiple toy Monte Carlo data sets, corresponding to different
numbers of background events in the signal window. Our preliminary estimate of the uncertainty
on B, i.e. on the estimated number of background events under the signal, is ~ 50 events. Work
is underway to reduce this uncertainty below the size of typical background fluctuations in the
data, op = /(B) = 40 events. Our studies suggest that the uncertainty on B is dominated by
the uncertainty on the estimated fraction of background events in the data set, &g. In fact, when
the algorithm is run with ag kept fixed at the corresponding true value, the uncertainty on B
drops from 50 to 12 events.

The results obtained running the algorithm on the different input data sets are summarised
in table 1, where Bg., denotes the true number of background events in the signal window at
generation, B is the corresponding number estimated using the algorithm, and AB = B- Byen.
The quantities B* and AB* in the table have a similar meaning as B and AB, but the values
were obtained running the algorithm with ag kept fixed at its true value. The average and
standard deviation of B across the runs are referred to as (B) ( (B)*) and op (07), respectively.

4. Conclusions and outlook

We have reported on the development of a data-driven technique that aims to estimate the
actual, as opposed to the expected, number of background events under an observed signal in
particle physics. Established methods that rely on the extrapolation of background distributions
from control regions to a predefined signal window allow a precise estimation of the expected,
or average, number of background events under the signal. However, the actual number
of background events in the signal window can deviate from the average due to statistical
fluctuations in the data. Although the discrepancy is often negligible when compared to the
number of signal events, it is not necessarily so in the early stages of data analysis following the
discovery of a new particle, or more generally in the analysis of low-cross section processes.

We have described an algorithm that uses the data to estimate the shape of the background
distribution in a predefined signal window, e.g. using the end-point of a given analysis i.e. a
collection of events that pass all selection criteria. Control samples are used only to provide
initial conditions for the background PDF, but the PDF shape is otherwise estimated directly
from the same data set that contains the observed excess of signal events. We have discussed
results on toy Monte Carlo data, with reference to an illustrative scenario that is not dissimilar
from the early stages of data analysis following the discovery of a Higgs boson in the v+ channel.

We have provided a preliminary estimate of the uncertainty associated with the estimated
number of background events in the signal window at the level of 50 events, out of a total
average number (B) = 1,600. Although we consider these results encouraging, the uncertainty
is still larger than the size of the typical background fluctuations in the data, which is given



Run Bgen, B AB B* AB* Table 1: Results ob-

1 1536 1618.2 82.2 15493  13.3 tained running the al-
P 1569 1645.0 76.0 1592.3  23.3 gorithm on different
3 1579 1615.2 36.2 1584.7 5.7 toy Monte Carlo data
4 1625 1637.7 12.7 16302 52 sets. The quantities
5 1558 1579.7 21.7 1548.0  -10.0 DBgen and B refer to
6 1576 1602.5 26.5 1588.2 122 the true and to the
7 1571 1586.5 15.5 1579.1 81 estimated number of
8 1584 1628.6 44.6 1584.8 0.8 background events in
9 1597 1664.1 67.1 16044 7.4 the signal region, re-
10 1644 1621.9 22.1 16404  -3.7 spectively, and AB =
11 1631 1688.9 57.9 1636.6 5.6 D — Bgen- The quanti-
12 1573 1661.4 88.4 1586.9 13.9 ties B* and AB* have
13 1626 1655.6 29.6 1616.3 -9.7 a similar meaning as
14 1583 1641.2 58.2 1592.8 98 B and AB, but the
15 1613 1663.2 50.2 1635.8 22.8 values were obtained
16 1593 1663.7 70.7 1606.1 13.1 keeping aq fixed at its
17 1583 1604.9 21.9 1585.2 2.2 true value. The aver-
18 1603 1646.8 43.8 1586.8  -16.2 age and standard devi-
19 1624 1667.8 43.8 1630.4 6.4 ation of B across the
20 1580 1604.5 24.5 15754  -4.6 Tums are represented

(AB) =425 o5 =273 (AB") =53 o — 104 by (B) ((B)") and op

(0%), respectively.
by op = v/(B) = 40 events. Work is underway to improve the performance of the algorithm

in this respect. It should also be emphasised that, since the above uncertainty is expected to
depend significantly on B, the assessment of the performance of this method will have to take
into account the specifics of the analysis in question.
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