
Sunspots and Monetary Policy�

Jagjit Chadhay

BNP Paribas and University of Brunel

Luisa Corradoz

University of Cambridge and University of Rome Tor Vergata

March 1, 2006

Abstract

A monetary economy subject to expectational sunspots is prone to
instability, in the sense of multiple rational expectations equilibria. We
show how to modify the policy rule to guarantee stability in the presence
of expectational sunspots. The policy-maker must co-ordinate in�ation
dynamics by targeting each of lagged, current and expected in�ation.
We show that this solution maps directly into the timeless perspective
by Woodford. Finally, we trace the responses in an arti�cial sunspot
economy to the adoption of our rule and illustrate the extent to which
macroeconomic persistence is reduced.

JEL classi�cation: C62; C63; E00.
Keywords: Sunspots; Indeterminacy; Monetary Policy Rules;
Expectation Based Timeless Perspective.

�We thank Seppo Honkapohja, Sean Holly, Andrew Hughes Hallett, seminar participants at
the Centre for Dynamic Macroeconomic Analysis at St. Andrews University, Kent University,
the Central Bank of Iceland, Norges Bank, Brunel University and Cambridge University for
helpful comments.

yBNP Paribas, 10 Harewood Avenue, Marylebone, London NW1 6AA. E-mail:
jagjit.chadha@bnpparibas.com. Research Professor at Brunel University and Fellow of the
Centre for International Macroeconomics and Finance, Cambridge University.

zAddress for Correspondence. Faculty of Economics, Cambridge University, Sedgwick Site,
CB3 9DE, Cambridge, UK. e-mail: lc242@econ.cam.ac.uk. Phone +44-1223-335284.

1



1 Introduction

The question of how to control an economy in which agents base their
current behaviour on forward-looking expectations has recently preoccupied
monetary theorists and policy-makers. The main stabilization device in this
setting appears to be predictable monetary policy rules, which act to contain
destabilizing expectations. Michael Woodford (2005) has gone as far to argue
that: �not only do expectations about policy matter, but, at least under current
conditions, very little else matters�(p. 3).
There remains, however, an important debate on the speci�c form of such

rules. The literature has considered how active policy rules make economies
prone to unintended equilibrium outcomes, such as a liquidity trap (Benhabib
et al, 2002). It has also shown how forward-looking models of in�ation and
output may lead to chaotic dynamics and to indeterminacy (for example,
Benhabib et al, 2001, 2004). To avoid indeterminacy Woodford (2003a) has
argued that the authorities should adopt a forward-looking rule where nominal
interest rates respond more than equiproportionally to expected in�ation (see
also Woodford, 1994; Clarida et al, 2000; Levin et al, 2001; Chari et al, 1998,
Schmitt-Grohè and Uribe, 2000). From a theoretical point of view such rules
are good approximations of optimal feedback rules (Bernanke and Woodford,
1997, Clarida et al, 2000). But Batini and Pearlman (2002) show that such a
rule may not be su¢ cient to rule out indeterminacy as reacting to events that
lie far in the future may generate multiple equilibria and dynamic instability.1

The challenge of designing rules to control expectations has been taken up
by policy-makers, for example Mervyn King (2005),2 Bernanke (2003)3 and
Trichet (2005). Recently Trichet (2005) has taken this point further and looked
at the implications for monetary policy of misled in�ation expectations, that is
expectations that are dislodged from economic fundamentals. The occurrence of
such unfounded overreactions in the market may pose serious risk of instability
as �misled market expectations can amplify and prolong the dynamic response of
in�ation and real activity to an in�ationary or de�ationary shock of su¢ ciently
great potency�(p. 3).
Given the importance of this ongoing policy debate, in this paper we consider

a more general class of policy rules that are not only designed to stabilize

1Batini and Pearlman (2002) use interchangeably the term indeterminate equilibria or
sunspot equilibria to identify cases where multiple solutions to the model depend either on
extraneous random variables (sunspot) or on more fundamental shocks.

2The impact of policy rules on expectation formation has been stressed by Mervyn King:
�A key motivation for the study of monetary policy rules was the insight that if economic
agents base their decisions on expectations of the future then the way monetary policy is
expected to be conducted in the future a¤ects economic outcomes today. Hence it is very
important to think about how policy in�uences the expectations of the private sector�(p. 5).

3Bernanke (2003) stresses how in conducting stabilization policy: �The central bank must
also maintain a strong commitment to keeping in�ation �and, hence, public expectations
of in�ation� �rmly under control. Because monetary policy in�uences in�ation with a lag,
keeping in�ation under control may require the central bank to anticipate future movements
in in�ation and move preemptively. Hence constrained discretion is an inherently forward-
looking policy approach�(p. 1).
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expectations tied to fundamentals, as in the canonical literature, but also to
control for expectational errors that are not: that is sunspots.4 For our purposes,
we may motivate expectational errors from the possibility that agents may have
theories of in�ation determination that di¤er from the model used by policy-
makers (see Ireland, 2003).
As Cass and Shell (1983) show, sunspots in expectations may lead to

indeterminacy of a rational expectations solution for in�ation. Indeed, in
the real world it may be di¢ cult to distinguish between an economy driven
by sunspots shock only and an economy driven by fundamental and sunspot
shocks. Beyer and Farmer (2003) have shown that they lead to observationally
equivalent determinate and non-determinate reduced form models which means
that the policy-makers cannot rule out the possibility of sunspots, e.g. stock
price bubbles or housing market bubbles.5 However, Orphanides and Williams
(2005) show that when there are expectational errors, but the process for
in�ation is learnable, a rise of private in�ation expectations beyond those
implied by perfect knowledge can be resolved by a forecast-based rule implying
a more aggressive response than could be expected in normal conditions. In this
case expectational errors could gradually be learnt away.6

Carlstrom and Fuerst (2001) have also noted that when the process for
in�ation is not learnable and the economy is subject to expectational errors
a backward-looking component in the policy rule could rule out sunspots. Such
policy commits the Central Bank to move future policy rates in response to
today�s price movements. This timing di¤erence is crucial as the monetary
authorities do not move until long after the public has moved. So one suggestion
is to target backward in�ation in order to give an anchor to monetary policy.
Why do pure forward-looking rules ratify sunspots? As (sunspot) in�ation

expectations raise, the authorities respond by raising nominal interest rates.
In the next period agents will then su¤er a surprise de�ation and a reduction
in output but under a sunspot this will not necessarily bring down in�ation
expectations. If the authorities major concern is to bring back actual in�ation
(and output) to equilibrium they have to lower nominal interest rates. This
will mean that despite the central bank�s initial attempt to stabilize in�ation,
eventually they have to ratify the sunspot.
But a policy-maker who recognizes the dangers of sunspot driven �uctuations

will then want to work out the correct policy and act on more than just one of

4The idea of sunspots was introduced by Jevons (1875) who posited a structural relationship
between commercial crises and the business cycle. Statistical evidence did not support the
posited model and so errors in model selection may be thought of as sunspots.

5Beyer and Farmer (2003) show how a wide class of forward-looking models lead to
observationally equivalent reduced form models. They make the point that the central bank
can conceptually respond to current, past or expected variables such as in�ation or the output
gap. But for an econometrician it is hard to tell from data which is the form of the policy
rule adopted. This lack of identi�cation extends also to the other equations of the structural
model. So if the central bank responds to lagged in�ation the parameter of a hybrid Phillips
curve (which incorporates both expected and past in�ation) cannot be identi�ed.

6For an analysis of the interaction between sunspots, monetary policy and learning in New-
Keynesian models see also Honkapohja and Mitra (2004), Carlstrom and Fuerst (2004) and
Evans and McGough (2005).
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lagged, current and expected in�ation. So what is the correct policy response in
the face of sunspot shocks? We will show that targeting each of lagged, current
and expected in�ation can guarantee stability in the presence of in�ation sunspot
shocks. In this case the interest rate today will respond positively to expected
in�ation and current in�ation but negatively to past in�ation. The anchor to
past in�ation is required to introduce a stationary control in the forward-looking
system. The presence of a backward in�ation component which enters with an
opposite sign with respect to current (and past) in�ation has also the e¤ect of
mitigating the in�ationary spiral of pure forward-looking rules.7 On average the
central bank rises rates less and this means that in�ation is closer to its expected
value in the following period, therefore avoiding the self-ratifying sunspot of pure
forward-looking rules.
To derive the optimal policy response in presence of sunspots, we design

the rule in two stages: �rst, in order to avoid errors in the formation of future
in�ation expectations, the rule must be dynamically consistent in each time
period and hence history-dependent (Woodford, 2000).8 Woodford (2005) writes
on the superiority of history dependent rules over �let bygones be bygones�rules:

�In general the most e¤ective policy (the best outcome from
among the set of possible rational-expectations equilibria) requires
that policy be conducted in a history dependent way, so that policy
at any time depends not only on conditions then (and what it
is considered possible to achieve from then on), but also on past
conditions, even though these no longer constrain what it is possible
to achieve in the present�(p.7).

The timeless targeting rule applies the same �rst order conditions for
in�ation and output in every time period and ignores any start-up conditions.
This feature implies that there is no change in the central bank model and hence
no dynamic inconsistency which may invalidate people expectations. However,
the timeless criterion will in general not be su¢ cient to eliminate expectational
sunspots. The second stage requires the sunspot error to be expressed as
a function of fundamental shocks, which are in turn restricted to eradicate
expectational errors. Following the recommendation of Evans and Honkapohja
(2006) the monetary authorities should therefore condition their policy action
on the structural equations of the model characterizing fundamental shocks
and endogenous variables.9 As we work with forward-looking models whose
equations also include expectations of future endogenous variables (possibly
subject to expectational errors or sunspots) the rule that we derive ensures that
in each time period nominal interest rates are set in such a way that we are

7Rotemberg and Woodford (1999) also derive optimal generalized rules where explosive
growing response of the funds rate to deviation of in�ation from target are �avoided only if
subsequent deviations with the opposite sign eventually counteract the e¤ects of an initial
deviation�(p. 47).

8See McCallum and Nelson (2004) clear exposition.
9Evans and Honkapohja (2006) show that right amount of response to expectations also

yields determinacy and learnability.
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on the rational expectation path for in�ation. In this setting monetary policy
changes as a result of past shocks �in such a way to bring about the desired
evolution that it was desired that people would expect� (p. 101, Woodford
2000).
If the central bank commits itself to set interest rates in accordance with this

reaction function, Backward-Current-Expected (BCE) rule, then the rational
expectation equilibrium of a forward-looking system with expectational sunspots
is necessarily determinate.
The paper is organized as follows. Section 2 shows how di¤erent forms

of canonical interest rate rules, which target any of current, past or expected
in�ation lead to indeterminacy of the solution. Section 3 shows how an
expectational sunspot can be eliminated by appropriate use of a BCE policy
rule. Section 4 examines the local determinacy region of the system solution.
Section 5 illustrates policy experiments on a standard New-Keynesian models
with in�ation sunspots. Section 6 concludes.

2 A sunspot in�ation

In this section, we examine the implications of the possibility that there are
expectational errors in in�ation for the determinacy of a simple forward-looking
model. Let us consider a standard forward-looking in�ation model, which we
make deterministic save for a sunspot shock:

�t = �Et�t+1 + v
�
t : (1)

where the discount factor, �; is less than one and v�t is a fundamental shock to
in�ation. Now consider a shock where exogenous non-fundamental errors drive
the di¤erence between actual and expected in�ation,

�t � Et�1�t = !t; (2)

where the sunspot shock !t a¤ects economic agents� beliefs. Speci�cally in
response to this shock agents will adjust their expectation, Et�1�t; which may
therefore deviate from its actual value, �t (Lubik and Schorfheide, 2003; Beyer
and Farmer, 2003). As people may have theories of in�ation determination
that di¤er from the true model (Ireland, 2003) we could think of (2) as
a representation of misled expectation formation where the sunspot can be
interpreted as any non-standard theory of in�ation determination.
In structural, or companion, form we can write these two equations as:

�
1 ��
1 0

� �
�t

Et�t+1

�
=

�
0 0
0 1

� �
�t�1
Et�1�t

�
+

�
1 0
0 1

� �
v�t
!t

�
(3)

which in compact form is:

AXt = BXt�1 +	�t (4)
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and in reduced form becomes:

Xt = A
�1BXt�1 +A

�1	�t . (5)

We can calculate A�1 simply to give:

A�1 =

�
0=� ��=� �
�1=� 1=�

�
=

�
0 1

���1 ��1

�
(6)

hence,

Xt =

�
0 1

0 ��1

�
Xt�1 +

�
0 1

���1 ��1

�
et . (7)

In the above model �t depends on its expected value Et�t+1 so it is non-
predetermined. In a determinate equilibrium the non-fundamental shock would
be endogenously determined as a function of the fundamental shock in a way
that it removes the in�uence of any explosive root. In this case the equilibrium
is indeterminate as there are not enough explosive roots to pin down uniquely
the two non-predetermined relationships given by (1) and (2). We can see this
by verifying whether the conditions for a determinate equilibrium, described in
Appendix A.2, hold in this case. Speci�cally we will evaluate the eigenvalues
of A�1B which by construction will ensure stability if both roots lie outside
the unit circle. As det(A�1B) = 0 one of the necessary conditions to have a
determinate equilibrium is not satis�ed.
Note that the characteristic polynominal of A�1B in the simple sunspot

case is �2���1� = 0: And so the eigenvalues �1;2 are ��1 and 0 where stability
would require both roots to lie outside the unit circle. This system as it stands
has no unique Rational Expectations Equilibrium.
We stochastically simulate the reduced form representation of in�ation

from the non-predetermined system (7) by considering innovations both in the
fundamental shock and in the in�ation forecast error and compare it with the
expected in�ation one year ahead for the US. There continues to be much
debate as to whether there are bubbles (or sunspots) in asset prices and/or
expectations. As Cass and Shell (1983) show sunspots in expectations may
lead to indeterminacy of a rational expectations solution for in�ation. Figure 1
simulates such an unstable in�ation process in the presence of the in�ation
sunspot given by (2) in which expectational errors in in�ation lead to an
accumulation of in�ation innovations. As it is evident the solution is unstable
and cannot track observed data.
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Figure 1: Sunspot Shock and Indeterminacy

2.1 A sunspot in�ation with a policy rule

We now examine how policy can act to bring about a unique REE.10 We model
policy as simply acting on either or all of lagged, current or expected in�ation.11

We �nd that it is possible for policy to introduce stability but that in the
presence of sunspot phenomena policy must act against all of lagged, current
and future in�ation.

2.1.1 Current in�ation

Let us now consider the forward-looking in�ation equation �t = �Et�t+1+kyt+
v�t but add a demand equation, yt = �(it�Et�t+1); and a policy rule targeting
current in�ation, it = ��t. Setting k = 1 the in�ation equation can be rewritten
as:

�t = (1 + �)Et�t+1 � ��t + v�t : (8)

10We can show that the dynamics of the economy are observational equivalent under the
possibility of sunspots or non-fundamental behaviour as well as fundamental behaviour alone.
We can show, it is trivial to complete the exercise, that the reduced forms under cases 1-5 can
be observationally identical - available on request.
11Bullard and Mitra (2002) also study macroeconomic systems with forward-looking private

sector agents and a monetary authority that is trying to control the economy through the use
of a linear policy rule. However, they use stability under recursive learning as a criterion for
evaluating monetary policy rules in this context.
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Let us keep the same sunspot shock driving expectations. In reduced form this
system is now:�

�t
Et�t+1

�
=

�
0 1
0 (1 + �)�1(1 + �)

� �
�t�1
Et�1�t

�
+�

0 1
�(1 + �)�1 (1 + �)�1(1 + �)

� �
v�t
!t

�
: (9)

As it stands the system has no predetermined variables. For determinacy we
require both roots to lie outside the unit circle. Looking at the necessary and
su¢ cient conditions listed in Appendix A.2 we immediately verify that the �rst
condition det(A�1B) > 1 is not ful�lled as the determinant is 0 and hence so
must be one of the eigenvalues.

2.1.2 Lagged In�ation

Let us now consider a policy rule targeting past in�ation. The reduced form
system can be expressed as:�

�t
Et�t+1

�
=

�
0 1

��(1 + �)�1 (1 + �)�1

� �
�t�1
Et�1�t

�
(10)

+

�
0 1

�(1 + �)�1 (1 + �)�1

� �
v�t
!t

�
:

In this case the dynamics for in�ation depends on its expected value and
on its past value, �t�1. The model reduces to a linear stochastic rational
expectation model, with a predetermined variable. If the equilibrium is unique
there must be one unstable root that allows to pin down the non-predetermined
variable Et�t+1.
Given that det(A�1B) =�(1+�)�1 > 0 it must be that the two eigenvalues

have the same sign. But as tr(A�1B) =(1+�)�1 < 1 this implies that they are
both less than 1, whereas determinacy requires at least one of the two roots to
lie outside the unit circle. In addition we can easily verify that the condition
(A.3) listed in Appendix A.1 for the existence of a saddle point equilibrium is
not satis�ed. So in general a backward policy rule will not be able to rule out
expectational sunspots.

2.1.3 Expected in�ation and current in�ation

The policy rule is targeting both current and expected in�ation in equal measure,
�. The reduced form system is:

�
�t

Et�t+1

�
=

"
0 1

0 (1+�)
(1+���)

# �
�t�1
Et�1�t

�
+

"
0 1
1

��1��
(1+�)

(1+���)

# �
v�t
!t

�
:

(11)
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Again determinacy in this setting would require both roots to be outside the
unit circle but again looking at the �rst necessary condition listed in Appendix
A.2 we require det(A�1B) > 1 whereas the determinant remains 0.

2.1.4 Backward in�ation and current in�ation

The policy rule is targeting both current and backward in�ation in equal
measure, �. The reduced form system is:�

�t
Et�t+1

�
=

�
0 1

� �
(1+�)

1+�
(1+�)

� �
�t�1
Et�1�t

�
+

�
0 1

� �
(1+�)

1+�
(1+�)

� �
v�t
!t

�
:

(12)
This does not help either. The model reduces to a linear stochastic rational

expectation model, with a predetermined variable. Determinacy in this setting
would require at least one of the two roots to lie outside the unit circle. We can
easily verify that the condition (A.3) listed in Appendix A.1 for a positive trace
is not satis�ed.

2.1.5 Lagged, current and expected in�ation

We now consider the general form of the problem where the policy acts against
lagged, current and expected in�ation in equal measure, �. The reduced form
system is:

�
�t

Et�t+1

�
=

"
0 1

� �
(1+���)

(1+�)
(1+���)

# �
�t�1
Et�1�t

�
+ (13)"

0 1

� 1
(1+���)

(1+�)
(1+���)

# �
v�t
!t

�
:

We note that the feedback rule includes expected in�ation; this is one of the
conditions that may avoid indeterminacy in the forward-looking model for
in�ation. However it is not enough to stabilize a system with expectational
sunspots. This can be achieved by including in the feedback rule a
backward in�ation component, which is equivalent to introducing a stationary
control in our model and a unique REE. To see this we verify whether the
conditions for a saddle point equilibrium exist in this case. We can see that
det(A�1B) = �

(1+���) and tr(A
�1B) = (1+�)

(1+���) : Since the trace is positive we
verify that the condition (A.3) holds implying:

det(A�1B)� tr(A�1B) =
�1

(1 + � � �) < �1 if � > �;

so if the feedback rule coe¢ cient on backward, current and expected in�ation is
higher than �; the system is regular. In addition also (A.4) must hold implying:

9



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

25 50 75 100 125 150 175

Inflation Expectation (1Y)
Simulated Solution (fundamental shock only)

Figure 2: Simulated Solution with Fundamental Shocks and a Stabilizing Policy
Rule

det(A�1B)+ tr(A�1B) =
2�+ 1

(1 + � � �) > �1;

which is always true.
We now analyze how well the reduced form in (13) tracks observed data

for in�ation expectations in the US. We simulate the data by considering a
fundamental shock only, v�t , and the fundamental and sunspot shocks (v

�
t plus

!t). Our �ndings are in line with Beyer and Farmer (2003) who show that there
is an observational equivalence between a world of sunspots plus fundamentals
and one of a fundamental alone.
Figure 2 shows the results of the simulation of the same structural model

for in�ation but where there are no expectational errors and a stabilizing policy
rule is in force: here we note that a close correspondence can be found for
the one-year expectations of US in�ation. The problem for the policy-maker,
who cannot know for certain whether there has been a bubble, is to set rule-
based policy so that even if there are expectational errors, the in�ation process
observes a process similar to that contained in Figure 2 and we show such an
example in Figure 3: where in�ation in the presence of both fundamental and
sunspot shocks can still locate a unique rational expectations equilibrium. In
the next section we will show how such a rule can be derived.

Proposition 1 In the presence of sunspot behaviour, the policy rule can
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Figure 3: Simulated Solution with Fundamental plus Sunspot Shocks and a
Stabilizing Policy Rule

stabilize the economy but may be required to target current, lead and lagged
in�ation.

In order to avoid self-ratifying sunspots the policy rule must be history
dependent. This is equivalent to introduce a stationary-control in the forward-
looking system via the backward component of in�ation in the feedback rule.
This in turn renders the system solution determinate.
In the following section we illustrate how to derive this optimal rule.

3 An Expectation Based Timeless Targeting
Criterion

We now show that the rule identi�ed in section 2.1.5 is the optimal response
from an expectation based timeless perspective. We �rst de�ne a loss function
for the monetary authority.12 The central bank�s problem at some point in time
(t = 0) can be expressed as a minimization of the Lagrangian expression:

12Evans and Honkapohja (2003) show that a fundamental based policy rule which
would be the optimal rule without commitment when private agents have perfectly rational
expectations, is unstable if in fact agents follow standard adaptive learning rules. To achieve
a monetary policy which both is stable under learning and implements optimal discretionary
policy the design of the rule must explicitly take into account of private sector expectations
and the economic structure. However the rule derived under learning is not unique.
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L =
1X
t=0

�t
�
1

2

�
�2t + �y

2
t

�
+ 't [�t � �Et�t+1 � �yt]

�
; (14)

subject to the constraint that the evolution for in�ation (in presence of sunspots)
represents a possible rational-expectations equilibrium, i.e. that satis�es

�t = �Et�t+1 + �yt + v
�
t (15)

for all periods t � 1: We assume that there is no welfare loss resulting from
nominal interest rate variation as the policy rule is fully used to o¤set the
in�ation sunspot and the other fundamental shocks (see also McCallum and
Nelson, 2004; Woodford, 1999). Consequently we omit the constraint on the IS
relationship which never binds.
We also assume that output is given by:

yt = Etyt+1 � �(it � Et�t+1) + vyt ; (16)

where vyt is a temporary supply shock that occurs only at time t: Hence the
relevant constraint for the monetary authorities is that the interest rates are
set so that deviations of output and in�ation from their target - which are
assumed to zero in both cases - are minimized given the constraint on in�ation
expectations as governed by equation (15).
By taking �rst order conditions of (14) w.r.t. �t and yt:

�t + 't � 't�1 = 0 for t = 1; 2; ::: (17)

�yt � �'t = 0 for t = 1; 2; :: . (18)

That is the central bank ignores the start-up condition �1 + '1 = 0 and
applies (17) and (18) in all periods. In this case there will be no dynamic
inconsistency in the central bank decision making process as the relationship
between �2 and y2 chosen in period 2 agrees with the relationship planned in
period 1:
So the evolution of in�ation must satisfy:13

��t + �yt = �yt�1: (19)

According to (19) the optimal rule with commitment must be dynamically
consistent in each time period and hence history dependent (Woodford, 2000).
One way to interpret the timeless targeting criterion is to say that the control of

13Andrew Blake (2001) has studied modi�cations of optimal rules in a timeless perspective
but this would lead to the same need of coordination across time of rule (19).
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a forward-looking system is best achieved with a backward-looking rule which
acts as a stationary control for the in�ation sunspot.14

But we know from Section 2 that such a rule will not be su¢ cient to stabilize
a forward-looking model with expectational errors. The second stage requires
the sunspot error to be expressed as a function of fundamental shocks, which
are in turn restricted to eradicate expectational errors. To do this the monetary
authorities should therefore condition their policy action on the structural
equations of the model characterizing fundamental shocks and endogenous
variables (Evans and Honkapohja, 2006).
In our case the targeting criterion (19) will be expressed as a function of the

nominal interest rates, of the exogenous disturbances and of period t and t� 1
expectations. To do this we take the REE path for in�ation and express yt�1
as a function of �t�1 and Et�1�t :

yt�1 =
[�t�1 � �Et�1�t]

�
: (20)

Substituting (20) and the structural equations for in�ation (15) and output
(16) in the timeless criterion (19) we obtain the expectations based reaction
function:

it =
1

�
Etyt+1 +

�
1 +

��

� (�2 + �)

�
Et�t+1 + (21)

�

�� (�2 + �)

�
�Et�1�t � �t�1 +

�2

�
v�t

�
+
1

�
vyt :

The interest rate targeting rule implied by the optimal targeting criterion
(21) acts twofold on sunspots: (i) it introduces a backward in�ation component
which acts as a stationary control for the formation of future in�ation
expectations; (ii) it eradicates the sunspot shocks by expressing them as a
function of the fundamentals shocks, vyt and v

�
t . If the central bank commits

itself to set the interest rate in accordance with this �exible reaction function,
then the rational expectation equilibrium is necessarily determinate. This will
be clearer in the battery of policy experiments presented in section 5.

3.1 Stability Condition of the Timeless Criterion

We now consider the timeless policy rule (21) in the simple case � = � = 1:

it =

�
1 +

�

(1 + �)

�
Et�t+1+

�

(1 + �)
(�Et�1�t � �t�1) + vyt +

1

(1 + �)
v�t (22)

14The optimal targeting criterion, as also stressed by Woodford (2003), suggests that with
an optimal time consistent rule it is the rate of change rather than the absolute output level
(as in the discretionary case) that should determine acceptable deviations from the long-run
in�ation target.
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The implied targeting rule suggests that to pin down a sunspot shock on
in�ation authorities should give a weight greater than one on forward-looking
in�ation. However this is a necessary but not su¢ cient condition as there should
be also su¢ cient weight on backward-in�ation, which should be higher than the
weight on current in�ation.
The model in its reduced form can be rewritten as:

�
�t

Et�t+1

�
=

"
0 1

���1 1 + (1+�)
��

# �
�t�1
Et�1�t

�
+

�
0 1
1
�

1+�
��

� �
v�t
!t

�
: (23)

We can easily show that the trace is positive and greater than unity
tr(A�1B) = 1 + 1

� +
1
�� and det(A

�1B) = 1
� : Since the trace is greater than

2 and the determinant is greater than one this means that at least one of the
root lies outside the unit circle, therefore pinning down the non-predetermined
variable (this can also be shown by calculating the roots of the characteristic
equation for A�1B by hand). As a further proof of the existence of a saddle
point equilibrium we verify that both (A.3) and (A.4) hold:

det(A�1B)� tr(A�1B) =� 1� 1

��
< �1 (24)

and

det(A�1B)+ tr(A�1B) =1 +
2

�
+
1

��
> �1: (25)

In our case both conditions are ful�lled therefore implying that one of the roots
is inside the unit circle.
Since the number of roots of A�1B which are less than one in absolute value

is equal to the number of predetermined variables then the model is said to be
regular. We will denote the characteristic roots of A�1B as �s and �u with
j �s j< 1 and j �u j> 1. We note that we have now one predetermined variable
since the optimal rule is targeting both current, expected and past in�ation,
therefore introducing an inertial component in the reduced form equation for
in�ation.
If the model is regular it will be possible to express the non-fundamental

shock !t as a function of the fundamental shock, v�t which makes the process
for in�ation stationary. This implies that even in the presence of sunspots a
timeless policy rule renders the equilibrium of the model determinate.
Since the model (23) is regular and determinate we can derive an explicit

solution for in�ation.

Proposition 2 With a timeless policy rule the rational expectation solution
of the system is regular and determinate and can be expressed as a function of
lagged in�ation and fundamental shocks, which are in turn restricted to eradicate
the expectational error

�t = �
s�t�1 +

�

(1 + �)

�
1 +

�s

�u � 1

�
v�t (26)
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Appendix B shows how to derive the result in the above proposition following
the method of Beyer and Farmer (2003). The result follows as the reduced form
(23) assumes the presence of a backward component of in�ation in the optimal
policy rule which acts as a stationary control in our forward-looking system.
This allow us to express the non-fundamental sunspot shock as

!t =
�

(1 + �)

�
1 +

�s

�u � 1

�
v�t , (27)

i.e. as a function of the fundamental shock therefore pinning down any
expectational error.15

It is straightforward to show that if there is no inertial component
det(A�1B) = 0 then the system does not meet the conditions for regularity
and determinacy.

4 Numerical Analysis of the System

We now turn to a numerical analysis of our arti�cial economy by using Sims�
(2001) method to derive the system solution. This procedure has the advantage
to exploit the notion of the forecast errors introduced in (2). Under determinacy
these forecast errors will be a function of the fundamental shocks.
To assess how sunspot shocks are in�uencing the equilibrium dynamics we

introduce the belief shocks "�t and "
y
t . As in Lubik and Schorfheide (2003) we

assume that sunspots trigger the belief shocks "�t and "
y
t that lead to a revision

of forecasts. This is possible as we have considered the conditional expectations
Et�t+1 and Etyt+1 in the vector of endogenous variables. In fact we can always
write:

�t = Et�1�t + !
�
t , (28)

yt = Et�1yt + !
y
t ,

where !t is the forecast error between t � 1 and t: Suppose that based on a
sunspot expectations are revised by "�t and "

y
t :

�t = Et�1�t + !
�
t + "

�
t , (29)

yt = Et�1yt + !
y
t + "

y
t ,

Therefore the reduced form described by (15), (16) and (21) can be expressed
as:
15To derive this result we have used the conditions �s + �u = tr(A�1B) and �s�u =

det(A�1B) which allow us to express A�1B as:�
0 1

��s�u �s + �u

�

15



Et�1�t = �Et�t+1 + �Et�1yt + v
�
t � !�t + �!

y
t , (30)

Et�1yt = Etyt+1 � �it + �Et�t+1 + vyt � !
y
t ,

it = �1Et�t+1 + �2Etyt+1 + �3Et�1�t � �4�t�1 + �2v�t + �2

� �4v
y
t ,

where �1 = (1 +
��

�(�2+�) ); �2 =
1
� ; �3 =

��
��(�2+�) ; �4 =

�
��(�2+�) :

The model can be represented as a �ve dimensional model that includes the
conditional expectations Et�t+1 and Etyt+1 as endogenous variables. De�ning
Xt = [�t; y t; it; Et�t+1; Etyt+1] the system can be rewritten as:

AXt = BXt�1 + [	 �]

�
vt
"t

�
+�!t , (31)

where the vector of exogenous shocks et = [v�t ; v
y
t ; "

�
t ; "

y
t ]

0
= [vt "t]

0
is composed

by the vector of fundamental shocks, vt, and by the vector of belief shocks, "t,
and it is serially uncorrelated: in this way the belief shocks are considered
as exogenous alongside the fundamental shocks vt. Finally, the vector !t =
[!yt ; !

�
t ] identi�es the endogenous sunspot expectational errors. Note that we

do not have a vector of constants as all variables are expressed as deviations
from steady-state.
The matrices of our system can be expressed as:

A =

266664
1 0 0 0 0
0 1 0 0 0
0 0 1 ��1 ��2
0 0 0 � 0
0 0 �� � 1

377775 ; B =

266664
0 0 0 1 0
0 0 0 0 1
��4 0 0 �3 0
0 0 0 1 ��
0 0 0 0 1

377775

	 =

266664
0 0
0 0

�2
�2

� �4
�1 0
0 �1

377775 ; � =

266664
1 0
0 1
0 0
1 ��
0 1

377775 :

We now follow the procedure of Sims (2001). The matrixA�1B has a Jordan
decomposition P�1�P where P and P�1 are the matrices of eigenvectors
whereas � is the matrix of eigenvalues. Multiplying the system by P and
de�ning Zt = PXt we can rewrite the above expression as:

Zt+1 = �Zt +P [	 �]

�
vt
"t

�
+P�!t (32)

The solution can be written in decoupled form as:�
Zst+1
Zut+1

�
=

�
�s 0
0 �u

� �
Zst+1
Zut+1

�
+

�
�st+1
�ut+1

�
; (33)
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where s stands for stable and u for unstable and �t+1 = P [	 �]

�
vt
"t

�
+

P�!t.
The unstable block can be iterated forward to give the set of stability

conditions for Zut = �
P1

j=0 (�
u)
�(j+1)

�ut+j .
16 In order to ensure stability

of the forward-looking variables we need to impose the condition Zut = 0:

[Pu:	 Pu:�]

�
vt
"t

�
+Pu:�!t = 0 ; (34)

so the sunspot errors are expressed as a function of the fundamental and sunspot
shocks (which are exogenous) to ensure stability. Hence the notion of belief
shock allows us to generate the full set of stable solutions to the system if (34)
is satis�ed. This result is isomorphic to (27) derived for the stylized reduced
form model (23) where in the stable solution for in�ation the sunspot error
is expressed as a function of the fundamental shock. If the condition (34) is
ful�lled the system is determinate i.e. a solution does exist and it is unique.
Existence problems arise if the exogenous shocks v and " cannot adjust to

o¤set the endogenous sunspot shock !. We might expect this to happen if Pu

has more rows than columns (Sims, 2001). This is equivalent to the usual notion
that there are existence problems if the number of unstable roots exceeds the
number of jump variables.17

4.1 Local Determinacy of the System

To analyze the local determinacy of the system and its dynamic properties we
start by assigning some standard benchmark values to �; � and �. Following
Clarida et al (1999), Rotemberg and Woodford (1998) and most of standard
literature we set the (quarterly) discount factor � to 0.99, implying an annual
rate of 4%. We also set the coe¢ cient of relative risk aversion, �; to 1 and the
output elasticity of in�ation, �; equal to 1.22 as in Chari et al (1996).18 We also
set the relative weight of output with respect to in�ation in the loss function to
be equal to 0.5.
Figure 4 indicates whether the solution to (30) is determinate. We �x a grid

of admissible values for each of the interest rule coe¢ cients on expected, current
and backward in�ation �1; �3 and �4 and check whether the solution exists and
it is unique. In forward-looking systems characterized by forecast errors caused
by sunspot shocks a coe¢ cient greater than unity on expected in�ation (�1 > 1)

16Note that

Zut = (�
u)�1 Zut+1 � (�u)�1 �ut = (�

u)�2 Zut+2 � (�u)�2 �ut+1 � (�u)�1 �ut

which gives the result in the text.
17 In order for the solution to be unique (34) has to pin down not only Pu�! but also all

the other error terms in the system that are a¤ected by the expectational sunspot error term
!: That is from the knowledge of Pu�! we must be able to determine Ps�! where Ps

includes the rows of P�1 not included in Pu (Sims, 2001).
18Other values usually employed as benchmark values for � are 0.05 (Taylor, 1980) and 0.3

which is chosen by Woodford (1999) and Clarida Gali and Gertler (1999).
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Figure 4: Local Determinacy of System Solutions

is not su¢ cient to guarantee stability. As proposition 1 states we need all the
components of in�ation (backward, current and expected) to enter the feedback
rule with the coe¢ cients �1 and �4 greater than unity. This is equivalent to
introduce a stationary-control in the forward-looking system via the coe¢ cient
of the backward component of in�ation in the feedback rule, �4. In this case as
the darkest region of Figure 4 shows the solution is always determinate.

4.2 Policy Experiments

We now turn to some policy experiments on system (30) by comparing the
impulse responses for in�ation, output and real interest rates to the fundamental
shocks and to the sunspot shock on in�ation.19

Figure 5 compares the responses of �t, yt and it � �t to the set of shocks
[v�t ; v

y
t ; "

�
t ] when we implement the Backward-Current-Expected (BCE) policy

rule and when we implement the forward looking Current-Expected (CE) rule.
A cost-push shock, v�t ; that hits aggregate supply causes a temporary

increase in in�ation. Nominal interest rates increase sharply in response to the

19We solve for Xt = G1Xt�1 +Wtet and therefore can write a VAR in standard MA(1)
form as:

Xt =

1X
i=0

Gi
1Wt�iet�i =

1X
i=0

Ct�iet�i

The responses of Xt are determined by the rows of Gi1 andWt�i: These are the responses of
X to standard shocks in et i.e. Xt = Ctet +Ct�1et�1 +Ct�2et�2:::where the matrix Ck
has the interpretation @Xt

@et�k
= Ct�k which will be used in our impulse response analysis.
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higher levels of current and expected in�ation. However because of the higher
initial in�ation the real interest rates fall after time zero which cause output
to increase temporarily in the �rst two periods. The subsequent de�ation real
rates will then gradually revert to their long-run level, which in turn will boost
output back to equilibrium. The main di¤erence between the BCE rule and
the CE rule is that with a BCE rule the in�ation dynamics are less persistent
and reverts quicker to its long-run equilibrium. Conversely the CE rule is not
capable of stabilizing in�ation.
In presence of a demand shock, vyt , the real interest rate picks up immediately

after the shock to avoid in�ationary spirals. This causes output to fall
temporarily below its long-run level which in turn decreases in�ation. The
initial shock, which is fully compensated by the increase in interest rates at
time zero, is followed by a contraction in output because of higher real interest
rates (nominal rates increase more than in�ation). The subsequent de�ation
further ampli�es the initial output drop. Output then reverts slowly to its
long-run equilibrium as interest rates start decreasing. Note again that with a
BCE rule real rates are less persistent and revert very quickly to their long-run
equilibrium level. This in turn implies that in�ation will respond in a similar
fashion and will absorb the e¤ects of the fundamental shock much quicker. So
with a history dependent targeting rule the volatility of in�ation is lower and
the e¤ects of the fundamental shocks less persistent.
The �nal column of charts in Figure 5, assumes a sunspot shock in in�ation,

!�t . In this case real rates have to increase sharply in order to o¤set the
in�ation sunspot shock. There are clear di¤erences in the responses to a BCE as
compared to a CE rule. A BCE rule will respond initially in a more aggressive
way to the in�ation sunspot (real rates are initially higher with the BCE than
with the CE rule). This will cause a sharper fall in in�ation which in turn,
given the history dependent pattern will cause a reduction in nominal rates
(and real rates) in the following periods. In turn the BCE rule will successfully
stabilize in�ation and given the lower real interest rates in the interim period
output will temporarily increase (note the hump-shaped response for output in
the BCE rule).

5 Conclusions

A pragmatic monetary policy maker may wish to use each of lagged, current
and expected information variables when adopting a stabilizing rule. But such
an approach cannot be explained by the need to stabilize fundamental shocks
alone. It can, however, be explained well when there is the additional possibility
of sunspot shocks. Stabilizing leads and lags of in�ation may therefore represent
a sensible stabilization strategy in the face of sunspots.
We can summarize our �ndings as follows: �rst along the lines of Beyer

and Farmer (2003) we have shown that there is an observationally equivalence
between a world of sunspots and fundamentals and one of fundamentals alone,
hence sunspots cannot be ruled out. If the process for in�ation is learnable,
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Figure 5: Responses of �t, yt and it��t to the fundamental and sunspot shocks
[v�t ; v

y
t ; "

�
t ]
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in�ation forecast errors could be ruled out by a simple forecast-based rule
as suggested by Orphanides and Williams (2005) and Evans and Honkapohja
(2001). However, if the process for in�ation is not learnable and there are
in�ation expectational errors we prove that the intuition of Calmstrom and
Fuerst (2000, 2001) is that a rule with a backward in�ation component is more
likely to produce stability than a forward-looking rule.
In this paper we take this point further and try to derive a more general class

of policy rules able to deal with forecast errors when the process for in�ation is
not learnable. The policy implication of the optimal rule derived - the BCE rule
- is that the central bank should coordinate its stabilization e¤ort by targeting
all of lagged, current and expected in�ation as this brings about stability in the
presence of a sunspot. The BCE rule derived in the paper is isomorphic to the
timeless policy rule of Woodford (2003b) and to the expectational rule of Evans
and Honkapohja (2006). Hence an optimal policy rule will stabilize a forward-
looking system prone to expectational errors or sunspots, if it is inertial in the
sense that the rule is contained by past behaviour; and if this self-same rule is
�learnable�i.e. meets the supplementary conditions for stability and uniqueness.
Our paper sums up these results to think about the policy-maker�s problem

in the possible presence of sunspot shocks. In particular we show that if sunspots
cannot be ruled out then co-ordinating stabilization policy across time will
contain any deleterious e¤ects.
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A Some Simple Rules for Establishing Stability in 2x2
Matrix for a Di¤erence Equation

Let us de�ne the polynomial function p (�)

p(�) = �2 � �tr(A�1B) + det(A�1B) = 0; (A.1)

where � will be a root of the equation when the polynomial equals zero. We
therefore draw this polynomial in tr(A�1B) = tr(�); det(A�1B) = det(�) space
for � as a root:

det(�) = ��2 + �tr(�): (A.2)
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So for � = 1, this line be positive and for � = �1 the line will be negative.
The trace and determinant of a given 2x2 matrix will then determine how many
eigenvalues will lie inside or outside the unit circle.

A.1 Case 1 - saddle point: �1 < j1j and �2 > j1j.
No restrictions of either trace or determinant, per se.
For a positive trace:

det(�) < �1 + tr(�) (A.3)

det(�) > �1� tr(�): (A.4)

As in (Woodford, 2003a) we observe that tr(�) = �1+�2 and det(�) = �1�2.
Conditions (A.3) and (A.4) imply respectively that (�1 � 1)(�2 � 1) < 0 and
(�1 + 1)(�2 + 1) > 0: Hence the two roots are on the same side of 1 but one is
greater than 1 and the other is less than 1.
For a negative trace:

det(�) > �1 + tr(�) (A.5)

det(�) < �1� tr(�): (A.6)

This implies that (�1 � 1)(�2 � 1) > 0 and (�1 + 1)(�2 + 1) < 0: Hence the
two roots are on the same side of -1 but one is less than -1 and the other is
greater than -1.

A.2 Case 2: �1;2 > j1j i.e. eigenvalues both outside the unit
circle

For a positive trace:

det(�) > 1 (A.7)

tr(�) > 2 (A.8)

det(�) > �1 + tr(�) (A.9)

det(�) > �1� tr(�): (A.10)

Proof. Conditions (A.7)-(A.10) imply:

�1�2 > 1 (A.11)

�1 + �2 > 2 (A.12)
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(�1 � 1)(�2 � 1) > 0 (A.13)

(�1 + 1)(�2 + 1) > 0: (A.14)

In case of real roots (A.13) and (A.14) imply that both roots are on the same
side of 1. Considering the positive trace condition in (A.12) they will be both
outside the unit circle.

For a negative trace:

det(�) > 1 (A.15)

tr(�) < �2 (A.16)

det(�) > �1 + tr(�) (A.17)

det(�) > �1� tr(�): (A.18)

Conditions (A.17) and (A.18) are equivalent to (A.13) and (A.14).
Considering the negative trace this implies that both roots are on the same
side of -1.

In the �nal case, where the determinant is less than -1, the eigenvalues take
opposite signs:

det(�) < �1 (A.19)

det(�) < �1 + tr(�) (A.20)

det(�) < �1� tr(�): (A.21)

Conditions (A.20) and (A.21) imply that (�1 � 1)(�2 � 1) < 0 and
(�1 + 1)(�2 + 1) < 0 so the roots must lie on opposite sides of both -1 and
1. Thus one root must lie below -1 while the other is above 1.

B Solution for In�ation

In the simple case � = � = 1; by replacing the interest rate rule (22) and the
demand equation (16) in (15) we derive the reduced form equation for in�ation.
By combining the latter with the sunspot shock (2):
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�
1 � ��

(1+�)

1 0

�
A| {z }

�
�t

Et�t+1

�
=

�
�

(1+�) � ��
(1+�)

0 1

�
B| {z }

�
�t�1
Et�1�t

�
(B.1)

+

� �
(1+�) 0

0 1

�
	| {z }

�
v�t
!t

�
:

Multiplying by A�1:�
�t

Et�t+1

�
= A�1B

�
�t�1
Et�1�t

�
+A�1

� �
(1+�) 0

0 1

� �
v�t
!t

�
; (B.2)

where A�1 =

"
0 1

� (1+�)
��

1+�
��

#
and A�1B =

"
0 1

���1 1 + (1+�)
��

#
:

The eigenvalues of A�1B are related to the parameters by the equations:

�s + �u = 1 +
1 + �

��
(B.3)

�s�u = ��1:

So we can rewrite the above expression as:

A�1B =

�
0 1

��s�u �s + �u

�
: (B.4)

We have shown in the text that one of the roots lies outside the unit circle
and another inside. Therefore we assume that �u > 1 and �s < 1:
The two eigenvectors of A�1B are equal to:

�
0 1

��s�u �s + �u

� �
1
v1

�
= �s

�
1
v1

�
=) v1 = �

s (B.5)�
0 1

��s�u �s + �u

� �
1
v2

�
= �u

�
1
v2

�
=) v2 = �

u:

The matrix A�1B can be decomposed as Q�Q�1 where Q is the matrix
of eigenvectors and � is a diagonal matrix which contains the eigenvalues of
A�1B :

�
0 1

��s�u �s + �u

�
A�1B| {z }

=

�
1 1
�s �u

�
Q| {z }

�
�s 0
0 �u

�
�| {z }

"
�u

�u��s � 1
�u��s

� �s

�u��s
1

�u��s

#
Q�1| {z }

(B.6)
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Using the de�nition A�1 =
�

0 1
1� (�s+�u) (�

s
+�u)� 1

�
we derive:

Q�1A�1 =

"
(�s+�u)�1
�u��s � �s�1

�u��s

� (�s+�u)�1
�u��s

�u�1
�u��s

#
: (B.7)

Premultiply (B.2) by Q�1:

Q�1
�

�t
Et�t+1

�
= Q�1(Q�Q�1)

�
�t�1
Et�1�t

�
+Q�1A�1

� �
(1+�) 0

0 1

� �
v�t
!t

�
Zt+1 = �Zt + &t;

where Zt = Q�1
�

�t
Et�t+1

�
and &t = Q�1A�1

� �
(1+�) 0

0 1

� �
v�t
!t

�
:

The solution can be written in decoupled form as:�
Zst+1
Zut+1

�
=

�
�s 0
0 �u

� �
Zst
Zut

�
+

�
&st
&ut

�
; (B.8)

where

Zst =
�u

�u � �s�t �
1

�u � �sEt�t+1 (B.9)

Zut = � �s

�u � �s�t +
1

�u � �sEt�t+1

&st =
�

(1 + �)

(�s + �u)� 1
(�u � �s) v�t �

�s � 1
�u � �s!t

&ut = � �

(1 + �)

(�s + �u)� 1
(�u � �s) v�t +

�u � 1
�u � �s!t:

The stable block is iterated backwards to derive the stability conditions for
the predetermined variables Zs:

Zst+1 = �
sZst + �

s
t =

1X
j=0

(�s)
j
�st�j ; (B.10)

so it can be iterated backwards only if the eigenvalues in �s lie inside the unit
circle.
The unstable block can be iterated forward to give the set of stability

condition for Z:

EtZ
u
t =

1

�u
EtZ

u
t+1 =

�
1

�u

�n
EtZ

u
t+n: (B.10)

If the roots lie outside the unit circle then limn!1
�
1
�u

�n
= 0 which implies

Zut = 0 and from (B.9):
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�s

(�u � �s)�t �
1

�u � �sEt�t+1 = 0 (B.11)

hence Et�t+1 = �s�t: Using this result and the de�nition of Zst from (B.9) it
follows that Zst = �t:
Given the de�nition of Zut+1 in (B.8) if Z

u
t = 0 it must also be &

u
t = 0 which

from (B.9) implies:

!t =
�

(1 + �)

�
1 +

�s

�u � 1

�
v�t : (B.12)

Knowing that Zst = �t, considering the de�nition of &st from (B.9) and the
relationship between !t and v�t as derived in (B.12), the solution for in�ation
is:

Zst+1 = �sZst + &
s
t (B.13)

�t = �s�t�1 +
�

(1 + �)

(�s + �u)� 1
(�u � �s) v�t �

�s � 1
�u � �s!t

�t = �s�t�1 +
�

(1 + �)

�
1 +

�s

�u � 1

�
v�t :
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