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Abstract

The gas transfer process across the air-water interface in a buoyant-convective environment

has been investigated by Direct Numerical Simulation (DNS) to gain improved understanding

of the mechanisms that control the process. The process is controlled by a combination of

molecular diffusion and turbulent transport by natural convection. The convection when a

water surface is cooled is combination of the Rayleigh-Bénard convection and the Rayleigh-

Taylor instability. It is therefore necessary to accurately resolve the flow field as well as

the molecular diffusion and the turbulent transport which contribute to the total flux. One

of the challenges from a numerical point of view is to handle the very different levels of

diffusion when solving the convection-diffusion equation. The temperature diffusion in water

is relatively high whereas the molecular diffusion for most environmentally important gases

is very low. This low molecular diffusion leads to steep gradients in the gas concentration,

especially near the interface. Resolving the steep gradients is the limiting factor for an

accurate resolution of the gas concentration field. Therefore a detailed study has been

carried out to find the limits of an accurate resolution of the transport for a low diffusivity

scalar.

This problem of diffusive scalar transport was studied in numerous 1D, 2D and 3D nu-

merical simulations. A fifth-order weighted non-oscillatory scheme (WENO) was deployed

to solve the convection of the scalars, in this case gas concentration and temperature. The

WENO-scheme was modified and tested in 1D scalar transport to work on non-uniform

meshes. To solve the 2D and 3D velocity field the incompressible Navier-Stokes equations

were solved on a staggered mesh. The convective terms were solved using a fourth-order

accurate kinetic energy conserving discretization while the diffusive terms were solved using

a fourth-order central method. The diffusive terms were discretized using a fourth-order cen-

tral finite difference method for the second derivative. For the time-integration of the velocity

field a second-order Adams-Bashworth method was employed. The Boussinesq approxima-

tion was employed to model the buoyancy due to temperature differences in the water. A

linear relationship between temperature and density was assumed. A mesh sensitivity study
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found that the velocity field is fully resolved on a relatively coarse mesh as the level of tur-

bulence is relatively low. However a finer mesh for the gas concentration field is required

to fully capture the steep gradients that occur because of its low diffusivity. A combined

dual meshing approach was used where the velocity field was solved on a coarser mesh and

the scalar field (gas concentration and temperature) was solved on an overlaying finer sub-

mesh. The velocities were interpolated by a second-order method onto the finer sub-mesh.

A mesh sensitivity study identified a minimum mesh size required for an accurate solution

of the scalar field for a range of Schmidt numbers from Sc = 20 to Sc = 500. Initially the

Rayleigh-Bénard convection leads to very fine plumes of cold liquid of high gas concentration

that penetrate the deeper regions. High concentration areas remain in fine tubes that are

fed from the surface. The temperature however diffuses much stronger and faster over time

and the results show that temperature alone is not a good identifier for detailed high concen-

tration areas when the gas transfer is investigated experimentally. For large timescales the

temperature field becomes much more homogeneous whereas the concentration field stays

more heterogeneous. However, the temperature can be used to estimate the overall transfer

velocity KL. If the temperature behaves like a passive scalar a relation between Schmidt or

Prandtl number and KL is evident.

A qualitative comparison of the numerical results from this work to existing experiments

was also carried out. Laser Induced Fluorescence (LIF) images of the oxygen concentration

field and Schlieren photography has been compared to the results from the 3D simulations,

which were found to be in good agreement. A detailed quantitative analysis of the process

was carried out. A study of the horizontally averaged convective and diffusive mass flux

enabled the calculation of transfer velocity KL at the interface. With KL known the renewal

rate r for the so called surface renewal model could be determined. It was found that the

renewal rates are higher than in experiments in a grid stirred tank. The horizontally averaged

mean and fluctuating concentration profiles were analysed and from that the boundary layer

thickness could be accurately monitored over time. A lot of this new DNS data obtained in

this research might be inaccessible in experiments and reveal previously unknown details of

the gas transfer at the air water interface.
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Chapter 1

Introduction

1.1 Background

T
he gas transfer through the air-water interface plays an important role in envi-

ronmental and chemical engineering. One typical process is the absorption of

oxygen into natural water bodies such as lakes and oceans. It is vital to sustain

aquatic life. Oxygen enters the water through the air-water interface and dissolved oxygen

is subsequently distributed through the water. This process is controlled by interaction of

molecular diffusion and turbulent transport. The level of molecular diffusion is very low

for soluble gases contained in air (i.e. oxygen and carbon dioxide). The turbulent diffusion

depends on the flow characteristics. In the case of convectively driven flow, for small tem-

perature differences the flow is predominantly laminar. It is well known that the level of

turbulence plays an important role in the gas transfer process and is the dominant driving

mechanism. Natural sources of turbulence can be classified into three major types which are

surface-shear-induced turbulence (e.g. wind shear on open waters), bottom-shear-induced

turbulence (e.g. in rivers) and buoyant-convective turbulence (e.g. in lakes due to surface

cooling). Fig 1.1 shows a schematic illustration of the turbulence sources and their interac-

tion [38]. Wind-shear and bottom-shear driven turbulence has been investigated numerically

in a number of studies [34, 35, 79, 23]. In those cases the level of turbulence is high and the

influence of the water temperature is not considered.
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Introduction Background

Figure 1.1: Schematic illustration of the turbulence mechanisms driving gas transfer at the air-water

interface in the environment. Type A is investigated in this study [38].

There is relatively little known about the detailed physical mechanisms of convectively

driven gas transfer. If the surface layer is cooled it becomes slightly heavier than the water

underneath triggering a Rayleigh instability resulting in a downwards penetration of the

upper layer that is saturated with gas. Typical non-dimensional quantities characterising

the gas transfer are the ratio of the momentum diffusivity and mass diffusivity, represented

by the Schmidt number Sc, the ratio of viscosity and thermal diffusivity, represented by the

Prandtl number Pr and the Rayleigh number Ra. The convection is obviously driven by

temperature differences within the water body introduced from the cooled free surface on the

top. The temperature diffusion, however, is much higher than the relatively low molecular

diffusion of the gas. The thickness of the thermal and concentration boundary layer is very

different. For environmentally important gases such as O2, N2, CO2 the Schmidt number is

Sc ≈ 500. This results in a concentration boundary layer of only ten to hundreds of µm

thickness. This makes experimental measurements at the interface very difficult. Quantities

of interest such as the gas concentration or the mass flux are very difficult to measure in

great detail. Researchers tried to visualize and measure the oxygen concentration field with
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Introduction Objectives and its numerical challenges

fluorescence methods (Jirka et al. [46], Schladow et al. [78]), however the resolution remains

a problem. The objective of this study is to gain a more detailed understanding of the

mechanisms that control the oxygen absorption in water dominated by convectively-induced

turbulence on a scale where experimental measurements of the gas concentration field are

nearly impossible. Detailed high resolution Direct Numerical Simulation is required to gain

an improved knowledge of the transfer and distribution of dissolved gas in convectively driven

flow.

1.2 Objective and the numerical challenges

The gas transfer across the air-water interface represents a scalar convection-diffusion prob-

lem. Let the gas concentration be represented by a scalar ϕ. A combination of two physical

mechanisms contribute to the transport of the gas through the system (the water body).

These two processes are convection and diffusion. Convection arises simply from the motion

of the fluid. A fluid particle with a certain gas concentration is simply moved along by the

flow. On the other hand there is the process of (molecular) diffusion. Even if the fluid were

completely stationary there would still be a mass transfer into the fluid by means of diffusion.

In one dimension this combination of convection and diffusion of a scalar ϕ can be described

by the 1D linear convection-diffusion equation,

∂ϕ

∂t
+ w

∂ϕ

∂z
= Γ

(

∂2ϕ

∂z2

)

. (1.1)

The convective term w ∂ϕ
∂z on the left hand side arises because of the presence of the

velocity w. The diffusive term Γ
(

∂2ϕ
∂z2

)

on the right hand side is essentially Fick’s second

law of diffusion that states that describes the concentration change with time caused by

diffusion.

∂ϕ

∂t
= dc

(

∂2ϕ

∂z2

)

. (1.2)

The term dc in Fick’s second law above is the diffusion coefficient or diffusivity. It is a

measure for the resistance of the substance (here the water) against the diffusion of a scalar

3



Introduction Objectives and its numerical challenges

quantity ϕ (let this be gas concentration or temperature). The diffusion coefficient in (1.1) is

dc = Γ = 1
ReSc (where Re is the Reynolds number and Sc is the Schmidt number, see Section

3.2). The higher the Schmidt numbers become the weaker the diffusion gets which leads to a

thinner concentration boundary layer as mentioned in Section 1.1. For the temperature, T ,

the same equation is valid with the Schmidt number, Sc, replaced by the Prandtl number,

Pr, (see Section 3.2 for definition of Sc and Pr). For the diffusion of most soluble gases

(such as oxygen) into water the Schmidt number is Sc ≈ 500. This leads to a very low

diffusion of the gas concentration. As a result, very high concentration areas will be in

close proximity to low concentration areas with a steep gradient between them. Hence the

concentration level might jump from 0% to 100% over just a few gridpoints. Furthermore,

the gas concentration field moves by means of (scalar) convection. To capture accurately

the advancing steep gradient ’fronts’ with high resolution is the main numerical challenge.

The low level of mass diffusivity requires a numerical method that is capable of capturing

the steep gradients only within a couple of gridpoints without losing accuracy because of

numerical error or smearing.

The diffusion of the gas concentration is also influenced by the level of turbulence. For

instance a small eddy would transfer a fluid particle quickly elsewhere and, if located in

an area between high and low gas concentration, enhance the mixing. However the level of

turbulence is relatively low in a convectively driven flow. One can imagine that if a lake’s

surface cools down at night, causing natural convection, the motion of the water is much

less turbulent than for example in a river with bottom-shear (see Fig. 1.1). In fact the flow

can be considered laminar if the surface is cooled by only a few degrees ❽. The smallest

flow structures are significantly larger than the smallest structures in the scalar field (i.e.

thickness of gas concentration boundary layer). Considering that the temperature dependent

density drives the flow it becomes evident that there is a coupling between the scalar field

and the velocity field. The difference in diffusive length scales for the velocity field and scalar

concentration field imposes different resolution requirements to the problem. Whilst the flow

field might be fully resolved on a certain grid size the scalar field might be underresolved.

The nature of the mass transfer over an interface entails the fact that important mech-

4



Introduction Methodology

anism happen near the interface itself. The scalar diffusive transport is determined by the

gradients present in the scalar field (Fick’s law). On the other hand the structure of the

velocity field near the interface determines the convective transport of the scalar ϕ within

the boundary layer. The formation of the concentration and temperature boundary layer

(which will also scale very differently) and their different gradients are crucial processes. It

is therefore necessary to pay special attention to the resolution of the near interface region

by refining the numerical grid near the interface. This means that the numerical methods

need to be accurate on non-uniform meshes.

In summary the numerical challenges outlined above are

❼ to resolve the convective transport of the low-diffusive scalar field containing very steep

gradients without smearing or oscillations,

❼ the different scaling of velocity and scalar field,

❼ the presence of a non-uniform refined mesh near the interface.

1.3 Methodology

As mentioned in Section 1.2 the main numerical challenge is the convective transport of a

scalar field containing steep gradients. This problem is addressed by the deployment of a

weighted non-oscillatory (WENO) scheme to discretize the scalar convection. The develop-

ment of WENO schemes began with Harten’s ENO scheme (essentially non-oscillatory) in

1987 [32] (see literature review Chapter 2). Up to now a variety of WENO schemes has been

developed. They are based on the idea of taking a weighted combination of interpolation

polynomials to replicate a discontinuity or sudden change in the solution. This constructed

’step function’ than allows to predict the location of the step when it is moved. A discontinu-

ity or step function could also be captured with spectral methods using, for instance, Fourier

series expansions. Such highly accurate methods, however, may lead to spontaneous oscil-

lations occurring near steep gradients (Gibbs phenomenon). The advantage of the WENO

schemes is the steep-gradient capturing capability without exhibiting oscillations or wiggles.
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The different resolution requirements of velocity field and scalar field are addressed with a

dual meshing strategy. Here the velocity field is solved on a coarser mesh than the scalar field.

The velocity field is solved by a finite-difference discretization of the convective terms using a

fourth-order unconditionally kinetic energy conserving method combined with a fourth-order

accurate central method for the diffusive terms [96]. The 2D incompressible Navier-Stokes

equation is discretized on a non-uniform, staggered mesh in combination with a second-order

accurate Adams-Bashforth time integration. The velocities are then interpolated onto the

finer grid, where the transport of the scalar field is resolved by a fourth-order interpolation.

This dual meshing strategy improves the computational efficiency. The mesh for the scalar

field could be refined to various levels without more computational effort to solve the velocity

field. It is the unique steep gradient capturing capability of the WENO scheme and the

dual meshing approach to separate the solving of the velocity field and the scalar field

that sets this numerical method apart from commercially available codes and gives it its

high order of accuracy. The common scalar convection-diffusion problems to be solved with

commercial codes in industrial applications are heat transfer in a single phase flow where

the Prandtl/Schmidt number is usually below 10. Such high diffusivity can be resolved with

ordinary gradient reconstructions, hence commercial codes are lacking an advanced gradient

reconstruction method such as the WENO schemes. A detailed description of the numerical

method can be found in Chapter 3.
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Chapter 2

Theoretical Background &

Literature Review

T
he theoretical background on gas exchange at air-water interfaces is provided in

the first part of this chapter, providing fundamental concepts and some govern-

ing equations. The following sections review literature on investigations in the

laboratory, in field studies, and numerical simulations. Special focus has been put on the

numerical studies and the methods used. Numerical work featuring different physical condi-

tions such as shear-driven flow and wavy interfaces are reviewed. A review on experimental

investigations as well as WENO schemes is given.

2.1 Fundamental Concepts

The gas transfer process at the air-water interface with low soluble gases (such as Oxygen) is

controlled by resistance on the liquid side. If the liquid is stationary without any disturbances

molecular diffusion governs the process. In natural cases, however, the fluid may be in motion

by a combination, or exclusively, of wind-shear, bottom shear or buoyant convection due to

surface cooling (see figure 1.1). The fluid motion introduces convective mass transfer, so that

the process becomes a combination of convection and diffusion. Near the interface molecular

diffusion dominates whereas further away from the interface the convective transport is
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dominant. In the case of convective instability, that is studied in this work, the interaction

of gravity with thermal effects on density are driving the flow and the subsequent mixing

enhances the convective mass transfer. For convective instability to occur the buoyancy

effect has to be dominant and overcome the viscous forces. Liquid at the surface cools and

becomes heavier than a light warm layer below, thus it has a tendency to move downwards

and to be replaced by warmer liquid from the lower layer.

2.2 Governing Equations

2.2.1 Mass Transfer

In Section 1.2 Fick’s law is stated which describes the mass flux of a solute due to molecular

diffusion. Let the solute be the scalar quantity ϕ then Fick’s second law in one dimensional

form can be written as,

J = −dc
∂2ϕ

∂z2
. (2.1)

The minus sign in (2.1) indicates that the flux is from high concentration to low concentration

in the vertical z-direction. Taking advection (the moving fluid) and the conservation of mass

also into consideration, the unsteady mass flux J reads

J = w
∂ϕ

∂z
+ (−dc

∂2ϕ

∂z2
) (2.2)

where t is the time and w is the instantaneous velocity vector w in z-direction. The

first term on the right describes the convective transport and the second term the molecular

diffusion process in the vertical direction.

2.2.2 Transfer velocity KL

The gas transfer rate is usually parameterized by the transfer velocity KL. Based on the

empirical argument that the mass transfer is proportional to the concentration difference the

common definition is,
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KL =
j

∆c
(2.3)

where j is the mass flux rate and ∆c is the concentration difference between bulk region

and interface. Applying equation (2.2) for the mass flux of a scalar ϕ equation (2.3) can be

written as,

KL =
J

∆ϕ∗
=

J

ϕ∗

s − ϕ∗

b

(2.4)

where ϕ∗

s is the saturated concentration and ϕ∗

b is the bulk concentration. Considering a

low soluble gas to be transferred the normalized bulk concentration stays at ϕ∗

b ≈ 0. Using

the normalized concentration it is evident that ∆ϕ∗ ≈ 1 and hence KL ≈ J .

2.2.3 Important non-dimensional parameters

The gas transfer process in a convective flow environment can be described by non-dimensional

parameters. These relate to the three main physical processes which are involved namely,

mass transfer, heat transfer, and buoyant convection. The Schmidt number Sc is defined as

the ratio of momentum diffusivity ν to mass diffusivity D, hence

Sc =
ν

D
. (2.5)

The Schmidt number relates the relative thickness of the hydrodynamic boundary layer and

the mass-transfer boundary layer. Based on similar principles the Prandtl number Pr is the

ratio of momentum diffusivity ν and thermal diffusivity α,

Pr =
ν

α
(2.6)

relating the relative thickness of the hydrodynamic boundary layer and the thermal

boundary layer. Because of the similar concept of Pr and Sc the Schmidt number Sc is

sometimes called ’mass transfer Prandtl number’ in the literature.
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Buoyancy driven flows can be characterized by the Rayleigh number Ra which is a product

of the Grashof number Gr and the Prandtl number Pr.

Ra = GrPr =
∆ρgL3

αµ
(2.7)

where ∆ρ is the density difference of the fluid between the two temperatures TB and

T0 and µ is the dynamic viscosity and g is gravity. The Rayleigh number basically is the

ratio of buoyancy forces and viscosity forces times the ratio of momentum and thermal

diffusivities. A further detailed description on how these and other parameters are used for

the non-dimensionalization of the numerical method is given in Section 3.2.

The Nusselt number Nu quantifies the heat transfer across a boundary. It is the ratio of

the convective heat flux and conductive heat flux.

Nu =
q̇conv
q̇cond

. (2.8)

The conductive heat flux q̇cond in (2.8) is the heat flux which is present when the fluid is

stationary and the only mode of heat transfer is conduction (diffusion). The convective heat

flux q̇conv in (2.8) is the total heat flux when the fluid is in motion including both, advection

and diffusion.

In similar fashion the mass transfer is quantified by the Sherwood number Sh

Sh =
Jconv
Jdiff

(2.9)

where Jconv and Jdiff are the convective and diffusive mass flux, respectively.

2.3 Conceptual models for the Transfer velocity (KL)

There have been efforts to describe the transfer velocity KL with models. So called conceptual

models are “simple solutions of the vertically one-dimensional diffusion equation without any

explicit advective flow field. The effects of advection are incorporated by initial and boundary

conditions, which are characterized by time and spatial scales ”[13]. The following gives an

overview over the most common conceptual models.
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Film model

The first conceptual model was developed by Lewis and Whitman [59] who assumed a linear

profile in the concentration boundary layer. Hence the linear relation

KL =
D

δ
. (2.10)

was assumed where D is the molecular diffusivity and δ is the boundary layer thickness.

D is also often referred as the Gas Diffusion Coefficient (usually in cm2/s). The film model

oversimplifies the actual mechanism as it is clear there are no flow characteristics or time

scales considered. In numerical experiments it could be found that the relation between KL

and D is not linear [65]. It might be a good estimate for processes where diffusion is the

dominant mechanism.

Penetration model

Higbie [42] introduced the concept of the so called ’surface renewal effect’, which is based on

the idea that the motion in the bulk region of the fluid would bring packages of ’fresh’ fluid

to the surface. This takes place at a certain renewal time tr. Higbie showed that

KL =

√

D

πtr
. (2.11)

Surface renewal model

Dankwerts [21] modified the penetration model by introducing the renewal rate r where tr

follows an exponential probability distribution. He derived

KL =
√
Dr. (2.12)

where 1/r can be interpreted as the mean time between surface renewal events.
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Film-renewal model

O’Connor and Dobbins [75] combined the linear film model with Dankwert’s model. They

proposed

KL =
√
Dr coth

[

δ
√

D/r

]

(2.13)

which is asymptotic to the film model for small values of r and the surface renewal model

for large values of r.

Random eddy model

Harriott [31] developed the random eddy model which suggests that eddies have a random

lifetime and will approach the interface within a random distance. He derived the following

relation

KL =

√
Dr

1 + δ
√

D/r
(2.14)

The conceptual models show that KL depends on
√
D. Although these conceptual models

were developed for various sources of turbulence (the film-renewal model was in the context of

bottom induced turbulence) they are not limited to a certain flow mechanism. The influence

of the flow conditions are hidden in the term r which often remains unknown in experiments.

The numerical results of this study enable an exact determination of the transfer velocity

KL and δ.

2.4 Numerical investigations of scalar transfer at air-water

interfaces

The problem of the gas transfer is essentially a scalar transport problem. When neglecting

radiation and evaportation, it can be assumed that the mass and heat transfer are dominated

by convection and diffusion. The only difference is that the Prandtl number Pr is the ratio
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of momentum diffusivity (kinematic viscosity) to thermal diffusivity, whereas the Schmidt

number Sc is the ratio of momentum diffusivity (viscosity) and mass diffusivity (see equation

(2.5)). The terminology in the literature varies also depending on the context or the aim of

the particular paper. In journals that focus more on fluid dynamics often the physical terms

’mass transfer’ and ’heat transfer’ are used. In papers with a focus on numerics often the

broader term ’scalar transport’ is used (not defining what the scalar quantity represents). It

is important to be aware when reviewing papers that either terminology describes the same

problem and there is an analogy between Pr and Sc. In the following review the notation

is given as nominated by the appropriate authors so Pr and Sc compare directly. Up to

now, a number of numerical studies of scalar transfer across the air-water interfaces have

been carried out. Many more numerical simulations have been carried out on heat transfer

problems than on mass transfer problems, as heat transfer plays an important role in many

industrial applications. The majority of the works studied wind-shear driven and stirred flow

situations which have a higher turbulence content than the convectively driven flows. The

review covers the three principal mixing mechanisms of wind-shear-driven flows, bottom-

shear driven flows and buoyant flows (see figure 1.1). Where applicable, a brief description

of the numerical methods used for the scalar transport in the reviewed work is also given.

2.4.1 Wind-shear-induced flows

It is well known that wind-shear enhances the gas exchange near the air-water interface.

In nature, especially on larger scales like an ocean’s surface, wind is the main driving force

for gas transfer. In numerical investigations there are several boundary conditions that can

be considered. Two common cases are counter-flow wind-shear and free wind-shear. In a

counter-flow the liquid flows in opposite direction to the air above as illustrated in Fig. 2.1a.

Both flow fields are driven by pressure boundary conditions. In the case of free wind-shear

the water body is passive. There is no driving pressure condition for the water and the flow

is entirely driven by the wind-shear at the interface. Both, water and air, move in the same

direction. The shear at the interface and hence the turbulence levels on both sides of the

interface is obviously stronger when the velocities are opposed. The boundary conditions
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in the vertical directions are usually periodic. Another matter is whether the interface is

(a) counter-flow wind shear (b) free wind shear

Figure 2.1: principal conditions of wind-shear driven flows

deformable or not. In nature almost all wind conditions cause waves on the water surface in

some magnitude. A number of early numerical investigations do not consider a deformable

interface.

Campbell and Hanratty [16] pioneered the class of shear driven DNS. McCready et al.

[65] followed but also considered only a flat non-deformable interface. They could show

that the average mass transfer coefficient is found to depend on Schmidt number to the 0.5

power, in agreement with classical theories. It is related to the velocity field in the liquid

primarily through the mean-square value of the gradient of normal velocity fluctuations at

the interface. Calmet and Magnaudet [15] used Large Eddy Simulations (LES) to simulate

the scalar transport at a sheared and a shear-free interface (see Section 2.4.2). Their results

show that the concentration field is greatly affected by the structure of the turbulence in the

diffusive sublayer located just below the interface. The model of McCready et al. involving

the surface divergence could be identified as most suitable to predict the mass transfer

coefficient through the gas-liquid interface. Hasegawa and Kasagi [34, 35] studied wind-shear

driven mass transfer across the turbulent interface at a Schmidt number of Sc = 100 and

showed that various concentration statistics reveal that the transport mechanism at a highly

contaminated interface becomes dynamically equivalent to that at a solid surface. They used
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a pseudo-spectral Fourier method for the spatial discretization in the horizontal directions,

whereas a finite volume method was employed in the normal direction in which turbulent

and molecular mass fluxes were evaluated at a cell surface with second-order accuracy. The

interface was not deformable in their work so it acted like a solid wall for the air side. The

turbulent structures were resolved on both, the air and water sides of the sheared interface.

A hybrid DNS-LES model was used with DNS near the interface and LES in the field further

away.

More recently the study of scalar transfer across sheared gas-liquid interfaces was ex-

tended in complexity by introducing the deformation of the interface caused by wind. The

wave formation and turbulence mechanisms of the sheared gas-liquid interface has developed

into a whole new field of numerical fluid dynamics. For further information the works of

Angelis et al. [2] and Lombardi et al. [62] and references therein are a good starting point.

In the context of scalar transport, the presence of waves adds a new source of motion to the

liquid (and gas) side that influences the scalar transport in the liquid domain. As high shear

is beneficial for the wave formation these studies usually comprise the counter flow regime

where liquid and gas flow in opposite direction as illustrated in Fig. 2.2.

Figure 2.2: Flow regime for sheared wavy interfaces [56]

Kunugi et al. [55] carried out a Direct Numerical Simulation of carbon-dioxide gas ab-

sorption caused by turbulent flow over a free deformable interface. They found the exchange

coefficient of carbon-dioxide gas at the turbulent free surface estimated in their study was in

good agreement with existing experimental data. Henry’s law was applied to the evaluation

of the solubility. They used a second-order scheme for the spatial differencing terms on a

staggered grid system and the Euler implicit scheme to solve the momentum equation.
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Lakehal et al. [56] carried out Direct Numerical Simulation of turbulent heat transfer

across a mobile, sheared gas-liquid interface. They showed that high-frequency fluctuating

fields play a minor role in scalar transport across the interface. The flow system comprised a

gas and a liquid phase flowing in opposite directions with a deformable wavy interface (Fig.

2.2) . Prandtl numbers of Pr = 1, 4 and 10 were covered. The scalar reconstruction procedure

used a collocation pseudo-spectral technique employing Fourier series in the homogeneous,

streamwise and spanwise directions, and Chebychev polynomials in the non-uniform direction

normal to the interface.

Similarly, Banerjee also used a pseudo-spectral method to extensively study the mech-

anisms of turbulence and scalar exchange at the air-water interface in several publications

(see [7, 6] and references therein). Schwertfirm and Manhart [79] also studied passive scalar

transport in a turbulent channel flow for Schmidt numbers up to Sc = 49. They used a

similar approach to the present work by solving the scalar on a finer grid than the velocity

which was mapped by a conservative interpolation to the fine-grid. An explicit iterative

finite-volume scheme of sixth-order accuracy was employed to calculate all convective and

diffusive fluxes, while for the time-integration a third order Runge-Kutta method was used

[80].

2.4.2 Bottom-shear-induced flows

For flows in channels the dominant source of turbulence is the shear of the fluid with its

surroundings. Considering periodic boundary conditions on the sides the shear profile is

schematically illustrated in Figure 2.3. In contrast to the illustration of the wind-shear

driven case in Figure 2.1 the gas-liquid interface at the top is now shear free. Some numerical

investigations consider channels with shear introduced at the side walls. Another possible

scenario is a stationary fluid where turbulence is generated by grid or surface oscillations at

the bottom. In general this section reviews previous studies of scenarios where the turbulence

generation takes place in the flow field away from the shear free interface. The bottom shear

may be generated by a fixed wall and moving fluid over it or a stirring in an otherwise

stationary fluid. As in the previous section (see 2.4) the research reviewed here covers
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general passive scalar transport which is modelled by using an unsteady convection-diffusion

equation. The scalar may be mass or heat with its different notation of Schmidt and Prandtl

numbers.

Figure 2.3: Bottom-sheared channel flow

Early numerical investigations of the problem were carried out by Komori et al. [54] who

studied scalar transfer across a zero-shear gas-liquid interface in a three-dimensional direct

numerical simulation (DNS). They found the mass transfer coefficient in good agreement

with experimental data and turbulent quantities were also compared to results from two-

colour laser Doppler velocimetry. The non-linear terms in the Navier-Stokes equation were

discretized with a fifth-order upwind scheme. Other spatial derivatives and base vectors were

approximated by a second-order central difference.

Nagaosa [73], Nagaosa and Saito [74] studied scalar transfer at a Prandtl number of

Pr = 1 across a shear-free, non-wavy gas-liquid interface (top wall) in fully developed channel

flow. They were using a second-order central finite-difference approximation for all terms.

Na et al. [72] carried out DNS of fully developed flow in a channel for which the bottom

wall was heated and the top wall was cooled for Prandtl numbers up to Pr = 10. They

concluded the use of a turbulent Prandtl number to relate scalar transport to the velocity

field could be a sensible approach, as the correlation between velocity and temperature
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fluctuations was independent of Pr.

Handler et al. [30] used a pseudo-spectral approach with Fourier expansions to carry out

direct numerical simulations for the transport of a passive scalar at a shear-free boundary in

fully developed channel flow. They found that patterns of patches of warm fluid near the air-

water interface were in good agreement with infrared imagery. A pseudo-spectral approach

was developed in which the velocity and temperature fields were expanded in Fourier modes

in the horizontal directions and Chebyshev modes in the vertical direction normal to the

interface. The Prandtl number for the passive scalar transport was Pr = 2.

Kawamura et al. [51] carried out a direct numerical simulation (DNS) of turbulent heat

transfer for various Prandtl numbers ranging from 0.025 to 5. The configuration here was

fully developed channel but with uniform heating (scalar transport) from both the bottom

and top walls, using no-slip velocity boundary conditions. More recently, the contribution of

Piller et al. [76] examines the influence of low Prandtl numbers between 0.025 ≤ Pr ≤ 1.0 on

turbulent transport in channel flow, again using a no-slip velocity boundary condition and

a constant temperature along the top and bottom walls. They found that high-frequency

velocity fluctuations are ineffective in transporting heat. They also used the common pseu-

dospectral technique to solve the full three-dimensional time-dependent Navier-Stokes and

advection-diffusion equations.

The Schmidt/Prandtl numbers increased significantly with the application of Large Eddy

Simulation. Calmet and Magnaudet carried out Large Eddy Simulations (LES) for both

sheared and shear-free interfaces in channel flow for Schmidt numbers up to Sc = 200

[15, 63, 14]. However the LES technique means a loss of detail in the subgrid scale where

the fluxes are not forced to align with the resolved concentration gradient. Wang and Lu

[95] carried out LES for stratified turbulent open channel flows with low- to high-Prandtl

numbers ranging from Pr = 0.1 to Pr = 100.

Suga and Kubo [86] employed an extended version of the analytical wall-function (AWF)

that is designed for Reynolds averaged Navier Stokes simulations (RANS) to predict surface

mass transfer rates and turbulent concentration fields across undeformable air-water inter-

faces at Schmidt numbers ranging from 1 ≤ Sc ≤ 1000. It has to be stressed that RANS

18



Theoretical Background & Literature Review Numerical Investigations

uses a subscale model and does not resolve any near-interface structures.

2.4.3 Buoyant-convective-induced flows

Buoyancy driven flow problems have always attracted large interest in the fluid dynamics

research community as they are crucial to a large field of processes in nature and technical

applications. Buoyant flows are present almost everywhere in everyday life on various scales,

from very large scales such as the natural convection in the Earth’s atmosphere, to very small

scales such as (passive) cooling of electronic microchips. Wherever density differences in a

fluid are sufficiently high, less dense liquid will start to rise and denser liquid will start to sink,

respectively. Even though buoyant flows are omnipresent, they are also often very complex

and hard to predict. For instance, air rising from an infinite heated horizontal plate shows

complicated structures of rising hot plumes with velocities varying in strength and direction

that can exhibit chaotic behaviour, whereas a sheared flow over an infinite horizontal plate

is predictable and the velocity boundary layer is well known. A classical problem in fluid

dynamics that has been investigated intensively is the Rayleigh-Bénard (RB) convection, a

buoyancy driven flow of a fluid heated from below and cooled from above. There is a large

variety of interesting aspects for research that can be derived from that basic problem. Even

the simple case of RB-convection in a rectangular domain can exhibit a large spectrum of

flow patterns, from laminar to turbulent, from totally steady flows to chaotic behaviour, all

depending on various parameters such as Rayleigh-number, aspect ratio, fluid properties,

etc. Even though the discovery and early study of the problem traces back over 100 years

to Bénard (1900) and Lord Rayleigh (1916) the RB-convection remains a field of very active

research. When looking at the problem numerically there is one major difference from the

wind-shear and bottom-sheared cases. To solve the flow field the temperature of the fluid

has to be known so the problem of convective-diffusive scalar transport is inevitable.

The problem of RB convection is still attracting large attention of research. Ahlers et al.

[1] gives a good review. Early numerical investigations were focused on the Rayleigh-Bénard

convection in the atmosphere. Deardorff [24, 25] studied an atmospheric flow in a domain

of 5 × 5 × 2km containing 40 × 40 × 40 grid points using a second-order finite difference
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method for all advective terms. Grotzbach [28] followed with Direct Numerical Simulation

of RB-convection of air (Pr = 0.71)in the atmosphere for a range of Rayleigh numbers from

Ra = 1500 to Ra = 381225. A Large Eddy Simulation (LES) approach is used by Eidson

[27] with Rayleigh numbers up to Ra = 2.5 × 106 and a Prandtl number of Pr = 0.71

(air). All the works above used air as fluid which has a very low Prandtl number. The

velocity and temperature field agreed largely with experimental data. They all used finite

difference methods by some means to discretize the diffusive and convective terms of the

scalar transport, in this case the sole scalar quantity is the temperature.

Balachandar et al. [4] studied RB-convection with very high Rayleigh numbers of Ra ≈
1.7× 107 and a Prandtl number of Pr = 0.71 using a pseudo-spectral method with a Fourier

series expansions on a 96 × 96 × 97 grid [17]. The flow regime was found to be within the

’hard turbulence’ and compared well to experiments. The time integration is using a Crank-

Nicholson scheme for the dissipative terms and a second-order Adams-Bashforth method

for the advection and buoyancy terms. Deane and Sirovich [22] used a similar approach to

study moderate Rayleigh numbers of Ra = 46000 on a grid of 32 × 32 × 32 points using

also the Prandtl number of air. They used a pseudo-spectral method based on Herring

and Wyngaard [41]. Kerr [53] studied the Rayleigh number scaling using a pseudo-spectral

method with Fourier expansions in the horizontal directions and Chebyshev polynomials in

the vertical directions at large aspect ratio (6:6:1) domain on meshes up to 288 × 288 × 96

points. The typical non-dimensional parameters were Pr = 0.7 and a Rayleigh number

between Ra = 5 × 104 and Ra = 2 × 107. The follow up [52] increased the Prandtl number

in various steps between Pr = 0.7 (air) and Pr = 7 (water). Curry et al. [20] studied the

transition to chaos as the Rayleigh number is increased for the case with free slip boundary

conditions at the top and bottom, which is the boundary condition for a free surface that is

also used in this present research.

Verzicco studied Rayleigh-Bénard convection in a cylindrical geometry in several publica-

tions. Verzicco and Camussi [92] carried out numerical simulations for a low Prandtl-number

regime in a cylinder (Pr = 0.022, Mercury) and the transition to chaos when the Rayleigh

number is varied from Ra = 3.75×103 to Ra = 3.75×104. The effects of the Prandtl number
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in a cylinder was studied in Verzicco and Camussi [93]. The cylinder had an aspect ratio of

1 where the top wall was cooled and the bottom heated. The side wall was adiabatic. The

instability was triggered by adding a small random noise to the temperature field. They

carried out three series of numerical experiments where they set Pr = 0.022 (mercury) for

Ra ≤ 106 and Pr = 0.7 (air) for Ra = 107. In a third series the Rayleigh number was fixed

at Ra = 105 and the Prandtl number was varied from Pr = 0.0022 up to Pr = 15. The vari-

ables have been discretized using second-order-accurate finite-difference approximations in

space and time. In Verzicco and Camussi [94] the Rayleigh number ranged up to Ra = 1011

but the Prandtl number remained relatively low at Pr = 0.7 (air).

In the recent research, where only the top surface is being cooled, the boundary condi-

tion for Rayleigh-Bénard convection by its definition is only really met at the initial state.

The Rayleigh number does change over time as there is only heat extracted from the fluid.

Theoretically, if the fluid had cooled down sufficiently it would eventually become stationary.

From a numerical point of view the process of interest is solving the convection-diffusion of

a scalar introduced at a boundary. Whether this happens only at one (cooled) boundary at

the top or at two boundaries with opposite boundary conditions (cooled at top, heated from

below) is, for the numerical procedure, not relevant. In the studies of buoyancy-driven-flow

mentioned above, the temperature is the sole transported scalar (besides the pressure). It

is normally the only scalar of interest as the studies focus usually on flow regimes and heat

transfer. The temperature is a non-passive scalar as it drives the Boussinesq flow and is

obviously crucial for the heat transfer. The question what happens when another, passive,

scalar is introduced has remained an open question, especially when the diffusivity of the

newly introduced passive scalar (in this case the gas concentration) is much lower than the

temperature diffusivity. This is the case for the transfer of soluble gases into water. For

instance, the Prandtl number for water is Pr ≈ 7 whereas the Schmidt number for oxygen

diffusion into water is Sc ≈ 500. This work is trying to close that gap.
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2.5 Experimental investigations of gas transfer processes

Gas transfer processes at the air-water interface at different turbulence conditions have been

investigated experimentally by many researchers. Near-interface measurements, however,

are difficult because of the small scaling of the concentration boundary layer and, in some

cases, the movement of the water surface (i.e. waves created by wind shear). Even in

simplified experiments direct measurements of the dissolved gas concentration field can be

very difficult. As turbulence is the dominating mechanism that controls the gas transfer,

researchers therefore often tried to link turbulence quantities, which are easier to measure,

to the gas transfer. More recently, advanced techniques such as Laser-Induced-Fluorescence

(LIF) made non-intrusive measurements of the gas concentration field possible. This section

gives a review of the experimental studies carried out for the three main driving mechanisms

of turbulence, wind-shear, bottom-shear and buoyant convection.

2.5.1 Wind-shear-induced flows

It is well known that in nature wind-shear is the most effective way of enhancing the gas

exchange process near the air-water interface. Wind speeds above 3 m/s induce considerable

wave growth which increases the effectiveness of the gas transfer. Early works studied the

correlation between wind-shear and gas transfer coefficient KL [60, 10, 44, 43]. Wolff et al.

[98] used a fluorescence technique to measure the concentration gradients near the interface.

Subsequently, Wolff and Hanratty [97] studied the absorption of oxygen from air to water for

a stratified flow by measuring the instantaneous concentration profiles close to the interface.

They used oxygen quenching of the fluorescence from pyrenebutyric acid first introduced

by Vaughan and Weber [91]. Münsterer et. al used the Laser-induced fluorescence (LIF)

technique in several studies [71, 70, 69]. In [70] they measured the concentration boundary

layer thickness at a wind speed of 3.6 m/s. They could clearly show that the thickness

varies significantly over time and supports the surface renewal models. The basic idea of the

surface renewal model is that eddy motions overcome the resistance near the interface by

impinging upon the relatively thin concentration boundary layer, periodically renewing it by
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exchanging the saturated fluid at the top with unsaturated fluid from the bulk.

Woodrow Jr and Duke [99] carried out a detailed study also using a LIF technique that

images planar oxygen concentration fields near air-water interfaces. They observed detached

high concentration layers when waves are present. Researchers also tried to investigate the

interaction between eddy structures and gas transfer. Takehara and Etoh [87], for instance,

visualized the transfer of CO2 at water surfaces under wind wave conditions and could

indicate that the eddy structure plays a role in the transfer process.

2.5.2 Bottom-sheared-induced flows

In nature the most common occurences of bottom-sheared flows are rivers and streams.

These flows are characterized by certain stream parameters, such as the mean velocity,

surface roughness or water depths. Early works tried to find empirical relationships between

the gas transfer and the stream parameters (e.g. Gulliver and Halverson [29], Thackston

and Krenkel [88], Bansal [8], Gulliver and Halverson [29]). Researchers then recognized that

eddies near the interface enhance the gas transfer. In various experiments in open channel

flows [66, 67, 18, 68] the channel roughness has been related to the gas exchange. Their

results were in good agreement with the surface renewal theory and small eddy models. The

gas transfer coefficient KL was determined by measuring the oxygen levels in samples at

various times starting with deoxygenated water. The near surface processes still remained

unknown as direct measurements near the surface were difficult to perform.

Bottom-sheared turbulence can also be generated by stirring in a tank which makes the

experimental setup a bit easier than when using a channel. Brumley and Jirka [12] were

amongst the first to perform detailed near surface measurements of the hydrodynamics.

They could produce a detailed mapping of the horizontal and vertical velocity fluctuations

within 0.4 mm of the surface.

This insight into the near surface hydrodynamics led to the measurements of the oxygen

concentration fluctuations with a gas probe. Jirka and Ho [47], Chu and Jirka [19] could

estimate the thickness of the concentration boundary layer. Atmane and George [3] con-

ducted similar results but the turbulence was generated by micro-jets placed at the bottom
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of the tank. Herlina and Jirka [39] used the laser-induced fluorescence (LIF) technique to

investigate the interaction between oxygen absorption into liquids and bottom shear-induced

turbulence in a grid-stirred tank. The LIF technique enabled a more detailed visualization

as well as quantification of planar concentration fields of the dissolved oxygen near the air-

water interface. Qualitative observation of the images provided more insight into the physical

mechanism controlling the gas transfer process. Even more recently, Jirka et al. [45] were

the first to use a combination of Particle-Image-Velocimetry (PIV) and the LIF technique

to visualize instantaneous vector and oxygen concentration contour maps.

2.5.3 Buoyant-convective-induced flows

There are two main scenarios for penetrative buoyant convection where only one surface is

imposed with a temperature and the convection is penetrating a bulk fluid further afield.

One could either heat the bottom surface or cool the top surface. Penetrative convective

instability is omnipresent in the atmosphere where the ground is heated by the sun. A

similar scenario is a container full of liquid that is heated from the bottom. However,

also the opposite scenario (which is the focus of this work) occurs in nature where the top

surface is cooled (for instance in lakes at night exposed to cooler temperatures at the top).

Both scenarios, heated bottom or cooled top, have been investigated by researchers. Most

early works studied the heat transfer but more recent works also related the problem to gas

exchange.

Spangenberg and Rowland [85] took Schlieren photographs of the convection currents

from the top and side of a tank of water induced by surface cooling. They could visualize

that cooled liquid plunges down in sheets in a reticulated pattern. Deardorff et al. [26]

studied non-steady penetrative convection in a cylindrical water tank where the bottom

surface was suddenly heated. Vertical profiles of horizontally averaged temperature and heat

flux were measured and interpreted. Similar experiments studied the thermal structure in

the boundary layer and its relation to the heat flux from the cooling and evaporating surface

of a deep tank of water [50]. Field experiments investigated the thermal boundary layer even

in lakes [11, 77, 49].
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None of these investigations has related the problem to gas transfer. Soloviev and

Schlüssel [84] tried to estimate the gas transfer coefficient at the air-sea interface in buoyant

convection, however wind-shear was also present in that case. Only more recently the usage

of the LIF technique enabled a more detailed visualization and measurements of the oxygen

field near to the interface [58, 57, 78]. Only recently, Jirka et al. [46] used the combined PIV-

LIF technique to give a detailed insight into the oxygen concentration and velocity field near

the cooled free surface in a water tank. Their results provide an experimental comparison

with the numerical results obtained in the present work. Both have been found to be in very

good agreement with each other.

2.6 WENO schemes

Weighted essentially non-oscillatory (WENO) schemes are high-order accurate numerical

schemes that are used in a large field of application. They are based on essentially non-

oscillatory (ENO) schemes which were first published in the meanwhile classic paper of

Harten et al. in 1987,[32]. Liu et al. [61] introduced the idea of taking a convex combina-

tion to construct a stencil using nonlinear weights with a high order-of-accuracy in smooth

regions while weighing out the nonsmooth stencils in regions containing steep gradients or

discontinuities. Their work studied WENO(2r − 1) schemes for different stencil size r = 2

(WENO3) and for r = 3 (WENO5). In the meantime a large variety of WENO schemes has

been developed. Many improvements were made by modifying the smoothness determina-

tion. Jiang and Shu [81] introduced a new smoothness indicator that was used to evaluate

the nonlinear weights. The size of the stencil has also been further increased by Balsara

and Shu [5] extending it up to r = 6 (WENO11). The WENO5 scheme is used most widely

[37, 64, 48]. Henrick et al. [37] could show that the weights generated by the classical

choice of smoothness indicators in [81] failed to recover the maximum order of the scheme

at critical points of the solution where the first derivatives are zero. They developed the

so called WENOM schemes where a mapping procedure is introduced to keep the weights

of the stencils as near as possible to the optimal weights. The resulting mapped WENOM
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scheme of [37] presented more accurate results close to discontinuities. Even more recently,

Borges et al. [9] achieved the same results as mapped WENO schemes without mapping but

by improving the accuracy of the classical WENO5 scheme by devising a new smoothness

indicator and nonlinear weights using the whole 5-points stencil and not the classical smooth-

ness indicator by Jiang and Shu [81] which uses a composition of three 3-points stencils. The

schemes of Borges et al. are known as WENO-Z schemes.

Aim of this work: The direct numerical simulations conducted up until present lack to

represent realistic Schmidt numbers to predict the gas transfer across the air-water interface.

Most studies so far cover only a range of theoretical Schmidt (or Prandtl) numbers ranging

from 1 to 10. Even in the LES studies of Calmet and Magnaudet [15], MAGNAUDET

and CALMET [63], Calmet and Magnaudet [14] the maximum Schmidt number is only

Sc = 200. The Schmidt number for typically soluble gases from air into water such as

oxygen and carbon-dioxide is around Sc ≈ 500. Whilst it is well known that the flow field

can be accurately resolved with DNS the limitations of the currently available DNS studies

of gas transfer problems lay in resolving the convection of such low-diffusive scalars in that

flow field with acceptable accuracy. In addition to the unsolved challenge of high Schmidt

number numerical simulations the physical mechanisms are of such small scale that detailed

quantifiable experimental analysis is nearly impossible. There is currently no method to

measure, say, the instantaneous distributed oxygen concentration in a water tank. This

lack of gaining detailed insight into the gas transfer process makes reliable numerical results

with realistic Schmidt numbers more desirable. This study aims to solve the convection-

diffusion of the low-diffusive scalar field for Schmidt numbers up to Sc = 500. For the first

time a WENO scheme in conjunction with a dual mesh approach was deployed to solve the

scalar convection in such a flow problem and through a number of 1D and 2D numerical

experiments it could be demonstrated that at least second order accuracy could be achieved

for the Sc = 500 case. This work serves as excellent reference for future experiments and

numerical analysis to achieve high Schmidt number resolution.
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Chapter 3

Numerical Method

T
his chapter outlines the numerical scheme deployed. The gas transfer across the

air-water interface in a buoyant convective flow represents a low diffusive passive

scalar transport problem. The scalar quantity is the gas concentration which is

represented by the variable ϕ . The fluid temperature, T , acts as an active scalar as it drives

the convection. The horizontal spatial directions are x and y while z corresponds to the

vertical direction. The respective velocities in these directions are u, v and w.

In the following the discretization method for the convection-diffusion equations on a

stretched grid will be discussed. The method to discretize the incompressible Navier-Stokes

equation to resolve the flow field is described as well as the modified WENO scheme that is

employed to discretize the convection of the scalar quantities.

3.1 Governing equations

The mass transfer into a fluid is a convection-diffusion problem that weakly couples two gen-

eral systems of differential equations. One is the well known Navier-Stokes equations which

describe the motion of fluids and are based on the conservation of momentum (Newton’s

second law of motion) and mass. The other system is the convection-diffusion equation that

describes the transport of mass (or any other physical quantity such as temperature or en-

ergy) within a fluid. A further equation is needed in the set which is the continuity equation,
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which states that the rate of change for a scalar quantity in a differential control volume is

given by convection and diffusion into and out of that part of the system. These scalar fluxes

have two sources, convection and diffusion. The convection depends on the velocity of which

the dynamics are described by the Navier-Stokes equations and the gradient of the scalar.

The second source of transfer is diffusion which depends on changes in the concentration

gradient.

3.1.1 The Navier-Stokes equations

Newtonian fluid flow is described by the Navier-Stokes equations which essentially consist of

the principle of conservation of mass and the conservation of momentum. If the density ρ is

constant the three-dimensional Navier-Stokes equations with the convection in a conservative

form reads,

∂u

∂t
+

∂u2

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z
= −1

ρ

∂p

∂x
+ ν

{

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

}

(3.1)

and

∂v

∂t
+

∂(uv)

∂x
+

∂v2

∂y
+

∂(wv)

∂z
= −1

ρ

∂p

∂x
+ ν

{

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

}

(3.2)

and

∂w

∂t
+

∂(uw)

∂x
+

∂(vw)

∂y
+

∂w2

∂z
= −1

ρ

∂p

∂z
+ ν

{

∂2w

∂x2
+

∂2u

∂y2
+

∂2w

∂z2

}

(3.3)

where u is the velocity in x-direction, v is the velocity in y-direction, w is the velocity in

z-direction, p is pressure, t is time and ν the kinematic viscosity (see Section 3.2 for the

non-dimensionalization). The continuity equation for incompressible flow is given by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (3.4)

The three equations above constitute a non-linear system of partial differential equations

which are discretized as described in Section 3.4 to obtain the velocity field which drives the

convective transport of the scalar ϕ through the domain.
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3.1.2 The convection-diffusion equation of the scalar ϕ

The entire process of the scalar transport is a combination of convection and diffusion de-

scribed by the convection-diffusion equation. The three-dimensional convection-diffusion

equation of ϕ = ϕ(x, y, z, t) reads

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z
= Γ

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2

)

. (3.5)

The convective terms on the left hand side arise because of the presence of the velocities

u, v and w. The diffusive terms on the right hand side are essentially Fick’s second law

that states that the diffusive flux is proportional to the local concentration gradient (see

(1.2)) The diffusion coefficient is Γ = 1
ReSc (where Re is the Reynolds number and Sc is

the Schmidt number, see Section 3.2). The diffusive term on the right is discretized using a

fourth-order accurate central scheme, while the convective term is discretized using a variant

of the fifth-order WENO scheme developed by Liu et al. [61] (see section 3.5).

3.2 The non-dimensionalization

The governing equations in Section 3.1 can be made non-dimensional by selecting a charac-

teristic velocity scale U and a characteristic length-scale L. We define the Reynolds number

Re by

Re =
UL

ν
, (3.6)

where ν is the kinematic viscosity. This dimensionless number represents the relative impor-

tance of the convective and diffusive terms in the Navier-Stokes equations (3.1) and (3.3).

The scalar ϕ is non-dimensionalized using the scalar magnitude ϕs at the interface and

the magnitude in the bulk ϕB,0 so that

ϕ∗ =
ϕ− ϕB,0

ϕs − ϕB,0
. (3.7)

The fluid temperature T is an active scalar as temperature differences are causing natural

convection to occur in the presence of a gravity field. The fluid temperature T is discretized
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in the same way as ϕ and is made non-dimensional with,

T ∗ =
T − Ts

TB,0 − Ts
. (3.8)

where Ts is the temperature at the interface and TB,o the temperature in the bulk.

A very important non-dimensional parameter for the gas transfer process at the air

water interface is the Schmidt number Sc. It is defined as the ratio of momentum diffusivity

(viscosity ν) and mass diffusivity D.

Sc =
ν

D
(3.9)

Similarly the Prandtl number Pr is the ratio of kinematic viscosity ν to thermal diffusivity

α,

Pr =
ν

α
(3.10)

Subsequently the diffusion coefficient Γ in (3.5) is simply,

Γ =
1

ReSc
(3.11)

when considering the mass transfer of gas into water. For the heat transfer into water, which

is also a convection-diffusion problem the Schmidt number Sc in (3.11) is replaced with the

Prandtl number Pr. The temperature diffusion coefficient ΓT reads,

ΓT =
1

RePr
. (3.12)

For water at TB = 23 ❽ the dimensions for the physical quantities above are [ν] =

9.122 × 10−7m2

s and [α] = 0.15 × 10−6m2

s , hence Pr = 6. The characteristic velocity scale

is [U ] = 1 cm
s and the length scale [L] = 1cm. Up to four gas concentration fields are solved

simultaneously. The mass diffusivity D has various values so that Sc = 20, 50, 200 and 500.

For the transfer of typical soluble gases like CO2 and oxygen in to water the Schmidt number
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is around Sc ≈ 500. The temperature T0 at the air-water interface at the top is T0 = 20❽

and the bulk temperature is TB = 23❽.

The Rayleigh number, Ra, for a fluid is a dimensionless parameter associated with buoy-

ancy driven flow which describes the relationship between viscosity and buoyancy and is

defined as

Ra =
∆ρgL3

αµ
(3.13)

where ∆ρ is the density difference of the fluid between the two temperatures TB and T0 and µ

is the dynamic viscosity and g is the gravity. When the Rayleigh number is below the critical

value Rac ≈ 657, the fluid remains stationary as the viscous forces outweigh the buoyancy

forces. When the Rayleigh number exceeds the critical value natural convection sets in and a

buoyancy driven flow is present. The density difference of water with a temperature between

TB and T0 is ∆ρ = 0.69 kg
m3 and the dynamic viscosity at TB = 23❽ is µ = 9.0957×10−4 kg

ms .

Using the values for the characteristic length scale L and the thermal diffusivity α as defined

above the Rayleigh number in this case is Ra ≈ 49600 which is significantly above the critical

value. This shows that the temperature induced density distribution is definitely unstable

and natural convection may occur.

The buoyancy term β(T ∗) in (3.22) represents the well known Boussinesq approximation

which is used to model gravity forces due to small changes in density in an incompressible

flow. Other influences of the density changes such as influences on the conservation of mass

and momentum are neglected. The Boussinesq approximation introduces momentum in the

vertical z-direction only when density differences in the fluid are present. This is achieved

by using the reduced gravity g′. The buoyancy term β(T ∗) in (3.22) is non-dimensionalized

so that

β(T ∗) = g′ = g
ρ23 − ρ20

ρ23
× T ∗ (3.14)

where ρ23 and ρ20 are the densities at the respective reference temperatures TB = 23❽

(in the bulk) and T0 = 20❽ (at the interface), T ∗ is the non-dimensional fluid temperature

(see (3.8)) and g = 9.81m
s2

(the gravity constant).
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3.3 Physical Assumptions

The mathematical model described here adopts physical assumptions which are outlined and

justified in this section.

Boussinesq Approximation: The term β(T ∗) in (3.22) represents the well known Boussi-

nesq approximation which is used to model buoyant convection in incompressible flow. It is

understood to consist of the following:

1. Density is assumed constant except when it causes buoyant forces

2. All other fluid properties are assumed constant

3. Viscous dissipation is assumed negligible

The first point means that the fluid is assumed incompressible and that density is only

variable when the reduced acceleration due to gravity in the momentum equation is calculated

(see (3.22) and (3.14)) The second and third point mean that other fluid properties such as

viscosity and thermophysical quantities like thermal conductivity or diffusivity are assumed

to be constant (Essentially Schmidt number Sc, Prandtl number Pr, etc... are not a function

of temperature). The validity of the Boussinesq approximation for buoyant flows in water is

well known but a good review is given by Zeytounian [100].

Gas concentration is treated passive: The gas concentration is treated as a passive

scalar. None of the fluid properties, especially the density, is assumed to be influenced by the

gas concentration level in the fluid. Harvey et al. [33] studied the effect of dissolved air on the

density of water. They show that the density difference of water saturated with dissolved air

compared to pure water at 20❽ is ∆δ = 0.00244kg/m3. Considering the density of water as

≈ 1000kg/m3 this is less than 3 parts per million, which makes it obvious that this minimal

density change can be neglected in the flow equations.

Mass Conservation: The assumptions stated above imply that the mass in the fluid

domain is assumed to stay constant. The small amount of gas dissolving into the water
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body is negligible when considering the entire system. It must be noted that the effect of

evaporation is also not modeled as the temperature difference between air and water is only

3❽ .

3.4 Flow Solver

This section outlines the numerical method of the flow solver used in the buoyancy driven

flow. The velocity field is solved by a finite-difference discretization of the convective terms

using a fourth-order unconditionally kinetic energy conserving method combined with a

fourth-order accurate central method for the diffusive terms. The flow solver was previously

validated in various works. Wissink [96] used the code to determine the growth rate of a

Kelvin-Helmholtz instability in a mixing layer. The results were found to converge upon

grid refinement and the final growth rate of the instability was found to closely match the

growth rate predicted by theory. Smith and Wissink [83] applied the code to simulate the

growth and limiting behaviour of travelling waves in plane Poiseuille flow. The simulation

results were verified against existing theory and a grid refinement study was carried out.

More recently Herlina and Wissink [40] used this flow solver to simulate turbulence diffusing

from the lower boundary towards a free-slip surface. A grid refinement study was carried out

to proof that the results were time-accurate and grid-independent and the results produced

where shown to match existing theory.

The 3D incompressible Navier-Stokes equations are discretized on a non-uniform, stag-

gered mesh in combination with a second-order accurate Adams-Bashforth time integration.

The Boussinesq approximation is applied in order to account for the effects of buoyancy. For

three-dimensional incompressible flow the continuity equation reads,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.15)

which in discretized form on a staggered mesh as shown in Fig. 3.1 reads

u
(n+1)

i+ 1

2
,j,k

− u
(n+1)

i− 1

2
,j,k

xi+ 1

2

− xi− 1

2

+
v
(n+1)

i,j+ 1

2
,k
− v

(n+1)

i,j− 1

2
,k

yj+ 1

2

− yj− 1

2

+
w

(n+1)

i,k+ 1

2

− w
(n+1)

i,k− 1

2

zk+ 1

2

− zk− 1

2

= 0 (3.16)
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The momentum equations are given by

∂u

∂t
= −∂p

∂x
+ a (3.17)

∂v

∂t
= −∂p

∂z
+ b (3.18)

∂w

∂t
= −∂p

∂z
+ c. (3.19)

where p is pressure and a, b and c represent the sum of the convective and diffusive terms

a = −∂u2

∂x
− ∂uv

∂y
− ∂uw

∂z
+

1

Re

{

∂2u

∂x2
+

∂2v

∂y2
+

∂2u

∂z2

}

(3.20)

b = −∂v2

∂y
− ∂uv

∂x
− ∂wv

∂z
+

1

Re

{

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

}

(3.21)

c = −∂w2

∂z
− ∂vw

∂y
− ∂uw

∂x
+

1

Re

{

∂2w

∂x2
+

∂2w

∂z2

}

+ β(T ∗). (3.22)

where Re = 100, based on a characteristic length scale of L = 1cm and a characteristic

velocity of U = 1cm/s. The buoyancy term β(T ∗) in equation (3.22) is a function of the non-

dimensional temperature T ∗ (see (3.8)) and is modelled using the Boussinesq approximation.

When substituting the discretized form of the momentum equation into the continuity

equation a Poisson equation for the pressure is obtained. The Poisson equation is iteratively

solved using the conjugate gradient method with a diagonal preconditioning. From the

obtained pressure field the new velocity field can be calculated by rearranging the discretized

equations of (3.17), (3.18) and (3.19),

u
(n+1)

i+ 1

2
,j,k

= u
(n)

i+ 1

2
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


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
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v
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i,j,k+1 − p

(n+1)
i,j,k

zk+1 − zk
+ c

(n)

i,j,k+ 1

2







. (3.25)

The terms a
(n)

i+ 1

2
,k

, bn
i,j+ 1

2

and c
(n)

i,k+ 1

2

are the discretized form of the convective and diffusive
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Figure 3.1: Variables on a staggered mesh [96].

terms in (3.20), (3.21) and (3.22) and can be written as,

a
(n)

i+ 1

2
,j,k

= u
(n)

i+ 1

2
,j,k

Cx(u, v, w)i+ 1

2
,j,k + u

(n)

i+ 1

2
,j,k

1

Re
Dx(u, v, w)

(n)

i+ 1

2
,j,k

(3.26)

b
(n)

i+,j 1

2
,k

= v
(n)

i,j+ 1

2
,k
Cy(u, v, w)i,j+ 1

2
,k + v

(n)

i,j+ 1

2
,k

1

Re
Dy(u, v, w)

(n)

i,j+ 1

2
,k

(3.27)

c
(n)

i,j,k+ 1

2

= w
(n)

i,j,k+ 1

2

Cz(u, v, w)i,j,k+ 1

2

+ w
(n)

i,j,k+ 1

2

1

Re
Dz(u, v, w)

(n)

i,j,k+ 1

2

+ β(T ∗)i,j,k+ 1

2

(3.28)

where Cx(u, v, w), Cy(u, v, w) and Cz(u, v, w) represent the discretization of the convective

terms, Dx(u, v, w), Dy(u, v, w) and Dz(u, v, w) the discretization of the diffusive terms and

β(T ∗) the Boussinesq buoyancy term which in discrete form reads,

β(T ∗)i,j,k+ 1

2

= −0.5611516
T ∗

k + T ∗

k+1

2
. (3.29)

The temperature difference between the top and the initial bulk temperature is only 3 ❽.

The temperature range in this particular case is between 20 and 23 ❽ where the relation

between density and temperature can be assumed to be linear. The coefficient above arises

from the non-dimensionalization of the buoyancy term (see (3.14)).

Fig. 3.1 shows the location of variables on a staggered mesh. Interpolations are required

to evaluate the kinetic energy conserving convective terms (3.30) and (3.32). For instance at

(xi+ 1

2

, zk) only the u-velocity component is available at that location, while the w -velocity
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is only available at (xi, zk+ 1

2

). Hence an interpolation of w to the position where u is defined

gives wi+ 1

2
,k. An equivalent procedure for the z -momentum where u needs to be interpolated

where w is defined gives ui,k+ 1

2

. This yields to the discretization of the convective term in

(3.26) by a fourth-order central discretization,

Cx(u, v, w)i+ 1

2
,j,k = − 1

2

[

1

−xi+ 5

2

+ 8xi+ 3

2

− 8xi− 1

2

+ xi− 3

2

{

− ui+ 5

2
,j,k(ui+ 1

2
,j,k + ui+ 5

2
,j,k)

+8ui+ 3

2
,j,k(ui+ 1

2
,j,k + ui+ 3

2
,j,k) − 8ui− 1

2
,j,k(ui+ 1

2
,j,k + ui− 1

2
,j,k) + ui− 3

2
,j,k(ui+ 1

2
,j,k + ui− 3

2
,j,k)

}

+
1

−yj+2 + 8yj+1 − 8yj−1 + yj−2

{

− ui+ 1

2
,j+2,k(vi+ 1

2
,j,k + vi+ 1

2
,j+2,k)

+8ui+ 1

2
,j+1,k(vi+ 1

2
,j,k + vi+ 1

2
,j+1,k) − 8ui+ 1

2
,j−1,k(vi+ 1

2
,j,k + vi+ 1

2
,j−1,k)

+ui+ 1

2
,j−2,k(vi+ 1

2
,j,k + vi+ 1

2
,j−2,k)

}

+
1

−zk+2 + 8zk+1 − 8zk−1 + zk−2

{

− ui+ 1

2
,j,k+2(wi+ 1

2
,j,k + wi+ 1

2
,j,k+2)

+8ui+ 1

2
,j,k+1(wi+ 1

2
,j,k + wi+ 1

2
,j,k+1) − 8ui+ 1

2
,j,k−1(wi+ 1

2
,j,k + wi+ 1

2
,j,k−1)

+ui+ 1

2
,j,k−2(wi+ 1

2
,j,k + wi+ 1

2
,j,k−2)

}]

(3.30)

The convective terms in the y -direction are discretized in a similar manner.

Cy(u, v, w)i,j+ 1

2
,k = − 1

2

[

1

−yj+ 5

2

+ 8yj+ 3

2

− 8yj− 1

2

+ yj− 3

2

{

− vi,j+ 5

2
,k(vi,j+ 1

2
,k + vi,j+ 5

2
,k)

+8vi,j+ 3

2
,k(vi,j+ 1

2
,k + vi,j+ 3

2
,k) − 8vi,j− 1

2
,k(vi,j+ 1

2
,k + vi,j− 1

2
,k) + vi,j− 3

2
,k(vi,j+ 1

2
,k + vi,j− 3

2
,k)

}

+
1

−xi+2 + 8xi+1 − 8xi−1 + xi−2

{

− vi+2,j+ 1

2
,k(ui,j+ 1

2
,k + ui+2,j+ 1

2
,k)

+8vi+1,j+ 1

2
,k(ui,j+ 1

2
,k + ui+1,j+ 1

2
,k) − 8vi−1,j+ 1

2
,k(ui,j+ 1

2
,k + ui−1,j+ 1

2
,k)

+vi−2,j+ 1

2
,k(ui,j+ 1

2
,k + ui−2,j+ 1

2
,k)

}

+
1

−zk+2 + 8zk+1 − 8zk−1 + zk−2

{

− vi,j+ 1

2
,k+2(wi,j+ 1

2
,k + wi,j+ 1

2
,k+2)

+8vi,j+ 1

2
,k+1(wi,j+ 1

2
,k + wi,j+ 1

2
,k+1) − 8vi,j+ 1

2
,k−1(wi,j+ 1

2
,k + wi,j+ 1

2
,k−1)

+vi,j+ 1

2
,k−2(wi,j+ 1

2
,k + wi,j+ 1

2
,k−2)

}]

(3.31)
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The convective terms in the z -direction are discretized in a similar manner.

Cz(u, v, w)i,j,k+ 1

2

= − 1

2

[

1

−zk+ 5

2

+ 8zk+ 3

2

− 8zk− 1

2

+ zk− 3

2

{

− wi,j,k+ 5

2

(wi,j,k+ 1

2

+ wi,j,k+ 5

2

)

+8wi,j,k+ 3

2

(wi,j,k+ 1

2

+ wi,j,k+ 3

2

) − 8wi,j,k− 1

2

(wi,j,k+ 1

2

+ wi,j,k− 1

2

) + wi,j,k− 3

2

(wi,j,k+ 1

2

+ wi,j,k− 3

2

)
}

+
1

−xi+2 + 8xi+1 − 8xi−1 + xi−2

{

− wi+2,j+ 1

2
,k(ui,j,k+ 1

2

+ ui+2,j,k+ 1

2

)

+8ui+1,j,k+ 1

2

(ui,j,k+ 1

2

+ ui+1,j,k+ 1

2

) − 8wi−1,j,k+ 1

2

(ui,j,k+ 1

2

+ ui−1,j,k+ 1

2

)

+wi−2,j,k+ 1

2

(ui,j,k+ 1

2

+ ui−2,j,k+ 1

2

)
}

+
1

−yj+2 + 8yj+1 − 8yj−1 + yj−2

{

− wi+ 1

2
,j+2,k(vi,j,k+ 1

2

+ vi,j+2,k+ 1

2

)

+8wi,j+1,k+ 1

2

(vi,j,k+ 1

2

+ vi,j+1,k+ 1

2

) − 8wi,j−1,k+ 1

2

(vi,j,k+ 1

2

+ vi,j−1,k+ 1

2

)

+wi,j−2,k+ 1

2

(vi,j,k+ 1

2

+ vi,j−2,k+ 1

2

)
}]

(3.32)

The diffusive terms Dx(u, v, w)i+ 1

2
,j,k, Dy(u, v, w)i,j+ 1

2
,k and Dz(u, v, w)i,j,k+ 1

2

are dis-

cretized using the fourth-order accurate central discretization scheme for the second deriva-

tive which reads

Dx(u, v, w)i+ 1

2
,j,k =

−ui+ 5

2
,j,k + 16ui+ 3

2
,j,k − 30ui+ 1

2
,j,k + 16ui− 1

2
,j,k − ui− 3

2
,j,k

12(δxi+ 1

2

)2
(3.33)

+
−ui,j+ 5

2
,k + 16ui,j+ 3

2
,k − 30ui,j+ 1

2
,k + 16ui,j− 1

2
,k − ui,j− 3

2
,k

12(δyj+ 1

2

)2

+
−ui,j,k+ 5

2

+ 16ui,j,k+ 3

2

− 30ui,j,k+ 1

2

+ 16ui,j,k− 1

2

− ui,j,k− 3

2

12(δzk+ 1

2

)2

and

Dy(u, v, w)i,j+ 1

2
,k =

−vi+ 5

2
,j,k + 16vi+ 3

2
,j,k − 30vi+ 1

2
,j,k + 16vi− 1

2
,j,k − vi− 3

2
,j,k

12(δxi+ 1

2

)2
(3.34)

+
−vi,j+ 5

2
,k + 16vi,j+ 3

2
,k − 30vi,j+ 1

2
,k + 16vi,j− 1

2
,k − vi,j− 3

2
,k

12(δyj+ 1

2

)2

+
−vi,j,k+ 5

2

+ 16vi,j,k+ 3

2

− 30vi,j,k+ 1

2

+ 16vi,j,k− 1

2

− vi,j,k− 3

2

12(δzk+ 1

2

)2
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and

Dz(u, v, w)i,j,k+ 1

2

=
−wi+ 5

2
,j,k + 16wi+ 3

2
,j,k − 30wi+ 1

2
,j,k + 16wi− 1

2
,j,k − wi− 3

2
,j,k

12(δxi+ 1

2

)2
(3.35)

+
−wi,j+ 5

2
,k + 16wi,j+ 3

2
,k − 30wi,j+ 1

2
,k + 16wi,j− 1

2
,k − wi,j− 3

2
,k

12(δyj+ 1

2

)2

+
−wi,j,k+ 5

2

+ 16wi,j,k+ 3

2

− 30wi,j,k+ 1

2

+ 16wi,j,k− 1

2

− wi,j,k− 3

2

12(δzk+ 1

2

)2

where δxi+ 1

2

= xi−xi+1, δyj+ 1

2

= yj − yj+1 and δzk+ 1

2

= zk − zk+1 where the coefficients

on non-uniform meshes are determined using Lagrange interpolations.

3.5 Discretization of the convection-diffusion equation of the

scalar ϕ with WENO scheme

The scheme that is employed here is a variant of the WENO5 scheme as described by Liu et

al. [61]. The WENO schemes use an approximation of the scalar fluxes at the cell interface

by employing interpolation schemes. The reconstruction procedure produces a high order

accurate approximation to the solution from the calculated cell averages.

In this section we briefly outline the discretization of the transport equation for the scalar

ϕ. The three-dimensional convection diffusion equation of ϕ = ϕ(x, y, z, t) reads

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z
= Γ

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2

)

, (3.36)

where x, y and z are the horizontal and vertical directions, respectively and t denotes time.

The diffusive term on the right is discretized using a fourth-order accurate central scheme,

while the convective term is discretized using a variant of the fifth-order WENO scheme de-

veloped by Liu et al. [61]. Below, the implemented scheme is detailed only in one dimension.

Generalization to higher dimensions is straightforward.

When ignoring the diffusive term, the one dimensional variant of (3.36) can be rewritten

as
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∂ϕ

∂t
= −∂(uϕ)

∂x
. (3.37)

where u is the velocity in the x-direction. As we employ a staggered mesh, for the volume

centred around x = xi, the convective fluxes R+
i and R−

i are defined by

R+
i =

a0
a0 + a1 + a2

Pi−1(xi+ 1

2

) +
a1

a0 + a1 + a2
Pi(xi+ 1

2

) +
a2

a0 + a1 + a2
Pi+1(xi+ 1

2

) (3.38)

and

R−

i =
a0

a0 + a1 + a2
Pi−1(xi− 1

2

) +
a1

a0 + a1 + a2
Pi(xi− 1

2

) +
a2

a0 + a1 + a2
Pi+1(xi− 1

2

) (3.39)

where a0, a1, a2 are weights and P the Lagrange interpolations polynomials defined in (3.42).

In the above, the weights for the convex combination of the quadratic Lagrange interpolation

polynomials are given by,

a0 =
1

12(ε− ISi)3

a1 =
1

2(ε− ISi+1)3

a2 =
1

4(ε− ISi+2)3
(3.40)

where ε = 10−9 and the smoothness indicator ISi is defined by

ISi =
1

2
((ϕi−1 − ϕi−2)

2 + (ϕi − ϕi−1)
2) + (ϕi − 2ϕi−1 + ϕi−2)

2. (3.41)

The modified quadratic Lagrange interpolations Pi(x) in equations (3.38) and (3.39) read

Pi(x) = (x−xi)(x−xi+1)
(xi−1−xi)(xi−1−xi+1)

ϕi−1 + (x−xi−1)(x−xi+1)
(xi−xi−1)(xi−xi+1)

ϕi + (x−xi−1)(x−xi)
(xi+1−xi−1)(xi+1−xi)

ϕi+1

− (xi−xi−1)ϕi+1−(xi+1−xi−1)ϕi+(xi+1−xi)ϕi−1

12(xi+1−xi)
(3.42)
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High-order polynomial interpolations to the midpoints xi+ 1

2

are computed using known

grid values of the scalar ϕ. The scheme uses a 5-points stencil which is divided into three

3-points stencils as shown in Fig. 3.2.

Figure 3.2: Schematic illustration of the weighted 5 point convex combination composed of three 3-

points stencils S0, S1, S2 and their respective weights a0, a1, a2 used in the classical WENO5 scheme.

[82].

These three-point interpolations of the scalar to the faces of the volume are combined

with a smoothing term at the right. Using the above, depending on the signs of ui− 1

2

and

ui+ 1

2

, we have four possible ways to calculate the discretization of the convective terms

Li(ϕ) =
(

−u∂ϕ
∂x

)

|xi
in xi:

ui+ 1

2

> 0, ui− 1

2

> 0 : Li(ϕ) = −
ui+ 1

2

R+
i − ui− 1

2

R+
i−1

xi+ 1

2

− xi− 1

2

(3.43)

ui+ 1

2

> 0, ui− 1

2

< 0 : Li(ϕ) = −
ui+ 1

2

R+
i − ui− 1

2

R−

i

xi+ 1

2

− xi− 1

2

(3.44)

ui+ 1

2

< 0, ui− 1

2

> 0 : Li(ϕ) = −
ui+ 1

2

R−

i+1 − ui− 1

2

R+
i−1

xi+ 1

2

− xi− 1

2

(3.45)

ui+ 1

2

< 0, ui− 1

2

< 0 : Li(ϕ) = −
ui+ 1

2

R−

i+1 − ui− 1

2

R−

i

xi+ 1

2

− xi− 1

2

(3.46)

The diffusive term on the right hand side of (3.36) is discretized using a fourth-order

central finite difference method for the second derivative with,

∂2ϕ

∂x2
≈ −ϕi+2,k + 16ϕi+1,k − 30ϕi,k + 16ϕi−1,k − ϕi−2,k

12(δxi)2
(3.47)
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and
∂2ϕ

∂z2
≈ −ϕi,k+2 + 16ϕi,k+1 − 30ϕi,k + 16ϕi,k−1 − ϕi,k−2

12(δzk)2
, (3.48)

where δxi = 1
2(xi+ 1

2

− xi− 1

2

) and δzi = 1
2(zi+ 1

2

− zi− 1

2

) , respectively. On a stretched mesh

the actual discretisation coefficients are obtained from the above equations using Lagrange

interpolations. The time integration of the convection-diffusion equation is implemented

using a third order Runge-Kutta method (RK3) developed by Shu and Osher [82] that

reads,

ϕ
(1)
i = ϕ

(n)
i + ∆tLi(ϕ

(n)
i )

ϕ
(2)
i =

3

4
ϕ
(n)
i +

1

4
ϕ
(1)
i +

1

4
∆tLi(ϕ

(1)
i )

ϕ
(n+1)
i =

1

3
ϕ
(n)
i +

2

3
ϕ
(2)
i +

2

3
∆tLi(ϕ

(2)
i ) (3.49)

In the case of using three quadratic interpolations a fifth-order accuracy can be achieved.

Note that the weights given to the interpolating polynomials depend on the local smoothness

of the solution. Interpolation polynomials defined in regions where the solution is smooth

are given higher weights than those in regions near discontinuities (shocks) or steep gradients

(like the gas concentration near the interface in this case).

3.6 Dual Mesh Approach

Because the diffusivity of the scalars of interest is up to three orders smaller than that of

the momentum, the resolution requirements for the flow field are less stringent as will be

shown later by the mesh refinement tests in Section 4.3. To save computing time a dual

mesh approach is used as illustrated in Fig. 3.3. The velocity is solved on a coarser base

mesh (Fig. 3.1), while the scalar is defined on the finer subgrid (Fig. 3.3b and 3.3c) so that

the required computational resources are significantly reduced.
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(a) R = 1 (b) R = 2 (c) R = 3

Figure 3.3: Variables on the new dual mesh. The flow field is solved on the outer coarse mesh,

whilst the scalar is computed on a refined subgrid. For the transport of the scalar the velocities are

interpolated onto the midpoints of the subgrid

To calculate the convective transport of the scalar the velocities are interpolated onto

the finer subgrid using a fourth-order interpolation. When employing a subgrid refinement

by a factor of R = 2 (Fig. 3.3b) an interpolation is required for each subcell as the velocity

location and the scalar locations do not coincide with their counter parts on the base mesh.

In contrast Fig. 3.3c shows that in the case of a subgrid refinement by a factor R = 3 some

velocities and the central subcells for the scalars are defined at the same locations.

3.7 Implementation of Boundary Conditions

Dirichlet and Neumann boundary conditions are implemented by extrapolating the values

obtained at the latest time step to ghost cells outside of the computational domain. This

has the advantage that there is no need to change the numerical stencils near boundaries.

Suppose the quantity q is defined on an N -point mesh and we want to implement a Dirichlet

(odd) boundary condition qN = Q. By using the known values q 1

2

, q 3

2

, . . . , qN−
1

2

, the values

qN+i− 1

2

are determined by using the formula

qN+i− 1

2

= 2Q− qN−i+ 1

2

for i = 1, . . . , 3. (3.50)
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To implement the Neumann (even) boundary condition at i = 0, we use the formula

q
−i+ 1

2

= qi− 1

2

for i = 1, . . . , 3. (3.51)

The free-slip condition for the velocity is implemented by using a Neumann boundary con-

dition (3.51) of the velocity component that is parallel to the boundary and a Dirichlet

boundary condition (3.50) for the component that is orthogonal to the boundary (using the

value zero at the boundary itself).

3.8 Parallelization

The calculations are carried out using parallel computing. For simplicity the parallelization

procedure is described here in one dimension only. In the following only the communication

in x-direction on a vertical boundary is detailed. The procedure is the same in the other

directions. Parallel computing is a powerful method to cut down computation time by letting

multiple processors work simultaneously. The basic idea is to divide the computational

domain into smaller subdomains which are solved simultaneously on various processors. If

the subdomains are of similar size (i.e. have the same number of cells) the computation time

for each subdomain is nearly the same which makes the computation very efficient. This

method implies a certain level of communication between the processes as the variable’s

values at the interfaces between the processes need to be known. Values in one process will

influence its neighbouring process and vice versa. The 2-dimensional domain is divided into

subdomains as shown schematically in Fig. 3.4.

Each subdomain has a cartesian mesh defined as ∆xi, i = 0, ..., Nx and ∆zk, k = 0, ..., Nz

and the computation of each domain runs as its own process (i.e. on its own assigned

processor). Considering two neighbouring processes A and B, as illustrated in figure 3.4,

and one scalar variable to be stored on the grid denoted A when used in process A and B

when used in process B. The gridpoints of each domain are illustrated as circles for process A

and diamonds for process B. There is a communication required between the two processes

A and B as, for instance, the scalar values of B will act as a boundary condition for process

A and vice versa. The thick lines in the centre of the zoomed view on the right in figure 3.4
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A
n+1
Nx

= B
n
1 (3.52)

A
n+1
Nx+1 = B

n
2 (3.53)

A
n+1
Nx+3 = B

n
3 (3.54)

and for process B so that

B
n+1
−2 = A

n
Nx−3 (3.55)

B
n+1
−1 = A

n
Nx−2 (3.56)

B
n+1
0 = A

n
Nx−1. (3.57)

The near interface points of one domain act as ’ghost boundary points’ for the neigh-

bouring domain. The above description outlines the general method of parallelization used

here for exchanging grid data between neighbouring processes. Note that in the actual sim-

ulations the variables in question are the velocities and scalar quantities as shown in Fig.

3.1. The data exchange between the processes is realized using the well established Message

Passing Interface protocol (MPI). Each process can run on its own assigned processor with

distributed memory.
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Chapter 4

Numerical Experiments

T
o determine the accuracy of the numerical method described in Chapter 3 a series

of numerical experiments has been carried out. Scalar transport problems were

tested in one and two-dimensional numerical experiments. The first part covers

1D numerical experiments. The advantage of the 1D experiments is that they are much less

costly in terms of computational effort which enabled a detailed grid sensitivity study of the

numerical method. Furthermore there often exists an analytical solution for 1D transport

problems so an exact error of the numerical method can be calculated. For instance, the

propagation of a wave by means of convection is easily predictable when that convection is

in only one direction with a given constant velocity. It is simply to be shifted along that

direction. As the problem of gas transfer at the air-water interface is a convection-diffusion

problem one dimensional scalar transport was tested for problems which were either purely

convective or purely diffusive. These experiments enabled the determination of the order of

accuracy of the numerical scheme used to solve the diffusive and convective terms respectively.

Comparisons with an alternative WENO scheme and the 5th order upwind central method

were conducted.

In the second part two-dimensional numerical experiments were carried out. A mesh

sensitivity study revealed the order of accuracy for a two-dimensional scalar distribution in

an inviscid sheared flow. A mesh sensitivity study for scalar transfer in a buoyancy driven 2D

flow could clearly identify a minimum mesh size to accurately resolve the scalar convection-
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diffusion of a low diffusive scalar (Sc = 500). As these parameters correspond to air-water

gas transfer these findings were of great importance for the resolution requirements of the full

3D gas transfer simulations. The alternative WENO scheme and 5th order upwind central

method were also tested for this buoyancy driven case.

4.1 1D Numerical Experiments

In the following section the WENO-scheme is applied for different test problems with the

purpose to predict the accuracy of the method on uniform and stretched meshes, respectively.

As scalar transport is not purely convective problem the fourth-order central discretization

of diffusion is also tested on non uniform meshes.

4.1.1 Scalar transport by convection on a uniform grid

By using the modified quadratic Lagrange interpolations for reconstruction (3.42) it is ex-

pected to achieve a fifth-order accuracy for the convective scalar transport on uniform meshes.

In both of the following cases (uniform and non-uniform meshes), the previously described

WENO schemes for spatial discretization and the 3rd-order Runge-Kutta-scheme for time

integration of the one-dimensional convection equation is used. Because a prediction of the

numerical error in the WENO scheme is desired, the diffusive terms will not be solved. If

ϕ(xi, t) and ϕexact are the numerical and the exact solutions, respectively at (xi, t), the  L1

discretization error is given by

 L1 =
1

N

N
∑

i=1

| ϕ(xi, t) − ϕexact |, (4.1)

where N describes the number of nodes in the domain, t the time, i the node number.

The scalar distribution is initialized by a sine wave function ϕ0(x) = sin (πx). The

discrete representation of the curve on a 10 point grid is depicted in Figure 4.1. The wave

was convected with a constant velocity in x direction with periodic boundary condition at

the sides. In the calculations an extremely small CFL-number was used so that the time-step

would be small enough to ensure that the third-order temporal behaviour of the Runge-Kutta

scheme would not affect the rate of convergence of the WENO schemes.
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Figure 4.1: The sine wave used for 1D convection test on a 10-point mesh

Table 4.1 gives the  L1 error after running the simulation during one time-unit as well as

the resulting order of accuracy. The WENO5 implementation of Liu et al. [61] was compared

to the alternative WENO5 scheme developed by Shu and Jiang [81] and the upstream central

method that is obtained by selecting the smoothness indicators ISi = 0 in either of the

WENO schemes (see equation (3.41)). Starting from N = 10 nodes the  L1 error is decreasing

when increasing the number of nodes to 20, 40,..., 640. As previously found by Shu and

Jiang [81], the implementation of Liu et al. [61] shows a smaller error than the scheme of

Shu and Jiang [81] on the coarse 10-point mesh while on finer meshes the Shu and Jiang [81]

implementation is superior.

Furthermore, the scheme of Shu and Jiang [81] as well as the upstream central scheme

show a fifth-order behaviour, while the original scheme of Liu et al. [61] would need an even

finer mesh to exhibit this behaviour. With the mesh sizes shown in the table, a significant

increase of ε (even up to a value of ε = 1) would be required to achieve higher order. The

choice of the small ε = 10−6 was necessary for the present application in order to resolve

very steep gradients. To test whether the Liu et al. [61] scheme has the potential to exhibit

a fifth-order behaviour, an additional test had been carried out in which ε was increased to

ε = 1 (Table 4.2). As can be seen in Table 4.2 for ε = 1, indeed a fifth order behaviour for
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WENO-Liu et al. [61] WENO-Shu and Jiang [81] Upstream Central

N  L1-error order N  L1-error order N  L1-error order

10 1.17 E-02 - 10 2.11 E-02 - 10 3.11 E-03 -

20 2.47 E-03 2.24 20 1.10 E-03 4.27 20 1.01 E-04 4.95

40 3.30 E-04 2.90 40 3.26 E-05 5.07 40 3.18 E-06 4.99

80 2.53 E-05 3.70 80 9.98 E-07 5.03 80 9.99 E-08 4.99

160 1.57 E-06 4.01 160 3.12 E-08 5.00 160 3.15 E-09 4.99

320 6.13 E-08 4.68 320 9.76 E-10 5.00 320 1.03 E-10 4.94

640 1.04 E-09 5.89 640 3.13 E-11 4.96 640 4.26 E-12 4.59

Table 4.1: Absolute error and order of convergence on uniform meshes with ε = 10−6.

the original scheme was observed for N ≥ 80 grid points. The slight decrease in order of

convergence for N = 640 points is possibly caused by machine-accuracy limitations affecting

the calculations.

In practical calculations the mesh will be relatively coarse so that the original WENO

implementation of Liu et al. [61], which has a good accuracy on coarse meshes, would be

a good choice. Though the fifth-order upstream central method is shown to be even more

accurate on coarse meshes, it is not the method of choice as the absence of a mechanism to

deal with steep gradients could result in the appearance of wiggles as will be briefly discussed

in Section 4.3.1.

4.1.2 Scalar transport by convection on non-uniform meshes

Using the modified Lagrange interpolations (see eqn. (3.42)) the WENO-scheme has been

applied on non-uniform meshes where the node distribution is given by:

x(i) =

[

1 − tanh(xφ)

tanh(x1)

]

x(0) +

[

tanh(xφ)

tanh(x1)

]

x(nx) (4.2)
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WENO-Liu et al. [61]

N  L1-error order

10 3.46E-03 -

20 1.76E-04 4.30E+00

40 2.83E-06 5.96E+00

80 9.44E-08 4.91E+00

160 3.11E-09 4.92E+00

320 1.02E-10 4.93E+00

640 4.26E-12 4.59E+00

Table 4.2: Absolute error and order of convergence on uniform meshes with ε = 1.

for i = 1, ..., nx − 1, with

xφ = δs/2
i

nx

x1 = δs/2.

The procedure for the stretching is controlled by the parameter δs. The N -point mesh

distribution is so that x(0) = 0 and x(nx) = 1 where nx = N/2. The resulting mesh

is subsequently mirrored about x = 1 to obtain the grid points between x(nx) = 1 and

x(N) = 2.

The results of the tests using δs = 1.0 and 3.0, respectively, are presented in Table 4.3.

The absolute errors, as expected, are smaller for the mesh with reduced stretching. Compared

to uniform meshes it can be seen that the order of accuracy decreases to approximately 2.

4.1.3 Scalar transport: pure diffusion

In this section the fourth-order accurate central discretization (3.47) for the solution of scalar

diffusion is applied. In the one-dimensional case, concentration gradients in the y- and z -

directions are assumed to be zero, so that the one-dimensional diffusion equation for a scalar
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δs = 1.0 δs = 3.0

N  L1-error  L1-order N  L1-error  L1-order

10 1.20E-02 - 10 3.58E-02 -

20 2.41E-03 2.32E+00 20 6.28E-03 2.51E+00

40 3.91E-04 2.63E+00 40 1.60E-03 1.98E+00

80 6.27E-05 2.64E+00 80 3.77E-04 2.08E+00

160 1.41E-05 2.15E+00 160 9.26E-05 2.03E+00

320 3.45E-06 2.03E+00 320 2.31E-05 2.00E+00

640 8.62E-07 2.00E+00 640 5.77E-06 2.00E+00

Table 4.3: Absolute error and order of convergence on non-uniform meshes with ε = 10−6.

ϕ(x, t) reads

∂ϕ

∂t
= D

∂2ϕ

∂x2
. (4.3)

For the test a one-dimensional domain was chosen with 0 ≤ x ≤ 5L. A mesh with N

grid points was defined with a refinement near the surface where the concentration boundary

layer will form (see Section 4.1.2). At x = 0 the boundary condition ϕ(0, t) = 1 was imposed.

The analytical solution for this boundary value problem is given by

ϕ(x, t) = 1 − erf

(

x√
4Dt

)

. (4.4)

The initial condition for the test was given by the analytical solution as defined in (4.4) at

t=10 seconds. In the case of diffusive gas transfer into a liquid D = 1
ReSc and for the transfer

of oxygen into water we have a Schmidt number of Sc = 500 and a Reynolds number of

Re = 100, which is based on a characteristic length scale of L = 1 cm and a characteristic

velocity of u = 1 cm/s. The latter gives us a characteristic time scale of θ = L/U = 1 second.

The absolute errors and order of accuracy for the pure diffusion scalar transport on non-

uniform meshes were tested for N = 10 to 640 grid points. The results after 1 time-unit are

shown in Table 4.4. The absolute errors in the numerical results are very small, illustrating
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δs = 3.0 δs = 4.5

N  L1-error  L1-order N  L1-error  L1-order

10 1.47E-04 - 10 1.27E-03 -

20 2.22E-04 -5.95E-01 20 3.26E-04 1.96E+00

40 2.45E-04 -1.41E-01 40 2.53E-05 3.69E+00

80 2.11E-05 3.54E+00 80 1.50E-06 4.07E+00

160 1.73E-06 3.61E+00 160 1.00E-07 3.91E+00

320 1.12E-07 3.95E+00 320 6.72E-09 3.90E+00

640 7.19E-09 3.96E+00 640 4.37E-10 3.94E+00

Table 4.4: Absolute error and order of convergence on non-uniform meshes for pure diffusion case.

very good agreement with the analytical solution. A fourth order accuracy is achieved even

with increased stretching.

All 1D numerical tests described above (Sections 4.1.1 to 4.1.3) illustrate the advanta-

geous behaviour of the chosen combination of a WENO-scheme with a fourth-order discretiza-

tion of the diffusive terms which resulted in a low numerical diffusion and small absolute

errors for both modes of transport, pure convection and pure diffusion, respectively.

4.2 Two dimensional sheared scalar distribution

To further test the robustness of the numerical scheme, mesh sensitivity tests in 2D for two

application cases were performed, namely for sheared scalar distribution and low-diffusivity

scalar transport in buoyancy driven flow. The first problem deals with a smooth scalar

distribution without scalar diffusion being sheared by a zero viscosity flow as shown in

Figure 4.2. After 1 time-unit the flow is reversed with the aim to obtain the initial distribution

of the scalar back so that the distribution at t = 0 should be the same as at t = 2.

The simulation was run on a 5L× 5L domain using periodic boundary conditions in the

horizonal direction and free-slip boundary conditions for the velocity combined with zero-flux
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Figure 4.2: A detail of the sheared scalar distribution. a) at t=0 second and b) at t=1.1 seconds.

boundary conditions (3.51) for the scalar along the upper and lower boundaries. At t = 0,

the scalar field was initialised by

ϕi,k = 0.5
(

1 + cos(π
√

(xi − 2.5)2 + (zk − 2.5)2 )
)

, (4.5)

while the flow field was initialised using

ui+ 1

2
,k = 2

atan(10(zk − 2.5))

π
. (4.6)

At t = 1 second the flow field was reversed, so that

ui+ 1

2
,k = −2

atan(10(zk − 2.5))

π
. (4.7)

After t = 2 seconds of simulation the error is determined by comparing the initial to the

calculated scalar distribution. As can be seen in Table 4.5, a grid refinement study was

carried out by performing simulations on a sequence of uniform meshes with 80 × 80 up to

640 × 640 points. With increasing number of grid points the order of accuracy was found to

increase significantly from about 2 to 4.
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nx × nz  L1-error  L1-order

40 × 40 1.34E-03 -

80 × 80 3.51E-04 1.93E+00

160 × 160 7.30E-05 2.26E+00

320 × 320 9.33E-06 2.97E+00

640 × 640 5.92E-07 3.98E+00

Table 4.5: Absolute error and order of convergence resulting from the 2D sheared scalar distribution

test on uniform meshes using the WENO scheme of Liu et al. [61] with ε = 10−6.

4.3 Two-dimensional low-diffusivity scalar transport in buoy-

ancy driven flow

The second 2D application case considers the problem of low-diffusivity (high Schmidt num-

ber) mass transfer in buoyant-convectively driven flow. An example in nature is the oxygen

absorption through the air-water interface in lakes at night time when the lakes’ surface is

cooled by the overlying cold air leading to an unstable stratification which in turn causes

mixing at the water side.

The description of the 2D numerical setup for the problem is as follows. A square

domain was chosen with an edge length of 5L as illustrated in Fig. 4.3 The base grid size was

nx = 400 and nz = 256 in the x- and z-directions, respectively. The mesh was stretched in the

z-direction with δs = 3 to obtain a finer resolution near the top where a steep concentration

gradient occurs. The general stretching procedure has been given in (4.2). For all variables,

periodic boundary conditions were employed in the horizontal direction. For the velocity

field free-slip boundary conditions were used at the top and bottom of the computational

domain. At the beginning of each simulation all velocity components were set to zero. The

full set of 2D equations for the velocity given in (3.15) to (3.22) is solved. It should be

noted that to account for the effects of buoyancy in this application case the buoyancy term

β(T ∗) is included into equation (3.22). The term β(T ∗) is modelled using the Boussinesq

approximation and is a function of the non-dimensional temperature T ∗ as defined in (3.8),
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field was used in all simulations. The random numbers that were added to T ∗ were uniformly

distributed between 0 and Tran. To test the influence of the level of the random disturbances

on the development of the instability, a test was performed in which a random disturbance

field was rescaled so that Tran = 0.010, Tran = 0.020 and Tran = 0.040 before it was added

to the non-dimensional temperature. In all three simulations exactly the same buoyant con-

vective disturbance field was found to develop. As can be seen in Table 4.6, the different

Tran time at which the falling plume reaches z=4.0 cm

0.010 23.75 s

0.020 22.30 s

0.040 20.85 s

Table 4.6: The time difference found between the development of disturbances.

levels of disturbances were found to affect the time it takes for the plumes to develop. Based

on the time difference of 1.45 seconds between subsequent simulations (in which the level of

random disturbances is doubled) the exponential growth factor λ for the buoyant-convective

instability was estimated to be λ = 0.478.

To facilitate the comparison between various simulations involving buoyant convection, in

the simulations discussed below the same random temperature field consisting of uniformly

distributed random numbers between T = 0 and Tran = 0.020 was added to the non-

dimensional temperature field.

4.3.1 Comparison of scalar convection methods in 2D

As mentioned briefly in Section 4.1.2, although the fifth-order upstream central method

(C5) shows better accuracy on coarse meshes, it is not the method of choice for the current

application due to the absence of a mechanism to deal with steep gradients which could result

in the appearance of wiggles. To demonstrate this a number of initial 2D simulations on the

400×256 base mesh using the C5 and the WENO5 schemes were performed. Figure 4.4 shows

the profiles extracted at a cross section at z = 4.5 cm and t = 45 seconds obtained for the C5
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Figure 4.4: Comparison of WENO5 schemes (JS2, JS3, LOC) and the fifth-order central scheme

(C5), showing profiles of the scalar distribution ϕ at z = 4.5cm and t = 45 seconds using a Schmidt

number of Sc = 500.

scheme and different variants of the WENO5 scheme. The cross-section intersects with the

falling plumes that develop due to the convective instability which induces sharp gradients

in the scalar distribution (see also Figure 4.6a). The plot reveals that wiggles appear close

to steep gradients when using the C5 method, which are identified by circles. The original

calculation of the weights a0, a1 and a2 as presented in equation (3.40) is compared to an

alternative developed by Shu and Jiang [81], in which the weights for R+
i are given by

a0 =
1

10(ε + IS0)r
, a1 =

6

10(ε + IS1)r
, a2 =

3

10(ε + IS2)r
, (4.8)

while for R−

i the weights are given by

a0 =
3

10(ε + IS0)r
, a1 =

6

10(ε + IS1)r
, a2 =

1

10(ε + IS2)r
, (4.9)

with the smoothness indicators ISi in Shu and Jiang [81] (compare to equation (3.41)) defined

by

IS0 =
13

12
(ϕi−2 − 2ϕi−1 + ϕi)

2 +
1

4
(ϕi−2 − 4ϕi−1 + 3ϕi)

2

IS1 =
13

12
(ϕi−1 − 2ϕi + ϕi+1)

2 +
1

4
(ϕi−1 − ϕi+1)

2

IS2 =
13

12
(ϕi − 2ϕi+1 + ϕi+2)

2 +
1

4
(3ϕi − 4ϕi+1 + ϕi+2)

2. (4.10)

It was found that the wiggles completely disappear when using the WENO5 schemes JS2

and JS3 of Shu and Jiang [81] with powers r = 2 and 3, respectively - see (4.8,4.9) - as well as
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the original implementation of Liu et al. [61] (LOC). It can be seen that the results obtained

using the WENO5 schemes are very similar.

In the following sections, the mesh sensitivity for resolving the 2D flow and concentration

fields were tested in several subgrid mesh refinement studies.

4.3.2 Mesh sensitivity test : Flow-field

To verify that the flow-field was fully resolved on the chosen 400 × 256 base mesh, the grid

was refined in all directions by factors of 1.5 and 2, respectively. Fig. 4.5 shows the contour

(a) vertical velocity w field on a grid

400 × 256 and 800 × 512 after t =

45 seconds

(b) vertical velocity w along a line at z = 4L after t =

45 seconds

Figure 4.5: A grid refinement showed that the velocity field is fully resolved on a 400 × 256 grid.

plots and the velocity profiles obtained from the simulations with the base grid and the mesh

refined by a factor 2 (R = 2) (with 800 × 512 points) after t = 45 seconds. The contour

plots of the flow-field using the refined mesh did not show any visible changes in the flow

structures (Fig. 4.5b). This is further confirmed by the vertical velocity profiles along a

horizontal line at z = 4L. The profiles are virtually identical verifying that the velocity field
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is fully resolved on the 400 × 256 grid which was subsequently used in all further cases.

4.3.3 Mesh sensitivity test: gas concentration field

As described above, a dual-mesh approach has been used in which the scalar was resolved on

a finer mesh than the one used for the velocity. Various levels of refinement were employed

as illustrated in Fig 3.3. In this section, the mesh sensitivity for the scalar transport using

this dual mesh approach is evaluated. Fig. 4.6 shows a comparison of the non-dimensional

gas concentration contour plots that visualise the development of the scalar transport at

t = 45 seconds using the base mesh (400 × 256) for both velocity and scalar and the dual

mesh approach with refinement factor 3 applied to the scalar. The Schmidt number is

Sc = 500 which is equivalent to the diffusion of oxygen in water.

In general, both concentration fields in Figs. 4.6a and 4.6b reveal the same structures of

downwards plumes. However, a zoomed view of the top region near the water surface reveals

a more detailed representation of the gas concentration field when the dual mesh approach is

used (Fig. 4.6c and 4.6d). Please note that the gas concentration in all figures is interpolated

to the base grid and not shown on the refined mesh used for the scalar transport.

Figs. 4.7 and 4.8 show line plots of the scalar field at various locations within the domain.

The locations are across or along the typical mushroom pattern that develops as a result

of the convective instability and shows the presence of sharp gradients in the scalar field.

Solving the scalar on the finer subgrid shows a significant improvement in resolution. The

R = 2 refinement shows a big improvement in deeper regions where the scalar distribution

is maintained better than in the base mesh which is relatively coarse. In the far field (z < 4)

the scalar concentration profiles for the refined cases R = 2, R = 3 and R = 5 converge to

nearly identical values (Fig. 4.7a).

The improved resolution becomes even more relevant when the spatially integrated to-

tal scalar concentration in the domain over time is considered. Fig. 4.9a shows the total

concentration over time for Sc = 500. Up to a time of t = 30 seconds the gas transfer is

dominated by diffusion. Subsequently, the instability induces a convective flow that signif-

icantly enhances the mass transfer. The typical mushroom patterns start penetrating the
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(a) Domain after t = 45 seconds on standard mesh (b) Domain after t = 45 seconds with refined submesh

R = 3

(c) Zoomed view after t = 45 seconds on standard mesh(d) Zoomed view after t = 45 seconds with refined sub-

mesh R = 3

Figure 4.6: Comparison of the gas concentration field after t = 45 seconds on standard mesh

nx = 400 and nz = 256 and with a dual subgrid in place three times as fine (see Fig. 3.3c). The gas

concentration field is resolved in sharper detail with less smearing.

deeper regions of the domain. It is here where the refined submesh shows a much improved

resolution with a continuous increase in the concentration levels whilst the standard mesh

shows a drop in concentration levels. The drop occurs when the scalar reaches the region
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(a) Scalar ϕ for Sc = 500 at x = 2.0L (b) Scalar ϕ for Sc = 500 at x = 1.3L

Figure 4.7: Comparison of scalar field after t = 45 seconds on different levels of subgrid mesh

refinement. The two locations are vertical lines at x = 2.0L and x = 1.3L along the downwards

plumes as seen on Fig. 4.6a.

where z < 2.5L (and the mesh becomes significantly coarser) after around t = 55 seconds

(Fig. 4.9a). This points out an insufficient resolution of the scalar transport in this region.

This effect was not present in the refined cases (Fig. 4.9a). The same is found for the trans-

port of the non-dimensionalized temperature T ∗ (Fig. 4.9b). The grid refinement study

for the temperature transport shows a similar trend as seen for the concentration field in

Fig. 4.9b. On the coarse mesh fluctuations become evident after t = 50 seconds whereas the

refined cases do not exhibit such temperature fluctuations. Again the results are identical

for all refined cases (R = 2, R = 3 and R = 5).
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(a) Scalar ϕ for Sc = 500 over time

(b) Non-dimensional total temperature T ∗ over time

Figure 4.9: Comparison of the total non-dimensional scalar concentration and temperature T ∗over

time for different levels of subgrid refinement
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Chapter 5

Simulations in a 3D domain

T
he aim of this study is to gain more understanding of the physical mechanisms

that control the absorption of oxygen into water in a convective flow environment.

For that purpose it is necessary to resolve the convective and diffusive transport

of the dissolved oxygen in a three dimensional domain. The oxygen concentration takes the

role of the passive scalar ϕ in the WENO scheme as described in Section 3.5 which is used

to discretize the convection-diffusion equation. The Schmidt number for the absorption of

oxygen into water is Sc ≈ 500 which means the diffusion is very low and steep concentration

gradients will occur. The findings of the numerical experiments in Chapter 4 showed that

the numerical scheme as described in Chapter 3 is very capable of resolving both convection

and diffusion of such high Schmidt number transport problems with negligible errors. The

minimum mesh size found in the 2D tests was implemented and a mesh sensitivity study was

also carried out for the for the 3D simulations presented in this chapter. The instantaneous

gas concentration fields and flow visualisation are presented and an analysis of the statistical

data is also carried out together with a qualitative comparison to experiments from the

literature.
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(3.50) while at the bottom a zero-flux boundary condition (3.51) was employed. In a similar

manner as in the 2D simulations in Section 4.3 the convective instability is triggered by adding

random disturbances to the temperature field after letting it evolve for t = 11 seconds with

a Tran = 0.010. The same random disturbance field is used in all 3D simulations.

5.2 Results and Discussion

The simulations are carried out by parallel computing where the domain is decomposed into

400 subdomains. In all simulations the Reynolds number used is Re = 100 and the Prandtl

number is Pr = 6. Three simulations are carried out with different levels of dual grid

refinement where the gas concentration field is solved on a finer mesh. For the simulations

with dual mesh refinement of R = 1 (base grid 400 × 400 × 256 points) and R = 2 (twice

as many gridpoints in each direction), four passive scalars ϕn are solved simultaneously

with the four Schmidt numbers Sc = 20, 50, 200 and 500. In the third simulation with a

dual grid refinement of R = 3 only one passive scalar is solved for Sc = 500 in order to

save computational resources. The results here are using Sc = 500 which is the equivalent

Schmidt number for the absorption of oxygen into water. All field variables were exported

in a 3D format at every second simulation time and the simulations were run for 60 second

physical time.

5.2.1 Qualitative Mesh Sensitivity of 3D Gas Concentration Field

In Chapter 4.3 it could be shown that a mesh refinement of R = 2 is sufficient to fully resolve

the transport of the scalar field with negligible errors. A further refinement to R = 3 and

R = 5 did not show a higher resolution. The same effect was seen in the 3D simulations. The

velocity field is solved on the same base grid for all 3D simulations, as it was demonstrated

in section 4.3.2 that the velocity field is fully resolved on the base grid. Figure 5.2 shows

a comparison of instantaneous contour plots of the gas concentration between the base grid

and refinement R = 3. The plots are obtained from a centre plane at y = 2.5cm. Red and

blue areas correspond to high and low concentration levels, respectively. At the interface
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saturation is reached. Figures 5.2a and 5.2b show the onset of the flow and penetration of high

concentration plumes after 40 seconds simulation time. The plots in the centre and bottom

row show the concentration field at 50 and 60 seconds respectively. The gas concentration

field shows a sharper resolution with the refined subgrid, especially for larger time scales. As

in the 2D simulations there was no significant improvement between refinement levels R = 2

and R = 3.
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(a) Base grid 400× 400× 256 (b) Refined by factor R = 3

(c) Base grid 400× 400× 256 (d) Refined by factor R = 3

(e) Base grid 400× 400× 256 (f) Refined by factor R = 3

Figure 5.2: Contour plots of gas concentration
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5.2.2 3D isosurfaces

Figure 5.3 and 5.4 show two sequences of 6 isosurfaces of a gas saturation of 25% as viewed

from below and above the interface from t = 35s to t = 60s in intervals of 5 seconds for the

R = 3 and Sc = 500 case. The sequence shows that just after the onset of the instability

(Figure 5.3a and 5.4a) that cold water of high oxygen concentration is collected in narrow

regions that then start plunging down forming sheets of high oxygen concentration water

penetrating the unsaturated bulk. Figure 5.5 illustrates the link between the structure of

the high gas concentration areas and the temperature field. The plots on the left show the

gas concentration isosurfaces whereas the plots on the right show the isosurfaces of the non-

dimensional temperature at the early stage of the instability. The downwards moving sheets

initially form a reticulated pattern with ’cells’ of similar size. This is in good agreement

with experimental observations by Spangenberg and Rowland [85] and is discussed further

in section 5.3. As time progresses the smaller cells merge and fewer larger cells remain. In

Figure 5.3 it is also revealed that as time progresses the penetration changes from an initial

sheet-like structure to fine tubes. At t = 40s the penetration is only present in thin straight

sheets. At t = 45s a mushroom like structure develops similar to what was seen in the 2D

simulations. The outwards bulging regions subsequently become separated and curl upwards

whilst thin tubes progress and penetrate deeper. These thin tubes become dominant and

the initial sheet-like penetration develops into fine tubes of high gas concentration. The

detached high concentration areas swirl around but do not disperse very much. Areas of

high concentration remain in close proximity to areas with almost zero concentration. This

is a result of the low diffusivity of the gas at Sc = 500. On the contrary, as can be seen in

Figure 5.5, the temperature field is much more diffusive and such fine structures are lost.

The thermoclines are much thicker and wider compared to the isosurfaces of concentration

field. (see also Section 5.2.3)

69



(a) time = 35s (b) time = 40s

(c) time = 45s (d) time = 50s

(e) time = 55s (f) time = 60s

Figure 5.3: Sequence of isosurfaces of 25% gas concentration viewed from below



(a) time = 35s (b) time = 40s

(c) time = 45s (d) time = 50s

(e) time = 55s (f) time = 60s

Figure 5.4: Sequence of isosurfaces of 25% gas concentration viewed from above



(a) time = 40s (b) time = 40s

(c) time = 45s (d) time = 45s

(e) time = 50s (f) time = 50s

Figure 5.5: Comparison of isosurfaces of 25% gas concentration (left) and temperature (right)
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5.2.3 Temperature and Convective Vertical Gas Flux Relation

As stated in the previous section (5.2.2) the temperature reveals some information about

the gas concentration, especially near to the interface. This section investigates the relation

between the temperature and the instantaneous vertical convective gas flux ξ, which is defined

as

ξ = wϕ∗ (5.1)

where w is the vertical velocity component and ϕ∗ is the non-dimensional gas concentration.

The temperature causes density differences that drive the flow. Initially cold water sinks

down in sheet like patterns dragging high gas concentration fluid with it. This plunging mo-

tion causes also curl upwards and around 10 seconds after the instability began a mushroom

like structure can be observed in the 25% gas concentration isosurfaces (see Figure 5.3).

High gas concentration fluid curls outwards and upwards and some areas become detached

from the downwards moving fluid. The upwards momentum can overcome the effects of

buoyancy and there is also fluid moving upwards that is colder than the surrounding fluid.

As the downward moving fluid displaces warmer fluid in the bulk an equal amount of warmer

fluid will be moving upward. Figure 5.6 shows a comparison of the vertical flux ξ and the

fluid temperature for horizontal sections through the domain 1mm, 10mm and 30mm below

the interface at 50 seconds simulation time. Near the interface there is a good correlation

between temperature and vertical flux however this correlation is almost lost when moving

further below the interface. The temperature has such high diffusivity that some detached

high gas concentration lumps might have almost the same temperature as the surrounding

fluid. As the concentration isosurfaces revealed, the high concentration fluid stays in thin

confined areas that swirl around. The temperature in these areas will increase over time much

faster then the gas concentration diffuses. In the top left and bottom of Figure 5.6c there are

red areas of upwards swirling high concentration fluid. In the equivalent temperature plot

(Figure 5.6d) these areas are relatively warm and not marked by cold fluid. The temperature

has diffused and the fluid has already warmed up. Cold fluid marks areas of downwards flux

better but is already very blurry 10mm below the interface. The temperature is even further
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diffused 30mm below the interface (Figure 5.6e). This observation corroborates the practice

of using the temperature at the interface as an indicator of the mass flux (e.g.[36]).
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5.2.4 Transfer Velocity KL

As stated in Section 2.2.1 the mass transfer is a combination of molecular diffusion and

turbulent transport as described by (2.2) which states that the mass flux is the sum of

diffusive flux and advective flux. When horizontally averaging all variables the mass flux in

the vertical direction is hence composed of

J = −(D
∂ϕ

∂z
− ϕw) (5.2)

where D is the mass diffusion coefficient and the overbar denotes horizontal averaging.

The first term on the right describes the molecular diffusion. The diffusive flux is proportional

to the vertical concentration gradient. The second term is the advective proportion of the

mass flux. It describes the mass transport in vertical direction due to the fluid motion. Both

terms can be precisely evaluated from the numerical simulations. The concentration ϕ and

the vertical velocity w are known in the domain. When horizontally averaged the vertical

mass flux J can be determined.

At the interface there is no vertical velocity component w hence the advective component

vanishes and the mass flux is entirely driven by diffusion. The total mass flux J into the

system becomes J = −D ∂ϕ
∂z and can hence be evaluated as the concentration gradient at the

interface is known in the simulations. This enables the calculation of the transfer velocity

KL

KL =
J

∆ϕ
=

J

ϕi − ϕb
. (5.3)

The term J can be determined from (5.2) and ϕi = 1 is the interface concentration and

ϕb is the average bulk concentration. Figure 5.7 shows the transfer velocity KL over time

from the R = 2 simulations.

In that simulation four scalar concentrations with the Schmidt numbers Sc = 20, 50, 200

and 500 were resolved simultaneously. It can be clearly seen that there is a sharp increase

in KL at around 40 seconds time when the convection sets in. Before that point in time

there is only diffusive mass transfer because the fluid is stationary. The dashed lines show
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Figure 5.7: KL over time

the transfer velocity KL as defined in (5.3). For comparison the solid lines show the transfer

velocity when the bulk concentration is assumed to be ϕb = 0 for the entire process. For high

Schmidt numbers this assumption is acceptable as the entire bulk concentration remains very

low throughout the process. If the water body is relatively large for high Schmidt numbers

KL can be estimated from the concentration gradient at the interface alone.

In theory KL for various Schmidt numbers scales with α−0.5
Sc where αSc is the ratio of

the Schmidt numbers which are compared. Figure 5.8 shows KL at t = 90s from figure

5.7 on double logarithmic axes. The triangles are the ’true’ KL where the change in bulk

concentration ϕb is considered, the squares mark values where ϕb = 0. Similar to the plot

in figure 5.7 it becomes evident that for high Schmidt numbers the bulk concentration ϕb

has nearly negligible impact on the transfer velocity KL. The denominator in (5.3) stays

very close to unity so that KL ≈ −D ∂ϕ
∂z at the interface. The dotted line in figure 5.8

represents the scaling with αSc−0.5 and the dashed line is the average power for the triangles.

The average scaling exponent was determined as -0.522. Figure 5.9 shows the horizontally
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oxygen field. The mid range Schmidt numbers Sc = 20 and Sc = 50 show very similar power

scaling. The average power for t = 90s is also plotted and shows that the band covers the

scaling power for the 15 seconds well.

5.2.5 Renewal rates and transfer Velocity (KL)

In section 2.3 conceptual models are reviewed where the transfer velocity KL is as a function

of the diffusion coefficient D and the renewal rate r. This renewal rate can be regarded as the

average frequency with which a ’surface renewal event’ happens. That is when unsaturated

’fresh’ liquid penetrates the concentration boundary layer and replaces saturated fluid. The

renewal rate r is therefore also an indication for the strength of the turbulence. Most

conceptual models were developed with the idea that the motion of the liquid is generated

by shear in the bulk region, however the flow driving mechanism can be various. In nature the

flow is driven by a combination of convection and shear. The question is which mechanism is

dominant. As the transfer velocity KL and the diffusion coefficient D are known the renewal

rate r can be determined using a conceptual model to evaluate the likelihood of surface

renewal events.

The concept of the renewal rate was introduced by Dankwerts [21] and his Surface Re-

newal model where the relation between KL and r was found to be

KL ≈
√
Dr (5.4)

where, D = 1
ReSc . Figure 5.11 shows r over time as derived from (5.4). The renewal rates

are obviously a function of KL and one can clearly see the relation when comparing the plot

to figure 5.7.

For instance , Herlina [38] has found renewal rates of between r = 0.0221
s and r = 0.351

s

in her experiments in a grid stirred tank which are similar to what was found in this study.

This shows that the gas transfer by buoyant convection is a very efficient method. Even

with a lower Reynolds number similar surface renewal is achieved than when using grid

stirring. The direct removal of saturated liquid from the surface by the thermoclines causes

exchange of saturated and non-saturated fluid near the interface, which is commonly known
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Figure 5.11: Surface renewal rates r over time

as a surface renewal event.

5.2.6 Total Gas Concentration

If there were no motion in the fluid there would only be gas transfer by means of diffu-

sion. A boundary layer would form with the interface being fully saturated. The vertical

concentration profile can be determined analytically by

ϕ∗(z, t) = 1 − erf

(

z√
4Dt

)

. (5.5)

where the diffusion coefficient D = 1
ReSc . The curve for the diffusion only in figure 5.12 is

the volume integral of the analytical profile over time. This line represents the theoretical

development of the total non-dimensional gas concentration over time if there is only diffusion

and no fluid motion. Overlaid are the results from the numerical simulations from 30 seconds

simulation time onwards. Initially there is only diffusion acting. The upwards kink at around

40 seconds marks the onset of the flow and the total concentration increases at higher rate.
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Figure 5.12: Volume integral of ϕ over time

5.2.7 Heat Transfer

As the water surface is cooled there is also heat extracted from the fluid. In reality there is

also mass transferred by means of evaporation. With the bulk fluid initially at 23❽ and the

interface at 20❽ the effects of mass loss due to evaporation are very small and can safely be

neglected. Fourier’s law describes the principle definition of the heat flux per unit area as,

−→q = −k∇T (5.6)

where k is the material’s thermal conductivity and ∇T the temperature gradient. The

total heat flux q̇ over the surface S is the surface integral of ∇T multiplied with −k, and

reads

q̇ =
∂Q

∂t
= −k

∫

S
∇TdA. (5.7)

Over the discretized horizontal interface surface the total heat flux in (5.7) can be written
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as the sum of all local heat fluxes across the cell faces over the interface, such as,

q̇ =
n
∑

i=1

−kAn
∆T

∆z
(5.8)

where An is the face area of each cell face at the interface and the term ∆T
∆z is the

local temperature gradient at the interface cell face which is determined by a first order

forward difference scheme. Fourier’s law describes the heat flux perpendicular to an area by

means of conduction, without energy being transported by advection through that area. It

is important to note that this is valid for the case of the heat transfer into a liquid as there

is no vertical velocity component at the interface.

There is a relation between transfer velocity KL and the thermal heat flux. The stronger

the thermal convection, the higher is the mass and thermal flux due to more mixing and

surface renewal. Figure 5.13 shows the relation of thermal flux q̇ and transfer velocity KL

during the R = 2 simulation. The output rate is in intervals of t = 0.25s. The thermal flux

at the surface ranges between ≈ 130 W
m2 and ≈ 195 W

m2 . It can be seen that there is a strong

correlation between KL and the heat flux as the points do not scatter much and fall nearly

on a line. Figure 5.14 shows the same correlation but all KL rescaled to Sc = 500 with

the power law KL( Sc
500)0.522 as determined earlier in figure 5.8. It confirms that the transfer

velocities scale very well over the entire duration of the process.

5.2.8 Convective cell pattern merging

After the onset of the convective flow a typical convective ’cell pattern’ can be observed

(see figure 5.4). The cold liquid sinks down in thin sheets. At the early stage the pattern

shows the well known typical polygon structure of free surface convection. Even though the

initial pattern is relatively homogeneous and the cells have very similar size this pattern is

not stable and the downwards moving sheets move around. The cells change in size and

shape and some cells even disappear completely and merge with larger growing adjacent

cells. In this section the flow field near the interface is analysed qualitatively. In figure 5.15

a sequence of the velocity magnitude contour plots at the interface is shown. Figures 5.16
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Figure 5.13: KL versus Thermal Heat flux q̇

Figure 5.14: KL versus Thermal Heat flux q̇
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and 5.17 show the velocity vectors at the interface and the temperature field 1mm below

the interface, respectively. At the initial stage a fairly regular pattern of convective cells

form where thin sheets of cold fluid start penetrating the deeper areas. This causes warm

unsaturated fluid from the bulk to rise in the centre of the cells which is known as surface

renewal. The warm bulk fluid then diverges outwards when approaching the interface. This

is illustrated by the vector plots (fig. 5.16). The cell patterns however do shift and cells

merge. The temperature near the interface reveals a trend that downwards falling sheets

that are warmer at the initial stage have more tendency to disappear. The positions A,B

and C in figure 5.17a mark an area of downwards sinking sheets of fluid that is relatively

warm compared with other clearly colder sheets. The area at A for instance consists of 3

convective cells at t = 40s. Subsequently they merge and become one large convective cell.

A similar mechanism can be seen at location B and C.

Another factor that determines the ’strength’ of a convective cell is its size relative to its

neighbours. At location D and E in figure 5.17a a cell is identified that is clearly defined

by very cold downwards falling sheets. The surrounding cells are of similar size but not so

clearly defined and exhibit warmer cell boundaries and do merge with their neighbouring

cells as seen at locations A,B and C. In this process cells D and E becomes surrounded

by larger cells, which draw warm liquid up from the bottom in their centres. The cell D

subsequently reduces in size and diminishes completely. When looking at the time sequence

of the velocity plots and vectors (fig. 5.15 and 5.16) at the location of cell D one can see

that the velocity becomes low in that area. Cell D is not ’fed’ with liquid from below. The

liquid in the centre is drawn away by the down falling sheets of the neighbouring cells that

’eat’ up the cell.

These two principal trends revealed from these observations can be summarized as:

❼ Cells sharing warmer cell boundaries are more likely to merge

❼ Small cells surrounded by larger cells are more likely to diminish.
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(a) time = 40s (b) time = 44s

(c) time = 48s (d) time = 52s

(e) time = 56s (f) time = 60s

Figure 5.15: velocity magnitude at interface in 4 second intervals in cm/s



(a) time = 40s (b) time = 44s

(c) time = 48s (d) time = 52s

(e) time = 56s (f) time = 60s

Figure 5.16: velocity vectors at interface in 4 second intervals
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5.2.9 Vorticity

The vorticity ω is a measurement of the tendency of the flow field to rotate about an axis.

It is a vector defined as,

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(5.9)

with the magnitude ‖ω‖,

‖ω‖ =
√

ω2
x + ω2

y + ω2
z . (5.10)

In this section the vorticity magnitude is analysed. Figure 5.18 shows a sequence of the

vorticity magnitude in the central vertical cross section as the flow develops between t = 40s

and t = 60s. It is evident that the vorticity magnitude increases in the overall domain ,

however, it remains very low near the interface. The flow near the interface is smooth and

mainly parallel to it with little intrusions from eddies below. This is even more evident

when looking at the sequence in figure 5.19. This sequence shows the vorticity magnitude

plotted on isosurfaces of 25% gas concentration. As the sheets of high concentration plunge

down and start penetrating deeper areas they are entering areas of higher vorticity. Near

the interface on the other hand the vorticity over large areas stays very low.
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(a) time = 40s (b) time = 44s

(c) time = 48s (d) time = 52s

(e) time = 56s (f) time = 60s

Figure 5.18: vorticity magnitude at y = 2.5cm in 4 second intervals



(a) time = 40s (b) time = 42s

(c) time = 44s (d) time = 46s

(e) time = 48s (f) time = 50s

Figure 5.19: vorticity magnitude on 25% isosurface in 4 second intervals
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Figure 5.20 shows the average vorticity magnitude over time for the total domain as well

as in various plane sections nearing the interface. Expectedly, the overall average vorticity

magnitude is increasing as the flow sets on and then settles after around 50 seconds at

a constant value of 0.7 1/s. The plot also shows the average vorticity magnitude in plane

sections near the interface and those reveal that the magnitude is way below the total average

closer to the interface. The closer to the interface the lower is the average vorticity. Another

observation that can be made is that the average vorticity in the plane sections near the

interface increases sharply when the flow sets in at around t = 35s but then decreases again

at t ≈ 42s and then stabilizes. It remains at low levels therefore quantitatively proving that

there is little intrusion from eddies into the concentration boundary layer. The turbulence

lower down from the interface does not impinge on the concentration boundary layer. The

confined sheets of high gas concentration are ripped apart and swirled around in eddies in

the lower parts of the domain but very near interface there is not much intrusion from eddies

into the concentration boundary layer.

Figure 5.20: average vorticity magnitude over time; total and in plane sections near the interface
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5.2.10 Mean and fluctuating concentration

The normalized concentration ϕ is spatially averaged in horizontal layers of cells. As the grid

is hexagonal and horizontally uniform there are individual layers of 399×399 cells (see figure

5.1) on the base grid on which the variables are output (see also figure 3.3). The spatially

horizontal mean concentration is calculated as,

ϕ =

n
∑

i=1
ϕ

n
(5.11)

where n is the number of cells per horizontal layer. The concentration fluctuation ϕ′ is the

standard deviation of the spatially horizontal mean concentration ϕ.

ϕ′ =

√

√

√

√

1

n

n
∑

i=1

(ϕ− ϕ)2 (5.12)

Figure 5.21 shows a sequence of the vertical mean and fluctuation concentration profiles

in intervals of δt = 2.5s in the proximity of the interface. In figure 5.21a in the sequence

the fluid can be considered motionless. The mean concentration profile has developed by

diffusion only and, in fact could be predicted analytically (see eq. (4.4)). The concentration

fluctuation in the horizontally averaged direction is zero as the diffusion process is technically

one dimensional when the fluid is stationary. In the subsequent time steps it can be observed

that the fluctuations rise as the convective flow develops. Whereas they are zero at the

interface by the boundary condition (the entire interface is saturated) they increase with

depth and in the bulk region decrease again. In hand with this comes a thinning of the mean

concentration profile. Please note that only data on the base grid is plotted whilst data in

the simulation was calculated on the R = 2 refined grid.
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5.2.11 Boundary Layer Thickness

The thickness of the concentration boundary layer at the interface for soluble gases is in

the order of hundreds of µm at maximum. This makes the experimental measurement

of the concentration boundary layer very difficult. Measurements with intrusive methods

(Chu and Jirka [19], Brumley and Jirka [12]) have the disadvantage that the thickness can

only be measured at one point at the time. The actual average thickness is not known as

instantaneous measurements of the entire boundary layer are not feasible. The combined

PIV-LIF method by Herlina [38] enabled instantaneous measurements of the boundary layer

thickness in planar sections. However the global average thickness of the boundary layer

across the entire interface remains unknown. All experimental efforts to determine the

boundary layer thickness hence rely on the analysis of the vertical mean concentration profile

as variations across the interface are not known. The consequence of this is that there are

different ways of interpreting the boundary layer thickness when analysing experimental

data. For instance, Chu and Jirka [19] proposed an exponential function for the normalized

mean concentration profile

ϕ∗ = e−z∗/δe , (5.13)

in their experiments in a grid stirred tank. ϕ∗ is the normalized gas concentration as

defined in (3.7). The value δe in (5.13) can be interpreted as the measured boundary layer

thickness, z∗ is the distance measured from the water surface downwards, but again this

would be based on the mean concentration profile measured from various point probes. The

actual mean value of the boundary layer remains unknown when using a bulk method.

A much more advanced method to determine the boundary layer thickness is to use the

vertical profile of the concentration fluctuation ϕ′. This is possible in numerical simulations

as these fluctuations are known. Numerical simulations enable the calculation of the entire

boundary layer thickness across the interface as the entire concentration field is known over

time. This is a great advantage over experiments and does not require the use of time

averaged single measurements and mean profiles. The boundary layer thickness can be

95





3D results Boundary Layer Thickness

Figure 5.23: boundary layer thickness over time

Figure 5.23 shows the evolution of the boundary layer thickness δ over time from the

R = 2 simulation for the four Schmidt numbers Sc = 20, 50, 200 and 500. The results

have been scaled by the Sc−0.5 power law which shows good agreement. The slightly higher

value for Sc = 500 might be caused by interpolation error. Figure 5.24 shows a snap shot of

the fluctuation profiles for the four Schmidt numbers at t = 37.5s. It can be seen that the

maximum for Sc = 500 occurs within the first 5 data points. Each maximum was calculated

with a first order gradient based linear interpolation. As the gradient change at the maximum

for Sc = 500 is higher relative to the others the first order interpolation might introduce a

slight inaccuracy that can be seen in the time evolution in figure 5.23.
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Figure 5.25: Definition of the isosurface thickness δiso

Figure 5.26 shows a sequence of plots where the depth is plotted on the 10% concentration

isosurfaces. Only the isosurfaces within 1mm of the interface are shown. From figure 5.26 it is

evident that for large proportions of the interface there is a relatively low and uniform depth

of the 10% saturation threshold. Initially the isosurface is wavy and some areas are above

the clipping range of δiso = 0.1cm (fig. 5.26a). As time progresses the typical convective cell

pattern forms and δiso reduces. This is supported by figure 5.27 which shows the minimum

and average depth of the isosurface δiso over time. The depth becomes smaller when the

convective flow sets in. Interestingly it then remains at a nearly constant value. It is also

interesting to note that the value of the boundary layer thickness δ as found in figure 5.23

lays between the minimum and average thickness δiso found in figure 5.26 Looking at the

sequence in figure 5.26 it is visible that even though the convective cells increase in size and

merge, the mean depth of the isosurface remains nearly constant over large proportions of

the area. Only at the edges of the downward plunging sheets there is an increase in depth

present.
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(a) time = 35s (b) time = 40s

(c) time = 45s (d) time = 50s

(e) time = 55s (f) time = 60s

Figure 5.26: depth δiso plotted on the isosurface
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Figure 5.27: Minimum and average δiso over time for Sc = 500

5.3 Comparison to Experiments

The gas transfer process across an air-water interface is characterised by three physical

quantities; namely the concentration, the temperature and the velocity. The temperature

differences are driving the flow field so the velocity field is a result of the temperature field and

subsequently the velocity field influences the convective proportion of the mass transfer. To

observe the mechanisms experimentally in detail it is necessary to resolve the concentration

field in time and space simultaneously with the velocity field. The concentration boundary

layer near the interface has a thickness of only a fraction of a millimeter, hence non-intrusive

measurement techniques are essential to not influence the flow field and thus the experimental

results.
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5.3.1 Concentration Field

The gas concentration field can be experimentally visualised with the Laser Induced Fluo-

rescence (LIF) technique, first developed by Vaughan and Weber [91]. The LIF technique

enables visualisation of planar oxygen concentration fields. The LIF technique uses so called

oxygen quenching, which takes advantage of the fact that the fluorescent intensity which is

proportional to the fluorescent lifetime of a dye is quenched or reduced by the presence of

oxygen molecules in a solution. Pyrene butyric acid (PBA) has been identified as the best

dye for this method [91]. Wolff and Hanratty [97] showed that the fluorescence lifetime of

PBA reduces from 160 ns in the absence of oxygen to 65 ns in air-saturated solution. This

changes the intensity of the fluorescence depending on the oxygen levels in the solution.

Higher oxygen levels lead to lower fluorescence, hence the oxygen concentration can be made

visible by the intensity of the emitted fluorescence.

In this section the numerical results are compared to the laboratory measurements con-

ducted by Jirka et al. [46] at KIT. In the experiments instantaneous 2D oxygen concentration

fields were visualized using the LIF technique in an area of approximately 60 × 80mm in

buoyant-convective flow. The experiments were performed in a 50 × 50 × 65 cm3 tank and

the water depth was about 42 cm. The surface temperature was 3 ❽ lower than the bulk

temperature of the water which is the equivalent temperature boundary condition that was

applied in the numerical simulations. Figure 5.28 shows a comparison of the concentration

field in a vertical planar section. Note that the DNS results show the top section of the

domain that has the same dimension as the LIF-maps. The actual experimental domain was

much larger so the sides and bottom in these plots can be considered as open boundaries.

For reasons of better comparison the timescale was set to t = 0 seconds from the moment

when the flow field started moving which was after a simulation time of 33 seconds. Both

the spatial distance between high concentration plumes and the size of the eddies were found

to be similar in the experiment and the simulation. Because of the low diffusivity of oxygen

in water and the rather low turbulence intensity the plumes of high oxygen concentration

retain their fine structures. This means that the steep concentration gradients do not smear

out because of turbulent diffusion. As a result a good qualitative agreement between the
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numerical simulations and the experimental data is obtained.

(a) Experimental Results

(b) Numerical Results

Figure 5.28: Comparison of flow structures. High oxygen concentration plumes of LIF measurements

conducted by Jirka et al. [46] (Fig. 5.28a) and DNS results (Fig. 5.28b). The dark and light colour

scaling indicate regions with high and low scalar concentration, respectively. In both cases the surface

temperature was 3❽ colder than the bulk temperature.

Figure 5.29 shows a comparison of the boundary layer thickness just at the moment

when a falling plume begins to develop. The normalized concentration levels obtained from
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of their experiments showed that the plunging regions appear sometimes straight, curved

or branched or terminated with no fixed patterns. They found that the patterns formed

do have the net like tessellation found by Thomson [89] particularly when the temperature

difference between the water and the ambient air was between one and three degrees.

In the experiments carried out by Spangenberg and Rowland [85] the tank was covered

and left undisturbed to eliminate all convection. The cover was removed and the water and

air temperatures recorded by thermopiles and schlieren images were monitroed for indications

of density gradients resulting from the surface cooling.

106







3D results Comparison to Experiments

water temperature in the experiments was 24.6 ❽ and the air temperature 20.9 ❽ so the

temperature difference was very similar to that used in the numerical simulation.

The numerical results show a translucent grey scale contour plot of the temperature

through the domain as seen from the side. Both images are scaled to the same size. The

observations made in the simulations are in very good agreement with the observations made

by Spangenberg and Rowland [85].
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The aim of this study is to simulate the low-diffusive gas transfer across the air-water interface

using Direct Numerical Simulation in order to gain a better understanding of the detailed

mechanisms that control that process. This study focuses in particular on the buoyant-

convective driven flow. When considering the diffusion of soluble gases such as O2 or CO2

into water the Schmidt number for the mass transfer of such gases is ≈ 500 which will result

in a very low diffusivity. It is known that the concentration boundary layer which forms near

the interface is only of the order of ten to hundreds µm thick. The low diffusivity and the

very thin boundary layer mean that there are steep concentration gradients present. Near

the interface the fluid is almost fully saturated whereas only less than 1 mm below in the

bulk region the gas concentration levels are nearly zero. As the fluid is subsequently set

in motion by natural convection mixing will take place. Saturated fluid from the interface

is transported away to deeper regions but because of the low diffusivity high concentration

fluid can still be in very close proximity to fluid of low concentration with a steep gradient

between them over a short distance. The main challenge is to apply a numerical method that

can reliably resolve the diffusion-convection equation when a very low diffusivity is present.

It is therefore important to resolve the convective and diffusive transport of the gas

concentration field with a suitable numerical method. To achieve this a modified version
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of the WENO5 scheme of Shu and Jiang [81] is deployed to discretize the scalar convection

(the scalar being the gas concentration). The use of the WENO scheme to solve a low-

diffusive scalar transport problem has the advantage of being able to capture steep gradients

within only a few gridpoints without losing accuracy because of numerical errors such as

oscillations or smearing. WENO schemes are in fact capable to even resolve the convection

of discontinuities without exhibiting oscillations.

To evaluate the accuracy of the numerical method a series of tests have been performed.

Scalar transport by convection was tested in 1D experiments on uniform and non-uniform

grids. In those test the diffusive terms were not included in the transport equation in order

to predict the accuracy of the WENO scheme. A full period of a sine wave was convected

through the one-dimensional domain with periodic boundary conditions on uniform and non-

uniform grids with the number of gridpoints ranging from 10 to 640 points. The WENO5

implementation of Liu et al. [61] was compared to the alternative WENO5 scheme developed

by Shu and Jiang [81]. The tests showed that the implementation of Shu and Jiang [81]

show a smaller error on coarse meshes. Tests were also performed with a 2D sheared scalar

distribution which showed that the order of accuracy increased from 2 to 4 when using finer

grids. Numerical tests were also performed to determine the order of accuracy for the discrete

solution of pure scalar diffusion in one dimension. These test revealed that the fourth-order

central scheme indeed achieved a fourth-order accuracy even on stretched meshes.

The two WENO5 schemes and the fifth-order upstream central method were also tested

for their performance when solving scalar convection with steep gradients in and unstable

flow. 2D simulations of a buoyant-convective flow with low diffusive scalar at the top bound-

ary were performed. It could be clearly demonstrated that the WENO5 schemes do not

exhibit any oscillations near strong gradient changes as they appear in the physical case of

low diffusive gas transfer in a liquid. The WENO5 scheme of Liu et al. [61] was therefore

chosen as the numerical method deployed to carry out the investigation in buoyancy driven

gas transfer at a realistic Schmidt number.

Further 2D tests focused on the mesh sensitivity. It could be demonstrated that the

velocity field is fully resolved when using a 400 × 256 grid. A dual mesh method has been
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introduced where the velocity field is solved on the base grid of 400×256 grid points, whereas

the transported scalars have been resolved on a variety of finer meshes. The grid for the

scalars was refined by factor R = 2, R = 3 and R = 5, respectively, and the velocities

were interpolated from the base grid to the refined mesh. It could be shown that there is a

significant gain to resolve the scalar on the finer dual grid. There was a big gain in resolution

of resolving the scalars on a grid with R = 2. There was only a small gain in resolution for

R > 3 and the scalar field could be considered as fully resolved for a dual grid with R = 3.

The findings from the test in 1D and 2D enabled a proper setup of the 3D simulations

aimed to resolve the ’real’ physical process. The domain was extended to three dimensions

but the same mesh was used in the vertical direction as in the previous 2D simulations with a

400×400×256 points base grid. A qualitative comparison of the gas concentration field over

time using several scalar grid refinements was carried out. The 2D results were confirmed:

there was no improvement of resolution observed for refinements above R = 2. The results

using the refined scalar grid with R = 3 can therefore be regarded as a fully resolved where

numerical errors are negligible.

This enabled detailed observations of the gas concentration field in full transient 3D sim-

ulations. All field variables were exported every second and the entire process was simulated

for 93 seconds of physical time. It was observed that the plunging of cold saturated fluid

begins after around 35 seconds. Isosurfaces of the gas concentration showed that cold satu-

rated water is collected along lines and plunges down in sheets and columns. The thin sheets

of high gas concentration and the columnar mushroom structure was also observed by Jirka

et al. [46] in experiments. The observed net like pattern of cold sheets as seen from above

was also in good agreement with schlieren photography experiments by Spangenberg and

Rowland [85]. A direct comparison of the vertical gas flux and the temperature field showed

that near the interface the low temperature areas in form of the net like lines are congruent

with areas of high vertical flux. Further away from the interface this relationship weakens

and the temperature field does not necessarily indicate where areas of high gas concentration

are.

A detailed study of the transfer velocity KL was carried out for four Schmidt numbers
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ranging from Sc = 20 to Sc = 500. It could be shown that the process exhibits a very

good Schmidt number scalability with the Sc0.5 power law. From the transfer velocity KL

the renewal rates r for Dankwerts conceptual Surface Renewal Model could be calculated.

The renewal rates were found to be in a similar range to the ones found by experiments in

a gird stirred tank by Herlina [38]. This suggests that the gas transfer process in buoyant

convection is an effective method as even though the flow is less turbulent there is a similar

surface renewal rate as when generating mixing by grid stirring. The horizontally averaged

vertical convective and diffusive fluxes were determined. It could be clearly shown that a

transition takes place from diffusion only mass flux at the interface to a system dominated

by convection further away from the interface (convection means advective mass transport

in this context).

A statistical analysis was carried out so that the horizontally averaged mean and fluc-

tuating concentration was determined. This enabled a detailed observation of the average

boundary layer thickness, which can be defined as the depth where the concentration fluctu-

ation has a maximum. Similar to the observations made by Jirka et al. [46] it was found that

with the onset of the convection the boundary layer thickness reduces. As the convective

flow developed, however, and the convective cells merged and changed in size and structure

the average boundary layer thickness stayed almost constant.

Qualitative observations were made of the convective cell pattern merging. It was ob-

served that the initial honeycomb-like convective cell structure changes over time and cells

change in size and merge. Cells that are separated by warmer fluid seem to have a higher

tendency to merge. The cell size near the interface and the plunging sheet like structures

are in good agreement with experimental results [46, 85].

From the temperature gradient at the interface the heat flux was also monitored. A

strong correlation between transfer velocity KL and heat flux could be observed and the

results found in this study are a good reference for experimental field measurements [78].

The technique provided in this work makes it possible for the first time to determine the

major quantity of interest, the transfer velocity KL, in a buoyant convectively driven flow

reliably and directly without using empirical models for such high Schmidt numbers. This is
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owed to resolving the gas convection-diffusion in the entire domain, which the technique of

employing a WENO5 scheme combined with the dual meshing approach made possible.

6.2 Recommendations for further studies

In this study it has been shown that the gas flux near the interface is dominated by diffusion.

The concentration boundary layer near the interface remains largely free from intrusion from

turbulence in the bulk region for the convectively driven flow considered here. In natural

water bodies also a combination of wind-shear and bottom-shear might occur simultaneously.

Therefore, future studies could aim to exploit the effects of an introduction of wind-shear or

bottom-shear (stirring) in addition to the buoyant convection. The results obtained in this

work can provide an excellent reference and so the impact of the bottom or wind-shear on the

transfer velocity KL could be obtained. The WENO scheme method used in this study could

be adopted for solving the gas transport in a fluid where the flow is driven by a combination

of convection and some external force such as turbulence generated at the bottom. A greater

understanding of which mixing mechanism (natural convection, bottom-shear or wind-shear)

influences the gas transfer in a certain way could be gained from such further studies.
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