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a b s t r a c t

Multimodulus algorithms (MMA) based adaptive blind equalizers mitigate inter-symbol
interference in a digital communication system by minimizing dispersion in the quad-
rature components of the equalized sequence in a decoupled manner, i.e., the in-phase
and quadrature components of the equalized sequence are used to minimize dispersion in
the respective components of the received signal. These unsupervised equalizers are
mostly incorporated in bandwidth-efficient digital receivers (wired, wireless or optical)
which rely on quadrature amplitude modulation based signaling. These equalizers are
equipped with nonlinear error-functions in their update expressions which makes it a
challenging task to evaluate analytically their steady-state performance. However,
exploiting variance relation theorem, researchers have recently been able to report
approximate expressions for steady-state excess mean square error (EMSE) of such
equalizers for noiseless but interfering environment.

In this work, in contrast to existing results, we present exact steady-state tracking
analysis of two multimodulus equalizers in a non-stationary environment. Specifically, we
evaluate expressions for steady-state EMSE of two equalizers, namely the MMA2-2 and
the βMMA. The accuracy of the derived analytical results is validated using different set
experiments and found in close agreement.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Transmission of signals between a transmitter and a
receiver in a communication system encounters different
types of dispersive channels. Such channels perform cer-
tain non-ideal transformations resulting in different types
of interferences like inter-symbol interference (ISI) and
frequency selective fading, which are considered to be the
biggest limiting factors in a communication system. One of
the approaches to combat ISI is to use blind equalizer. An
45.
-inp.fr (A.W. Azim),
.sa (A. Zerguine),
adaptive blind equalizer attempts to compensate for the
distortions of the channel by processing the received
signals and reconstructing the transmitted signal up to
some indeterminacies by the use of linear or nonlinear
filters. Specifically, a blind equalizer does not require any
training mode and tries to mitigate the effects of the
channel solely on the basis of probabilistic and statistical
properties of the transmitted data sequence. The basic idea
behind an adaptive blind equalizer is to minimize or
maximize some admissible blind objective or cost function
through the choice of filter coefficients based on the
equalizer output [1–3].

When an adaptive equalizer is used to combat a time-
varying channel, the optimum Wiener solution takes
time-varying form which results in variation of saddle
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Fig. 1. A typical baseband communication system.

A.W. Azim et al. / Signal Processing 108 (2015) 509–520510
point in error performance surface. If the underlying signal
statistics happen to change with time, then these statis-
tical variations will be reflected in the data, the filter has
access to, which in turn will be reflected in the perfor-
mance of filters. So, tracking variations in signal statistics
or signal moments is considered to be a useful property for
adaptive filters. For adaptive filters, the variation in under-
lying signal statistics and the saddle point can be tracked
by using tracking performance analysis; and consequently,
the filter parameters can be adjusted accordingly to
maintain the saddle points of error performance surface
and to calculate the variations in underlying signal statis-
tics in time-varying systems. One metric to evaluate
tracking performance of an adaptive filter is to measure
the steady-state excess mean square error (EMSE). EMSE
can be defined as the difference between the mean square
error (MSE) of the filter in steady-state and the minimum
cost. The smaller the EMSE of an adaptive filter, the better
it is [4]. If filter parameters (like step-size) are chosen
correctly, the filter can track variations in signal statistics
provided variations are not fast. However, tracking fast
variations in signal statistics might be a challenging task or
at times impossible to perform [4].

In the context of adaptive blind equalization, the widely
adopted algorithm is Constant Modulus Algorithm (CMA2-2)
[2,5–7]. For quadrature amplitude modulation (QAM)
signaling, however, a tailored version of CMA2-2, com-
monly known as Multimodulus Algorithm (MMA2-2), is
considered to be more suitable. The MMA2-2 is capable of
jointly achieving blind equalization and carrier phase
recovery [8–13], whereas the CMA2-2 requires a separate
phase-lock loop for carrier phase recovery.

The nonlinearity of most of the adaptive equalizers,
including both CMA2-2 and MMA2-2, makes the steady-
state analysis and tracking performance a difficult task to
perform. As a result, only a small number of analyses are
available in the literature concerning the steady-state
analysis performance of adaptive equalizers. However, a
few results are available on EMSE analysis of CMA2-2,
where some researchers employed Lyapunov stability and
averaging analysis [14], and some exploited the variance
relation theorem [15,16] to evaluate the same. The steady-
state analysis of adaptive filters has gained interest due to
ease in analysis owing to variance relation theorem. Abrar
et al. [17] performed the EMSE analysis of CMA2-2 and
βCMA [18] by assuming that the modulus of equalized
signals is Rician distributed in the steady-state. Moreover,
this theorem has been employed to study the steady-state
analysis of a number of adaptive blind equalization algo-
rithms like in the analyses of the so-called hybrid algo-
rithm [19], the square contour algorithm [20], the
improved square contour algorithm [21] and the varying-
modulus algorithms [22].

In this paper, we perform tracking performance analy-
sis of two well-known multimodulus equalizers. In parti-
cular, using the variance relation arguments, we derive
expressions for steady-state EMSE of MMA2-2 and
recently proposed βMMA [23] under the assumption that
the quadrature components of the successfully equalized
signal are Gaussian distributed when conditioned on true
signal alphabets. The paper is organized as follows: Section 2
introduces the mathematical model for the system. Section 3
introduces the non-stationary environment and the frame-
work for EMSE analyses. Section 3.1 provides the steady-
state tracking performance analysis for MMA2-2 equalizer.
Section 3.2 presents the analytical expression evaluated for
steady-state tracking performance analysis for βMMA equal-
izer. Section 4 provides simulation results for steady-state
performances of MMA2-2 and βMMA for equalized zero-
forcing scenario, equalization of fixed and time-varying
channels, and equalization under different values of filter-
length. Finally, Section 5 draws conclusions.
2. System model and multimodulus equalizers

A typical baseband communication system is given in
Fig. 1. Consider the transmission of discrete valued com-
plex sequence fang over an unknown communication
channel characterized by finite impulse response filter
with impulse response hn; the sequence fang is indepen-
dent and identically distributed (i.i.d.), and takes value of
square-QAM symbols with equal probability. The consid-
ered channel hn is a fading, dispersive, time-varying in
nature, where the channel at index n is given as
hn ¼ hconstþcn. The channel is a complex Gaussian random
process with a constant mean hconst (because of shadow-
ing, reflections and large scale path loss) and a time-
variant part cn, the channel taps vary from symbol to
symbol and are modeled as mutually uncorrelated circular
complex Gaussian random processes. The time-varying
part of the channel can be modeled by a pth-order
autoregressive process AR(p).

The received signal xn is the convolution of transmitted
sequence fang and filter impulse response hn represented
as xn ¼ hT

nan, where superscript T denotes the transpose
operator. The vector xn is fed to the equalizer to combat
the interference introduced by the physical channel and
estimate delayed version of the transmitted sequence
fan� δg, where δ denotes delay.

Let wn ¼ wn;0;wn;1;…;wn;N�1
� �T be the impulse

response of equalizer and xn ¼ xn; xn�1;…; xn�Nþ1
� �T be

the regression vector (vector of channel observations), N is
the number of equalizer taps. The output of equalizer is
convolution of regression vector and equalizer impulse
response given as yn ¼wH

n�1xn where superscript H
denotes the Hermitian conjugate operator. Let tn ¼ hn �
wn

n�1 be the overall channel-equalizer impulse response
(� denotes convolution operation and the superscript n

denotes complex conjugate operator). If the channel
response is given by a K-tap vector hn ¼ ½hn;0;hn;1;…;
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hn;K�1�, then the channel convolution matrix H is given by

H¼

hn;0 0 ⋯ 0 ⋯
hn;1 hn;0 ⋱ 0 ⋱
⋮ hn;1 ⋱ ⋮ ⋱

hn;K�1 ⋮ ⋱ hn;0 ⋱
0 hn;K�1 ⋱ hn;1 ⋱
⋮ ⋮ ⋯ ⋱ ⋱

2
6666666664

3
7777777775

ð1Þ

Using (1), we obtain tn ¼ hn � wn

n�1 ¼Hwn

n�1. Under
successful convergence, we have tn ¼ e where e¼ ½0;…;0;
1;0;…;0�T .

Consider a generic stochastic gradient-based adaptive
equalizer [4] for which the updating algorithm is given as

wn ¼wn�1þμΦðynÞnxn ð2Þ

where μ is a small positive step size, governing the speed
of convergence and the level of steady-state equalizer
performance, and ΦðynÞ is complex valued error-function.
In principle, ΦðynÞ satisfies the Bussgang condition on
successful convergence [24], i.e., E½ynΦðyn� iÞn� ¼ 0; 8 i;n.
The error-function of a multimodulus equalizer is non-
analytic in nature, i.e., it is a decoupled function of the
quadrature components of deconvolved sequence yn,
which is expressed as

ΦðynÞ ¼ ϕðyR;nÞþ jϕðyI;nÞ; ð3Þ

so that the real and imaginary parts of ΦðynÞ are obtained
from the real and imaginary parts of yn, yR;n and yI;n,
respectively.
1 The cost (6) first appeared in [28] and was solved by quadratic
programming.
2.1. The MMA2-2 equalizer

The MMA2-2 equalization algorithm was proposed
independently in [9,10,25], which employs a split cost
function

JMMA2�2 ¼min
w

E y2R;n�R2
R

� �2
þE y2I;n�R2

I

� �2� �
ð4Þ

where RR and RI are defined as R2
R≔Ea4R=Ea

2
R and R2

I ≔Ea4I =
Ea2I , in which aR and aI denote the real and imaginary parts
of transmitted sequence fang, respectively. The MMA2-2
cost function can be considered as the sum of two one-
dimensional cost functions, expressing the dispersion of
the equalizer in the complex constellation plane. The tap
weight vector of MMA2-2 is updated according to

wn ¼wn�1þμ ðR2
R�y2R;nÞyR;nþ jðR2

I �y2I;nÞyI;n
h in

xn ð5Þ

Notably, due to its decoupled error-function, MMA2-2 is
capable of compensating residual phase-offset and mod-
erate frequency-offset mismatches without requiring addi-
tional hardware. Interested readers may refer to [26,27] for
discussions on phase recovery capability of MMA2-2. As
far as ISI cancellation capability is concerned, the station-
ary points of MMA2-2 are closely related to those of
CMA2-2 [8,11]. For the sake of comparison, the CMA2-2

update is wn ¼wn�1þμðR2�jynj2Þyn
nxn.
2.2. The βMMA equalizer

Recently, Abrar and Nandi [23] have proposed a new
multimodulus algorithm, the βMMA, for joint blind equal-
ization and carrier phase recovery in square-QAM signal-
ing. The algorithm is derived by solving a constrained
maximization problem. Results have indicated a superior
performance to be exhibited by βMMA, for higher-order
QAM signaling on both symbol and fractionally spaced
channels, as compared to established methods including
MMA2-2 and CMA2-2. The cost function of βMMA is given
as [23],1

JβMMA ¼max
w

Ey2R;nþEy2I;n
n o

subject to maxfjyR;njg ¼maxfjyI;njgrγ

ð6Þ
where γ is the largest amplitude of quadrature component;
for M-ary square-QAM with signal levels f71; 73;…;

7γg, we have γ ¼
ffiffiffiffiffi
M

p
�1. The tap weight vector of βMMA

is updated according to

wn ¼wn�1þμ f RyR;nþ jf IyI;n
	 
nxn ð7Þ

where fL is equal to unity if jyL;njrγ, and it is equal to �β,
otherwise (where L denotes either R or I). The parameter β
is a statistical constant whose value is evaluated to be
equal to ðγ2þ2Þ=ð3γÞ.

3. Non-stationary environment and EMSE analysis

In order to perform tracking analysis, we consider a
non-stationary system model. In such environment, the
variations in the Wiener solution (zero-forcing solution or
optimal equalizer), wo, follow (usually) first-order random
walk model [4]. The optimal weights from one iteration to
another are described by

wo
n ¼wo

n�1þqn ð8Þ

where the new weight is the previous weight plus a
random fluctuation denoted by qn. The random vector qn

is independent and identically distributed (i.i.d.) zero-
mean random vector whose positive definite covariance
matrix is given as Q ¼ EqnqH

n ¼ σ2qI, where σq is the stan-
dard deviation of qn (E denotes expected value). We are
going to assume that qn is independent of both famg and
fxm;wo

�1g for all mon [4]. Using the Wiener solution, the
desired data an can be expressed as

an ¼ ðwo
n�1ÞHxnþvn; ð9Þ

where vn is the measurement noise and is uncorrelated
with xn, EðvnnxnÞ ¼ 0 [29]. Defining weight error vector ~wn

as ~wn≔wo
n�wn, (2) for non-stationary case can be rewrit-

ten as

~wn ¼ ~wn�1�μΦðynÞnxnþqn ð10Þ

The so-called a priori and a posteriori estimation errors are
defined as ea;n≔ ~wH

n�1xn and ep;n≔ð ~wn�qnÞHxn,



Fig. 2. Lossless mapping and feedback loop.
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respectively. After some mathematical manipulations, one
gets [4]

ea;n ¼ ep;nþμ‖xn‖2ΦðynÞ ð11Þ

where J � J represents the Euclidean norm. It is important
to note that ea;n depends on channel variation, adaption,
and gradient noise. The steady-state EMSE and tracking
performance of an adaptive equalizer can be quantified by
the energy of ea;n. From (11), we can associate the error-
function of an equalizer with the a priori and the a
posteriori estimation errors as follows:

Φ yn
	 
¼ ea;n�ep;n

μ‖xn‖2
ð12Þ

Substituting (12) in (10), and after some mathematical
manipulation we obtain the energy conservation relation
as follows:

‖ ~wn‖2þ
jea;nj2
‖xn‖2

¼ ‖ ~wn�1‖2þ
jep;nj2
‖xn‖2

ð13Þ

It is important to note that (13) holds for any adaptive
algorithm. Fig. 2 represents the physical interpretation of
(13), which links the energies of the weight error vector,
the a priori and the a posteriori estimation errors by stating
that mapping from the variables ~wn�1; ep;n=Jxn J

� �
to the

variables ~wn; ea;n=Jxn J
� �

is energy preserving. The func-
tion M denotes the mapping between the two variables
and z�1 denotes the unit delay operator.

Substituting the value of ep;n from (11) into (13), we get
the following (variance relation) theorem:

Theorem 1 (Variance Relation, Sayed [4]). Consider any
adaptive filter of the form (2), and assume filter operation
in steady-state. Assume further that an ¼ ðwo

n�1ÞHxnþvn,
where wo

n�1 varies according to the random-walk model
(8), where qn is a zero-mean i.i.d. sequence with covariance
matrix Q . Moreover, qn is independent of famg and fxm;wo

�1g
for all mon. Having yn ¼ an�ea;n, it holds that

2ER ena;nΦðynÞ
h i

¼ μE‖xn‖2EjΦðynÞj2þμ�1E‖qn‖2 ðT1:1Þ

where R½�� denotes the real part of complex entity.

Expression (T1.1) can be solved for steady-state EMSE,
which is defined as

EMSE9 lim
n-1

Ejea;nj2 ð14Þ

The procedure of evaluating EMSE using (T1.1) avoids
the need of explicit evaluation of E‖ ~wn‖2 or its steady-
state value E‖ ~w1‖2. In the sequel, in addition to variance
relation, we aim to make use of the following
assumptions:
(A1)
 In steady-state the a priori error ea;n is independent of
both the transmitted sequence fang and the regressor
vector xn [4].
(A2)
 The filter taps are large enough so that by virtue of
central limit theorem, ea;n is the zero-mean complex
valued Gaussian [29,30].
(A3)
 The optimum filter achieves perfect equalization
(zero-forcing solution) an � ðwo

n�1ÞHxn, however due
to channel variation and gradient noise, the equalizer
weight vector is not equal to wo

n even in steady-state
[31]. Additionally, no additive noise is assumed in the
system.
Assumption (A1) is the orthogonality condition required
for a successful convergence. The assumption (A2) about
the Gaussianity of a priori estimation error has appeared in
a number of recent researches. For example, Bellini [24]
discussed that the convolutional noise (which bears simi-
lar mathematical definition as that of a priori estimation
error) may be considered as zero-mean Gaussian, and
same is the opinion of Vaseghi [32]. Moreover, Ref. [33]
discussed that the a priori estimation error (for a long
equalizer) may be modeled as zero-mean Gaussian ran-
dom variable. It has been shown that the steady-state a
priori estimation error is zero-mean Gaussian even for the
case where the measurement noise is taken to be uni-
formly distributed. The assumption (A3) is based on the
understanding that CMA2-2 and similarly its multimodu-
lus variants diverge on infinite time horizon when noise is
unbounded. Interested readers may refer to [34] for a
detailed discussion on this issue. Note that the (total)
mean square error, MSE of a non-diverging equalizer in
the presence of additive noise, however, can always be
given as MSE¼ σ2vþEMSE, where σv

2
is the variance of

modeling error/measurement noise.
Here onwards, for the sake of notational simplicity, we

employ ζ≔EMSE, ea≔ea;n, y≔yn, a≔an, Φ≔ΦðynÞ,
Px ¼ E‖xn‖2; Pq ¼ E‖qn‖2 and Pa ¼ Ejaj2 ¼ Eða2Rþa2I Þ.
3.1. The EMSE of MMA2-2 equalizer

In order to evaluate the analytical expression for the
steady-state EMSE of MMA2-2, we need to evaluate the
energy of error-function as well as its correlation with a
priori estimation error. Implementing these steps, we have
the following theorem for the tracking performance of
MMA2-2 equalizer:

Theorem 2 (Tracking EMSE of MMA2-2). Consider the
MMA2-2 recursion (5) with complex-valued data. Consider-
ing non-stationary model (8) with a sufficiently small degree
of non-stationarity. Then its EMSE can be approximated by
the following expression for a sufficiently small step-size μ:

ζMMA2�2 μð Þ ¼
μc1þ

1
μ
Pq

c2�μc3
; ðT2:1Þ



2 Here, we emphasize that no approximations were involved in the
derivation of (21). Also, it is experimentally observed that EMSE is the
smallest positive root of (21).
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μMMA2�2
opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pqc1c22þP2

qc
2
3

q
�Pqc3

c1c2
with ζMMA2�2

min ¼ 2Pq

μoptc2
ðT2:2Þ

where c1≔2PxðEa6R�2R2
REa

4
RþR4

REa
2
RÞ, c2≔2ð3Ea2R�R2

RÞ, and
c3≔Pxð3Ea4RþR4

RÞ. Substituting the expression for μopt into the
expression of EMSE we find the corresponding optimal EMSE.

Proof. The error-function of MMA2-2 equalizer is given by
Φ¼ ðR2

R�y2RÞyRþ jðR2
I �y2I ÞyI . Towards evaluating the RHS of

(T1.1), we compute EjΦj2 as follows:

EjΦj2 ¼ R4
REy

2
R�2R2

REy
4
RþEy6RþR4

I Ey
2
I �2R2

I Ey
4
I þEy6I ð15Þ

For the given value of a, owing to (A2), the quadrature
components of the equalizer output y may be modeled as
Gaussian distributed so that its density is given by

p yLjaL
	 
¼ 1ffiffiffiffiffiffi

2π
p

σ
exp �ðyL�aLÞ2

2σ2

 !
ð16Þ

where σ2≔ER ea½ �2 ¼ EI ea½ �2, i.e., ζ ¼ 2σ2. Using (16), the
required moments in (15) may be computed as EypL ¼R1
�1 ypLpðyLjaLÞ dyL; which gives Ey2L ¼ Ea2L þ ζ

2, Ey
4
L ¼ Ea4L þ

3ζEa2L þ3
4ζ

2, and Ey6L ¼ Ea6L þ15
2 ζEa

4
L þ45

4 ζ
2Ea2L þ15

8 ζ
3. Substi-

tuting the computed moments in (15), we obtain

EjΦj2 ¼ 30
8 ζ3þζ2 45

4 Ea2R�3
2 R

2
Rþ45

4 Ea2I �3
2 R

2
I

� �
þζ 3

2 Ea
4
Rþ1

2 R
4
Rþ3

2 Ea
4
I þ1

2 R
4
I

� �
þEa6R

þR4
REa

2
R�2R2

REa
4
RþEa6I þR4

I Ea
2
I �2R2

I Ea
4
I ð17Þ

Thus, the RHS of (T1.1) is computed as

RHS¼ μPx
30
8 ζ3þζ2 45

4 Ea2R�3
2 R

2
Rþ45

4 Ea2I �3
2 R

2
I

� ��
þζ 3

2 Ea
4
Rþ1

2 R
4
Rþ3

2 Ea
4
I þ1

2 R
4
I

� �
þEa6RþR4

REa
2
R

�2R2
REa

4
RþEa6I þR4

I Ea
2
I �2R2

I Ea
4
I

�
þμ�1Pq ð18Þ

Since ena ¼ ðaR�yRÞ� jðaI�yIÞ. Substituting ena in (T1.1), the

LHS is evaluated as LHS¼ 2ER enaΦ
� � ¼ 2R2

REaRyR� 2EaRy3R
�2R2

REy
2
Rþ2Ey4Rþ2R2

I EaIyI�2EaIy3I �2R2
I Ey

2
I þ2Ey4I . Sub-

stituting yL ¼ ðaL�eaLÞ and evaluating the expectation, we
get EaLyL ¼ Ea2L and EaLy3L ¼ Ea4L þ3

2ζEa
2
L

	 

. Finally, we get

LHS¼ 3ζ2þζð3Ea2R�R2
Rþ3Ea2I �R2

I Þ ð19Þ
Combining (18) and (19), we obtain

30
8 ζ3μPxþζ2 μPx

45
4 Ea2R�3

2 R
2
Rþ45

4 Ea2I �3
2 R

2
I

� �
�3

� �
þζ μPx

3
2 Ea

4
Rþ1

2 R
4
Rþ3

2 Ea
4
I þ1

2 R
4
I

� ��
�3Ea2RþR2

R�3Ea2I þR2
I

�
þμPx Ea6RþR4

REa
2
R�2R2

REa
4
RþEa6I þR4

I Ea
2
I �2R2

I Ea
4
I

� �
þμ�1Pq ¼ 0 ð20Þ

The QAM constellation exhibits four-quadrant symmetry
which implies EapR ¼ EapI and RR¼RI. So, Eq. (20) can be
rewritten just in terms of real components and this yields
a cubic expression to solve for EMSE of MMA2-2 equalizer
as given by

30
8 ζ3μPxþζ2 μPx

90
4 Ea2R�3R2

R

� �
�3

� �
�ζ 6Ea2R�2R2

R�μPx 3Ea4RþR4
R

� �� �
þμPx 2Ea6Rþ2R4

REa
2
R�4R2

REa
4
R

� �
þμ�1Pq ¼ 0 ð21Þ

2In order to evaluate some closed-form expressions of
ζMMA2�2, certain approximations have to be made, e.g., by
neglecting the cubic and quadratic terms in (21), we obtain

ζðμPxð3Ea4RþR4
RÞ�6Ea2Rþ2R2

RÞþμPxð2Ea6Rþ2R4
REa

2
R

�4R2
REa

4
RÞþμ�1Pq ¼ 0 ð22Þ

which yields the following closed-form solution:

ζMMA2�2 ¼
μ2Px 2Ea6Rþ2R4

REa
2
R�4R2

REa
4
R

� �
þPq

μð6Ea2R�2R2
RÞ�μ2Pxð3Ea4RþR4

RÞ
ð23Þ

Using (23) and solving ∇μζ
MMA2�2 ¼ 0, the optimum μ is

obtained as

μMMA2�2
opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pqc1c22þP2

qc
2
3

q
�Pqc3

c1c2
ð24Þ

where c1≔Pxð2Ea6Rþ2R4
REa

2
R�4R2

REa
4
RÞ, c2≔6Ea2R�2R2

R, and

c3≔Pxð3Ea4RþR4
RÞ. Expression (24) leads to the minimum

EMSE, ζMMA2�2
min , as follows:

ζMMA2�2
min ¼ Pq

μoptð3Ea2R�R2
RÞ

ð25Þ

which completes the proof. □

Since R2
R ¼ Ea4R=Ea

2
R, we express ζMMA2�2

min ¼ PqEa2R=

μoptð3ðEa2RÞ2�Ea4RÞ
� �

. Note that the quantity, κaR≔Ea4R

�3ðEa2RÞ2, is the kurtosis of the quadrature component of
transmitted signal an and it is a negative quantity due to
the sub-Gaussian nature of an. Denoting σ2aR≔Ea2R, we
obtain

ζMMA2�2
min ¼ Pqσ2aR

μoptjκaR j
ð26Þ

Expression (26) implies that if the transmitted signal tends
to be Gaussian (i.e., κaR-0), then the equalizer implement-
ing MMA2-2 will diverge without bound. This behavior is
in accordance with the Benveniste–Goursat–Ruget theo-
rem [35], which states that the transmitted signal is
required necessarily to be non-Gaussian in order to get
equalized.
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3.2. The EMSE of βMMA equalizer

Under similar conditions and assumptions, as men-
tioned in Section 3.1, we have the following theorem for
tracking performance of βMMA:

Theorem 3 (Tracking EMSE of βMMA). Consider the βMMA
recursion (7) with complex-valued data. Considering the
non-stationary model (8) with a sufficiently small degree of
non-stationarity, its EMSE can be approximated by the
following expression for a sufficiently small step-size μ:

ζβMMA μð Þ ¼
c4þc3μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc4þc3μÞ2�4 c2þc1μð Þ c5μþ

1
μ
Pq


 �s
2ðc2þc1μÞ

0
BBBB@

1
CCCCA

2

;

ðT3:1Þ

μβMMA
opt ¼

ffiffiffiffiffi
Pq

c5

s
with ζβMMA

min ¼ ζβMMA μβMMA
opt

� �
; ðT3:2Þ

where c1≔Pxð1þð1=
ffiffiffiffiffi
M

p
Þðβ2�1ÞÞ, c2≔2ð1�ð1=

ffiffiffiffiffi
M

p
Þðβþ1ÞÞ,

c3≔ð2=
ffiffiffiffiffiffiffi
πM

p
ÞγPxðβ2�1Þ, c4≔�ð4=

ffiffiffiffiffiffiffi
πM

p
Þγðβþ1Þ, and

c5≔ðPaþð2=
ffiffiffiffiffi
M

p
Þγ2ðβ2�1ÞÞPx. Substituting the expression

for μopt into the expression of EMSE we find the correspond-
ing optimal EMSE.

Proof. The error-function of βMMA equalizer is given as
Φ¼ f RyRþ jf IyI . The RHS of (T1.1) for βMMA is thus
evaluated as follows:

EjΦj2 ¼ E yR2fjyRjo γg þβ2yR2fjyR j4 γgþyI2fjyI jo γg þβ2yI2fjyI j4 γg
h i

¼ Ey2Rþ2 β2�1
	 


EyR2fyR 4 γg þEy2I þ2 β2�1
	 


EyI2fyI 4 γg

¼ Ea2Rþζþ2 β2�1
	 


�E
1ffiffiffiffiffiffi
2π

p exp �ðaR�γÞ2
ζ

 !
aRþγð Þ

ffiffiffi
ζ

2

r"

þ1
2

a2Rþ
ζ

2


 �
1þerf

aR�γffiffiffi
ζ

p

 �
 ��

þEa2I þ2 β2�1
	 


E
1ffiffiffiffiffiffi
2π

p exp �ðaI�γÞ2
ζ

 !
aIþγð Þ

ffiffiffi
ζ

2

r"

þ1
2

a2I þ
ζ

2


 �
1þerf

aI�γffiffiffi
ζ

p

 �
 ��

ð27Þ

where erfð�Þ, the Gauss error function, is defined as
erfðxÞ ¼ ð2= ffiffiffi

π
p Þ R x0 expð�t2Þ dt. Using (27), the RHS of

(T1.1) for βMMA equalizer becomes

RHS¼ μPx Ea2Rþζþ2 β2�1
	 
�

�E
1ffiffiffiffiffiffi
2π

p exp �ðaR�γÞ2
ζ

 !
aRþγð Þ

ffiffiffi
ζ

2

r"

þ1
2

a2Rþ
ζ

2


 �
1þerf

aR�γffiffiffi
ζ

p

 �
 ��

þEa2I

þ2 β2�1
	 


E
1ffiffiffiffiffiffi
2π

p exp �ðaI�γÞ2
ζ

 !
aIþγð Þ

ffiffiffi
ζ

2

r"

þ1
2

a2I þ
ζ

2


 �
1þerf

aI�γffiffiffi
ζ

p

 �
 ��

�þμ�1Pq ð28Þ
Next substituting the a priori error in (T1.1), the LHS for
βMMA is evaluated as

LHS¼ 2ER enaΦ
� �¼ 2E aRf RyR� f Ry

2
RþaIf IyI� f Iy

2
I

� �
¼ 2E aRyR�y2R

	 
�4 βþ1ð ÞE aRyR�y2R
	 


fyR 4 γg

þ2E aIyI�y2I
	 
�4 βþ1ð ÞE aIyI�y2I

	 

fyI 4 γg ð29Þ

Exploiting assumption (A2), we obtain

LHS¼ �2ζþ4 βþ1ð ÞE γ

2

ffiffiffi
ζ

π

r
exp �ðaR�γÞ2

ζ

 !
þ ζ

4
1þerf

aR�γffiffiffi
ζ

p

 �
 �" #

þ4 βþ1ð ÞE γ

2

ffiffiffi
ζ

π

r
exp �ðaL�γÞ2

ζ

 !
þ ζ

4
1þerf

aL�γffiffiffi
ζ

p

 �
 �" #

ð30Þ

Owing to four quadrant symmetry of QAM constellation,
the moments evaluated for in-phase component are same
as those for quadrature component. Simplifying and com-
bining (28) and (30), we obtain

μPxð2Ea2Rþζþ4ðβ2�1ÞAÞþμ�1Pqþ2ζ�8ðβþ1ÞB¼ 0 ð31Þ
where

A≔E
1ffiffiffiffiffiffi
2π

p exp �ðaR�γÞ2
ζ

 !
aRþγð Þ

ffiffiffi
ζ

2

r
þ1
2

a2Rþ
ζ

2


 �
1þerf

aR�γffiffiffi
ζ

p

 �
 �" #

;

and B≔E
γ

2

ffiffiffi
ζ

π

r
exp �ðaR�γÞ2

ζ

 !
þ ζ

4
1þerf

aR�γffiffiffi
ζ

p

 �
 �" #

:

Since the argument inside the exponent function, aR�γð Þ2,
is always positive, we have expð�Þ ¼ 0 for aRaγ and ζ⪡1.
However, when aR ¼ γ, we have expð�Þ ¼ 1 with probability
Pr ½aR ¼ γ�. Similarly, under the assumption ζ⪡1, erfð�Þ is
equal to �1, and 0, respectively, for the cases (aRoγ), and
ðaR ¼ γÞ. These considerations yield

A�
0 if aRaγ

γ

ffiffiffiffi
ζ

π

r
þ1
2

γ2þ1
2
ζ


 � !
Pr aR ¼ γ½ � ifaR ¼ γ

8>><
>>: ð32Þ

and B�
0 if aRaγ

γ

ffiffiffiffiffiffiffi
ζ

2π

r
þ1
4
ζ

 !
Pr aR ¼ γ½ � if aR ¼ γ

8>><
>>: ð33Þ

Since an M-point constellation is being considered, the
probability Pr ½aR ¼ γ� is equal to 1=

ffiffiffiffiffi
M

p
. Denoting

c1≔Pxð1þð1=
ffiffiffiffiffi
M

p
Þðβ2�1ÞÞ, c2≔2ð1�ð1=

ffiffiffiffiffi
M

p
Þðβþ1ÞÞ, c3≔

ð2=
ffiffiffiffiffiffiffi
πM

p
ÞγPxðβ2�1Þ, c4≔�ð4=

ffiffiffiffiffiffiffi
πM

p
Þγðβþ1Þ, and c5≔ðPaþ

ð2=
ffiffiffiffiffi
M

p
Þγ2ðβ2�1ÞÞPx, and by combining (31)–(33), we

obtain

c2þc1μð Þζþ c4þc3μð Þ
ffiffiffi
ζ

p
þ c5μþ

1
μ
Pq


 �
¼ 0: ð34Þ

Solving it by quadratic formula we obtain (T3.1).
Further, substituting ζ¼ u2 and taking derivative with

respect to μ, we obtain

c1uþc3ð Þuþ c4þc3μþ2ðc2þc1μÞuð Þdu
dμ

þ c5�
1
μ2
Pq


 �
¼ 0

ð35Þ
For the optimum value of μ, we have du=dμ¼ 0; this gives

μβMMA
opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pq

c1ζ
βMMA
min þc3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζβMMA
min

q
þc5

vuut ð36Þ



Table 1
Optimum EMSE for 16-QAM.

ζMMA2�2
min

Numerical (21) Closed-form (T2.2) MC simulation

N¼7 �15.92 dB �15.89 dB �16.13 dB
N¼21 �10.83 dB �10.77 dB �10.85 dB

ζβMMA
min

Numerical (31) Closed-form (T3.2) MC Simulation

N¼7 �27.61 dB �27.62 dB �27.55 dB
N¼21 �17.86 dB �17.88 dB �17.87 dB
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Since c1ζ
βMMA
min þc3ðζβMMA

min Þ0:5⪡c5, ignoring them we obtain
(T3.2). □

4. Simulation results

In this section, we verify the tracking performance
analyses for MMA2-2 and βMMA. The experiments have
been performed considering (i) an equalized zero-forcing
situation perturbed with random noise vector, (ii) a time-
invariant channel, (iii) a time-varying channel (with a
constant mean part and an autoregressive random part),
and (iv) the effect of filter length on equalization
performance.
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μopt = 3.69×10−5

ζmin = −10.77 dB

Fig. 3. EMSE traces for MMA2-2 for 16-QAM under zero-forcing scenario.
4.1. Experiment I: considering zero-forcing solution

In this experiment, the elements of perturbation vector
qn are modeled as zero-mean wide-sense stationary and
mutually uncorrelated. The corresponding positive definite
autocorrelation matrix of qn is obtained as Q ¼ σ2qI (where
σq ¼ 10�3).3 The simulated EMSE has been obtained for
equalizer lengths N¼7 and N¼21 for 16- and 64-QAM
signals,4 respectively. Each simulated trace is obtained by
performing 100 independent runs where each run is
executed for 5� 103 iterations. Note that, due to assuming
an already equalized scenario, we do not have to worry
about the iterations required for successful convergence of
the equalizer; thus the EMSE is computed for all iterations.
The equalizer was initialized such that the first tap was
unity and all taps were zero. The Monte-Carlo simulation
requires to add the perturbation qn directly in the weight
update process. The weight update, in this experiment, is
thus governed by

wo
n ¼wo

n�1þμΦðynÞnxnþqn ð37Þ

The terms containing the step-size μ and qn contribute to
acquisition and tracking errors [4], respectively. The rule
(37) has been adopted in [4,15–17,31].
3 Note that this modeling (i.e., zero off-diagonal elements in Q ) is
justified in the light of our analytical findings in Theorems 2 and 3 which
imply that the EMSE depends neither on the individual diagonal
elements nor the off-diagonal elements of matrix Q , but rather depends
on the trace of Q as denoted by Pq. In other words, given the sum of the
mean square fluctuations of the elements of qn , the EMSE does not
depend on the contribution of individual elements.

4 In MMA2-2, RR¼RI are equal to 8.2 and 37 for 16- and 64-QAM,
respectively. In βMMA, the parameter β is equal to 1.22 and 2.43 for 16-
and 64-QAM, respectively.
Since this experimental setup aims to evaluate both
acquisition and tracking errors, the resulting EMSE is a convex
downward function of step-size μ. Refer to Figs. 3 and 4 for the
comparison of analytical and simulated EMSE of MMA2-2
equalizer. The legends ‘Numerical’ and ‘Closed-from’ refer to
the solutions (21) and (T2.1), respectively. It is evident from
this result that, for both QAM with smaller filter length (i.e.,
N¼7), the numerical, the closed-form and the simulated
traces conform each other for all values of step-sizes. How-
ever, for larger filter length (i.e., N¼21), traces start deviating
from each other for higher values of EMSE. Noticeably, for all
four simulation cases, the analytically obtained minimum
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Fig. 4. EMSE traces for MMA2-2 for 64-QAM under zero-forcing scenario.
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Fig. 5. EMSE traces for βMMA for 16-QAM under zero-forcing scenario.
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EMSE ðζMMA2�2
min Þ and the optimum step-size ðμMMA2�2

opt Þ, as
marked, respectively, with markers ▹ and ◊, are in good
conformation with those obtained from simulation.

Next refer to Figs. 5 and 6 for the comparison of analytical
and simulated EMSE of βMMA equalizer. The legends
‘Numerical’ and ‘Closed-from’ refer to the solutions (31)
and (T3.1), respectively. It is evident from this result that,
for both QAM with smaller filter length (i.e., N¼7), the
numerical, the closed-form and the simulated traces conform
each other for all values of step-sizes. However, for larger
filter length (i.e., N¼21), traces start deviating from each
other for higher values of EMSE. Noticeably, for all four
simulation cases, the analytically obtained minimum EMSE

ðζβMMA
min Þ and the optimum step-size ðμβMMA

opt Þ, as marked,
respectively, with markers ▹ and ◊, match closely with those
obtained from simulation.

To appreciate the lower EMSE exhibited by βMMA as
compared to MMA2-2, we summarize the findings of
above experiments for 16-QAM depicting the values of
minimum EMSE achieved by both algorithms in Table 1.
Note that (as expected) the numerical results are closer to
those obtained by simulation.
Next we compare the abilities of MMA2-2 and βMMA to
track the variations in non-stationary environments by
obtaining the ratio of the minimum achievable steady-
state EMSE as exhibited by MMA2-2 to that of βMMA.
Mathematically, we compute the following ratio:

η≔
ζMMA2�2
min

ζβMMA
min

ð38Þ

This ratio is obtained for 16-, 64- and 256-QAM and is
summarized in Table 2 which indicates that the value of
the minimum steady-state EMSE of βMMA is always less
than that of MMA2-2 which reflects the superiority of
βMMA over MMA2-2 for tracking variations in non-
stationary environments.
4.2. Experiment II: equalizing time-invariant channel

In contrast to experiment I where we considered a
zero-forcing scenario subject to random perturbation, here
in this experiment, we consider an interfering T/2-spaced
time-invariant channel whose impulse response is given
by hn ¼ ½0:1;0:3;1; �0:1;0:5;0:2� as used in [15,31]. In the
sequel, we refer to this channel as channel-1. Since we
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Fig. 6. EMSE traces for βMMA for 64-QAM under zero-forcing scenario.

Table 2
The ratio η for different QAM signals.

Equalizer taps 16-QAM (dB) 64-QAM (dB) 256-QAM (dB)

N¼7 11.73 9.59 6.05
N¼21 9.8 7.56 3.89

5 For an AR(1) system, α¼ J 0ð2πf DTÞ, which makes the autocorrela-
tion of the taps modeled by cn ¼ αcn�1þdn equal the true autocorrelation
at unit lag (where J 0 is the zero-order Bessel function of the first kind, fD
is the Doppler rate and T is the baud duration). The parameter α

determines the rate of the channel variation while the variances σ2d;i of
the ith entry of dn determines the magnitude of the variation. So, α and
σ2d;i determine how “fast” and how “much” the time-varying part cn;i of
each channel tap hn;i vary with respect to the known mean of that tap
hconst;i. The value of α can be estimated from the estimate of fD. Similarly,
given the average energy of the ith part of cn , E jcn;ij2, the value of σd;i is
evaluated as [37] σd;i ¼ jhconst;ij2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�α2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ejcn;ij2

q�
.
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are not considering the random perturbation ðσq ¼ 0Þ, the
estimated EMSE comprises acquisition error only and is
supposed to be a monotonic increasing function of step-
size μ.

In this experiment, we consider a T/2-spaced equalizer
and 16-QAM signaling for both MMA2-2 and βMMA. The
equalizer is initialized such that the central tap is set to
unity and the rest are set to zero. Refer to Fig. 7(a) for the
comparison of analytical and simulated EMSE obtained for
MMA2-2. The legends ‘Numerical’ and ‘Closed-from’ refer
to the solutions (21) and (T2.1), respectively. Similarly,
Fig. 7(b) depicts the comparison of analytical and simu-
lated EMSE of βMMA equalizer in the presence of similar
channel. The legends ‘Numerical’ and ‘Closed-from’ refer to
the solutions (31) and (T3.1), respectively. It is evident
from these results that the analytical and simulated traces
conform closely with each other.

Note that the result in Fig. 7 also reveals that the
steady-state EMSE (subject to successful convergence) of
the larger filter will be higher than that of the smaller filter
for the given value of step-size. Refer to Fig. 8 where the
convergence traces of EMSE are depicted for two different
filter lengths (N¼7 and 21) for μ¼ 1� 10�4. The average
values of the converged steady-state EMSE (for N¼7 and
21) match closely with analytically estimated values
obtained from Theorems 2 and 3.
4.3. Experiment III: equalizing time-varying channel

In contrast to experiments I and II, here we evaluate the
performance analysis of the addressed equalizers in the
presence of time-varying (TV) channel. A TV channel is
usually modeled such that its autocorrelation properties
correspond to wide-sense stationary and uncorrelated
scattering (WSSUS) (as suggested by [36]). However, as
reported in [37], a first-order (Gauss–Markov) autoregres-
sive model is sufficient enough to model a slow-varying
channel as given by hn ¼ hconstþcn, where hn and hconst are
as specified in Section 2, and cn is the first-order Markov
process as given by cn ¼ αcn�1þdn where α is a constant,
and the vector dn is a zero-mean i.i.d. circular complex
Gaussian process with correlation matrix D5.The matrix D,
due to WSSUS assumption, is diagonal and each of its
diagonal element is σd

2
. In the present scenario, we con-

sider σ2d ¼ 1� 10�3; α¼ 0:999, and hconst ¼ ½1þ0:2j; �0:2
þ0:1j;0:1�0:1j�T using a 7-tap baud-spaced equalizer
with 16-QAM signaling. The ISI introduced by mean tap
vector hconst is �11.72 dB. All simulation points were
obtained by executing the program 10 times (or runs)
with random and independent generation of transmitted
data and channel perturbation. Each run was executed for
as many iterations as required for the equalization of mean
channel path hconst. Once convergence is acquired, the
equalizer is run for further 5000 iterations for the compu-
tation of steady-state value of EMSE.

Refer to Fig. 9 for the comparison of theoretical and
simulated EMSE of MMA2-2 and βMMA equalizers. The
legend ‘Analysis’ refers to the solutions (T2.1) and (T3.1)
for MMA2-2 and βMMA equalizers, respectively. It is
evident from the results that the theoretical and simulated
EMSE traces conform each other. Note that the factor
Pq ¼ E‖qn‖2 ¼ traceðQ Þ has been replaced with traceðDÞ in
the evaluation of analytical EMSE. In the sequel, we refer
to this TV channel (hn) as channel-2.
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Fig. 7. EMSE traces for MMA2-2 and βMMA for 16-QAM for channel-1. All
simulation points were obtained by executing the program 10 times (or
runs) with random and independent generation of transmitted data. Each
run was executed for as many iterations as required for the convergence.
Once convergence is acquired, the equalizer is run for further 5000 iterations
for the computation of steady-state value of EMSE. So 10� 5000¼ 5� 104

samples were used in the computation of each EMSE point. Note that, for 16-
QAM signaling on channel-1, MMA2-2 ðμ¼ 3� 10�5Þ and βMMA ðμ¼ 4�
10�4Þ required nearly 7000 and 1500 iterations (on the average), respec-
tively, to acquire same (�20 dB) EMSE floor.

Fig. 8. Transient EMSE traces for βMMA for 16-QAM on channel-1. Note
that the performance of equalizer is far better with (N¼7) than (N¼21);
this behavior is explained in Experiment IV.
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Fig. 9. EMSE traces for MMA2-2 and βMMA with 16-QAM signaling for
channel-2. With fDT¼0.01 and unit lag, we have α¼0.999.
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4.4. Experiment IV: effect of filter-length on EMSE

In all previous experiments, we have considered differ-
ent channel conditions where the effect of filter-length on
equalization capability has not been taken in considera-
tion. It is quite obvious that a reasonable filter-length is
required to equalize successfully a propagation channel.
An insufficient filter-length, therefore, introduces an addi-
tional distortion which have not been considered in
Theorems 2 and 3. However, as mentioned in [3], the
distortive effect of insufficient filter-length may easily be
incorporated (in the EMSE expressions) as an additive
term; the total EMSE, which we denote as TEMSE, is thus
given as follows:

TEMSE¼ lim
n-1

Ejea;nj2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕ζ

þEjanj2‖Hwon�e‖2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕χ

ð39Þ

where ζ is EMSE as we obtained in Theorems 2 and 3, and
χ is the additional squared error contributed by the
(insufficient) filter-length. The vector wo is the zero-
forcing solution, H is the channel matrix, and e is the
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overall idealistic (single-spike) channel-equalizer impulse
response as defined in Section 2.

In Section 4.2, we have observed that the EMSE, ζ, is
proportional to filter-length for the given step-size.
The parameter χ on the other hand decreases with filter-
length.6 In our simulation, the value of optimal weight
vector wo is obtained as wo ¼ pinvðHÞe where pinvð�Þ is
the MATLAB function for the evaluation of pseudo-inverse.
The TEMSE as expressed in (39) is a convex downward
function of filter-length. Evaluating TEMSE for different
filter-lengths can provide us with the optimal value of
filter-length required to equalize the given channel
and given step-size. In this simulation, we have consi-
dered a voice-band telephone channel hn ¼ ½�0:005
�0:004j;0:009 þ0:03j; �0:024�0:104j;0:854 þ0:52j;
�0:218þ0:273j;0:049�0:074j; �0:016þ0:02j� [38] and
16-QAM signaling. The ISI introduced by this channel is
�8.44 dB. In the sequel, we refer to this channel as
channel–3.

All simulation points were obtained by executing the
program 10 times (or runs) with random and independent
generation of transmitted data. Each run was executed for
as many iterations as required for the convergence. Once
convergence is acquired, the equalizer is run for further
5000 iterations for the computation of steady-state value
of EMSE. In Fig. 10, we depict analytical and simulated
TEMSE obtained as a function of filter-length for the given
step-sizes for both MMA2-2 and βMMA. Both analytical
and simulated TEMSE are found to be in close agreement.
3 9 15 21 27 29
−30

Filter Length (N)

Fig. 10. EMSE traces considering the effect of filter-length for channel-
3. (a) The optimal filter-length for MMA2-2 is found to be 9 for both
1� 10�5 and 5� 10�5. (b) The optimal filter-length for βMMA is found
to be between 9 and 11 for 3� 10�4 and 1� 10�4, respectively.
5. Conclusion

In this paper, we studied the steady-state mean square
tracking performance of two popular equalizers, MMA2-2
and βMMA, by exploiting the fundamental variance rela-
tion. Analytical expressions for the steady-state EMSE
were evaluated and validated by computer simulations.
For this study, we conclude the following:
1.
con
blin
exa
ð�Þþ
exp
find
rea
The fundamental variance relation described in Section 3
is useful for the analysis of steady-state performance of
(gradient-based) adaptive equalizers. By using this rela-
tion, we have been able to obtain the EMSE of MMA2-2
and βMMA in closed-form. We have validated our analy-
tical findings under zero-forcing situation, stationary and
non-stationary channel environments.
2.
 βMMA is superior to MMA2-2 equalizer in equalizing
channel with square-QAM signaling. Under similar
environmental conditions, the minimum EMSE of
MMA2-2 is found to be in excess of 6–12 dB as
compared to that of βMMA.
6 The actual expression of χ (as denoted by Df in [3, Eq. 4.8.24])
tains an equalizer solution (as denoted by θ) that also depends on
d equalization error-function. However, we have observed that the
ct value of θ is very close to Hþ e for both MMA2-2 and βMMA where
denotes pseudo-inverse. So, in this work, we have replaced the exact
ression of θ with its simplified form won ¼Hþ e and our simulation
ings (as depicted in Fig. 10) validate that this simplification is
sonable.
3.
 The so-called total EMSE (TEMSE) has been found to be
useful in determining the optimum lengths of the
addressed equalizers for underlying channels and given
values of step-sizes. Our experiments have indicated
that the optimum lengths for MMA2-2 equalizer and
βMMA equalizers for a typical (7-tap) voice-band are
between 7 and 15 depending upon the step-size.
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