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Abstract 

In this paper we use a general procedure to detect structural breaks at unknown points in 
time which allows for different orders of integration and deterministic components in each  
subsample (see Gil-Alana, 2006). First, we extend it to the non-linear case, and show by 
means of Monte Carlo experiments that the procedure performs well in a non-linear 
environment. Second, we apply it to test for breaks in the unemployment rate in the US, the 
UK and Japan. Our results shed some light on the empirical relevance of alternative 
unemployment theories for these countries. Specifically, a structuralist interpretation 
appears more appropriate for the US and Japan, whilst a hysteresis model accounts better 
for the UK experience (and also for the Japanese one in the second subsanple). We 
interpret these findings in terms of different labour market features. 
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1. Introduction 

In this paper we test for the existence of breaks at unknown points in time in the US, UK 

and Japanese unemployment rates by applying a procedure which is an extension of that 

introduced by Bai and Perron (1998). Our contribution is twofold. The first is of a 

methodological nature. As in Bai and Perron (1998), our approach is based on the least 

square principle. However, it is more general, since it allows for different (fractional) 

orders of integration as well as different deterministic trends in each subsample. Further, it 

allows for non-linear structures. Incorporating non-linearities into a fractional integration 

framework with breaks at unknown points in time has not been attempted before, and 

represents a methodological innovation. We investigate the properties of our test in the 

non-linear case by means of Monte Carlo simulation techniques. The second contribution 

is to provide useful empirical evidence to discriminate among different theories of 

unemployment. Note that under hysteresis (or persistence – see, e.g., Blanchard and 

Summers, 1986, 1987 and Cross, 1987)) the order of integration (denoted by d) should be 

equal to or close to 1, whilst infrequent breaks would give support to the structuralist view 

(Phelps, 1994). On the other hand, a value of d close to 0 would favour NAIRU theories 

(see, e.g., Friedman, 1968). We obtain empirical results using our method for testing for 

breaks, and interpret the findings in terms of differences in the structure of the labour 

markets of the countries we analyse. 

 The layout of the paper is as follows. Section 2 briefly reviews the recent empirical 

literature testing alternative theories of unemployment. Section 3 describes the 

econometric approach. Section 4 reports Monte Carlo evidence on the performance of our 

test in the non-linear case. Section 5 presents the empirical results. Section 6 summarises 

the main findings and offers some concluding remarks.  
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2. Testing unemployment theories: a brief review of the literature 

Alternative unemployment theories have different implications for the time series properties of 

unemployment. For instance, the natural rate theory (see Friedman, 1968, and Phelps, 1967, 

1968) implies that the unemployment rate should fluctuate around a stationary equilibrium 

level (the natural rate, also known as NAIRU), which is determined by economic 

fundamentals. In “structuralist” models (see Phelps, 1994) the natural rate is “endogenised”: as 

in NAIRU models, unemployment is viewed as having an equilibrium level to which it 

generally reverts when hit by shocks, but it is also thought to be subject to infrequent structural 

breaks, resulting from changes in economic fundamentals, which affect the equilibrium itself. 

Hence the unemployment series should be stationary provided one allows for breaks.  

However, the adequacy of both these theories to account for the behaviour of unemployment 

has been questioned in recent decades, owing to the observed high persistence of 

unemployment in Europe. Therefore, hysteresis models have been developed (see Blanchard 

and Summers, 1986, 1987, and Barro, 1998), which characterise unemployment as a path-

dependent variable, with temporary shocks having permanent or highly persistent effects. The 

implication is that the unemployment rate should be a stochastic process with long memory, 

exhibiting a (near) unit root. 

Several empirical papers have used time series and panel techniques to discriminate 

between the different unemployment theories.  Initially, standard unit root tests (such as 

Augmented Dickey-Fuller (ADF, 1979) or Phillips-Perron, 1988) were carried out (see, e.g., 

Blanchard and Summers, 1986, and Alogoskoufis and Manning, 1988), the results generally 

being consistent with the hysteresis hypothesis. Gordon (1989) defined full hysteresis as the 

case of a unit root and persistence as AR stationarity, and did not find any evidence of full 

hysteresis in five countries (France, Germany, USA, Japan and the UK) for the time period 

1873-1986. Graafland (1991) concluded that, in the 80s, the labour market in the Netherlands 
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was characterised by a high and persistent level of unemployment. Lopez et al. (1996) 

reported that monthly unemployment in Spain (1976M6-1994M10) was consistent with 

hysteresis. Nott (1996) did not find evidence of hysteresis in Canada, while Wilkinson (1997) 

did. Subsequent studies allowed for structural breaks as well (see, e.g., Mitchell, 1993, Bianchi 

and Zoega, 1998, and Papell et al, 2000), using, for instance, the method developed by Zivot 

and Andrews (1992). The evidence presented in these papers mostly gave support to 

structuralist rather than hysteresis theories, as it suggested that unemployment can be 

adequately modelled as a stationary series with an infrequently changing equilibrium level.  

 In order to deal with the well-known problem of the low power of standard unit 

root tests (see Campbell and Perron, 1991 and DeJong, 1992), more recent studies have 

performed panel unit root tests. Again, some of these contributions do not address the 

issue of possible breaks – examples are the papers of Song and Wu (1998) and Leon-

Ledesma (2002), where tests developed by Levin, Lin and Chu (2002, LLC hereafter) and 

Im, Pesaran and Shin (2003) respectively are implemented. In most cases, such studies 

conclude that hysteresis theories are most appropriate for the European experience, whilst 

NAIRU models appear to work better for the US. By contrast, other papers take into 

account the possibility of breaks in a panel context. Prominent examples are Murray and 

Papell (2000) and Strazicich, Tieslau and Lee (2001), applying to OECD data, 

respectively, the LLC test and a panel LM t-statistic with up to two level breaks 

introduced by Im, Lee and Tieslau (2005). Allowing for breaks is generally found to lead 

to a rejection of the hysteresis hypothesis, and to be consistent instead with structuralist 

explanations of the behaviour of unemployment.  Various theoretical models have been 

put forward to endogenise the natural rate of unemployment. They rely alternatively on 

productivity growth (Pissarides, 1990), real interest rates (Blanchard, 1999), stock prices 

(Phelps, 1999), institutional variables (Nickell, 1998 and Nickell and Van Ours, 2000), or 
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the interaction between institutional and macroeconomic variables (Blanchard and 

Wolfers, 2000).  

Another recent strand of the literature has exploited new developments in 

econometrics to study unemployment persistence using fractionally integrated (ARFIMA) 

models (see, for instance, Tschernig and Zimmermann, 1992; Crato and Rothman, 1996; Gil-

Alana, 2001a, 2002; etc.). This approach, unlike earlier ones focusing exclusively on integer 

degrees of differentiation, i.e., d = 0 (stationarity) and d = 1 (nonstationarity), has the 

advantage of allowing for fractional degrees of integration. The present study falls into the 

same category, and adopts a framework which enables us to investigate the relevance of the 

three types of unemployment theories mentioned above; since it allows for fractional orders of 

integration, it is appropriate for both stationary processes (NAIRU models), and highly 

persistent/nonstationary ones (hysteresis hypothesis), and by incorporating structural breaks it 

can also be used to model processes exhibiting regime change (structuralist theories). For 

instance, suppose that it is found that, as a result of including a break, the degree of persistence 

appears to be different in the two subsamples, i.e. under one regime shocks have persistent 

though not permanent effects on the unemployment rate, (i.e., d < 1) whilst under the other 

those effects are permanent (d ≥ 1). This would indicate that the behaviour of unemployment 

is well captured by structural and hysteresis models respectively in the two subsamples, 

shedding light on their empirical relevance. 

Non-linearities in the unemployment rate are also well documented. Specifically, 

unemployment has been found to rise faster in recessions than it falls during recoveries 

(see, e.g., Rothman, 1991 for the US case).  Possible explanations are asymmetries in 

adjustment costs (Bentolilla and Bertoli, 1990), job destruction (Caballero and Hammour, 

1994), and capital destruction (Bean, 1989). Such non-linearities have been modelled 

using Markov-switching models (see, e.g., Bianchi and Zoega), Smooth Transition 
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AutoRegressive (STAR) models (see, e.g., Skalin and Teräsvirta, 2002), or a non-linear 

fractional integration framework (see Caporale and Gil-Alana, 2005). Given their possible 

importance, in the next section we extend the testing procedure for breaks used by Gil-

Alana (2006) in order to allow for non-linear structures. 

 

3. The econometric approach 

In this section we present a procedure that enables us to examine the 

stationarity/nonstationarity nature of the series of interest in a very general framework. 

Firstly, instead of restricting ourselves to the standard I(0) (stationarity) or I(1) 

(nonstationarity) cases, we consider the possibility of fractional orders of integration. 

Assuming that a sequence {ut, t = 0, ±1, …} is I(0), defined as a covariance stationary 

process with spectral density function that is positive and finite, we define an I(d) process 

as: 

,...,2,1,)1( ==− tuxL tt
d       (1) 

where d can be any real number. These processes were initially introduced by Robinson 

(1978), Granger (1980, 1981) and Hosking (1981), and they have been widely employed 

in recent years to describe the dynamic behaviour of economic and financial data. 

(Diebold and Rudebusch, 1989; Baillie, 1996; Gil-Alana and Robinson, 1997). Secondly, 

our framework also allows for the inclusion of deterministic terms, like intercepts, linear 

trends or even non-linear structures of the Threshold AutoRegressive (TAR) or 

Momentum Threshold AutoRegressive (MTAR)-form (see, e.g. Enders and Granger, 

1998; Enders and Siklos, 2001). Finally, the possibility of structural breaks at unknown 

points in time is also taken into account. 

 Gil-Alana (2006) proposes a very simple procedure for estimating fractional orders 

of integration with deterministic linear trends and a single break at an unknown date. 
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Following that approach, we assume that yt is the observed time series, generated by the 

model 

btt
d

tt TtuxLxty ,...,1,)1(; 111 ==−++= βα             (2) 

,,...,1,)1(; 222 TTtuxLxty btt
d

tt +==−++= βα        (3) 

where the α's and the β's are the coefficients corresponding respectively to the intercept 

and the linear trend; d1 and d2 may be real values, ut is I(0) and Tb is the time of the break 

that is assumed to be unknown. Note that the model in equations (2) and (3) can also be 

written as: 

,,...,1,)(~)(1~)1( 11111 btttt
d TtudtdyL =++=− βα             (4)           

,,...,1,)(~)(1~)1( 22222 TTtudtdyL btttt
d +=++=− βα            (5) 

where ,1)1()(1~ id
it Ld −=  and ,)1()(~ tLdt id

it −=  i = 1, 2. 

 This approach is based on the least square principle proposed by Bai and Perron 

(1998). First, we choose a grid for the values of the fractionally differencing parameters d1 

and d2, for example, dio = 0, 0.01, 0.02, …, 2, i = 1, 2. Then, for a given partition {Tb} and 

given d1, d2-values, , we estimate the α's and the β's by minimising the sum of 

squared residuals, 
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values of d1o and d2o in the grid we obtain: 

).d,d;T(RSSminarg)T(RSS )j(
o2

)i(
o1b}j,i{b =  

Then, the estimated break date, , is such that kT̂

)(minargˆ ...,,1 imik TRSST == , 

where the minimisation is over all partitions T1, T2, …, Tm, such that Ti - Ti-1 ≥ |εT|. The 

regression parameter estimates are the associated least-squares estimates of the estimated 

k-partition, i.e., 

}),ˆ({ˆˆ kii Tαα =  

}),ˆ({ˆˆ kii Tββ =  

 and their corresponding differencing parameters, 

}),ˆ({ˆˆ kii Tdd =  

for i = 1 and 2. 

 In Gil-Alana (2006) it is shown that the rates of convergence of the estimates are 

similar to those in Bai and Perron (1998), since the values are chosen in such a way as to 

minimise the residual sum of squares and, under the appropriate specification, ut should 

follow an I(0) process. Moreover, several Monte Carlo experiments conducted in that 

study show that the procedure performs extremely well even in relatively small samples.

 In this paper we extend the above procedure to allow for non-linearities. That is, 

we consider for each subsample a model of the form 

...,2,1,);( =+= txzfy ttt θ      (6) 

where f may be of a non-linear nature, zt is a vector of (weakly) exogenous variables, θ 

represents the unknown coefficients, and xt is driven by (1). The main problem with this 

equation lies in the interaction between the fractional polynomial and the possibly dL)1( −
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non-linear function f, and the estimation of the parameters involved in such a relationship. 

For the purpose of the present study, let us assume that f(zt; θ) = θ g(zt), where g is of a 

non-linear nature. In such a case, (1) and (6) become: 

...,2,1,')1( =+=− tuwyL ttt
d θ ,      (7) 

where wt =  and hence, the "non-linearity" is not in terms of the parameters, 

but in terms of a non-linear function of the variables z

),z(g)L1( t
d−

t. We can obtain the OLS estimate of 

θ and residuals: 
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and the same type of analysis as in Gil-Alana (2006) can be conducted here. This 

procedure can easily be extended to the case of multiple breaks (see again Gil-Alana, 

2006). In the present study, though, we do not consider this case, but focus instead on a 

single break to explain the stochastic nature of unemployment. The reason is the 

following. Structuralist theories imply infrequent breaks in the unemployment series. 

Therefore, there could be more than a single break. However, for the validity of the type of 

long-memory (fractional integration) model we use for unemployment it is necessary that 

the data span a sufficiently long period of time to detect the dependence across time of the 

observations; given the sample size of the series employed here, the inclusion of two or 

more breaks would result in relatively short subsamples, thereby invalidating the analysis 

based on fractional integration. Moreover, other recent empirical studies on 

unemployment in the US and UK come to the conclusion that a single break is sufficient 

to describe the behaviour of these series (e.g. Anderton, 1998). 

 

4. Monte Carlo results 

In this section we examine by means of Monte Carlo simulations the performance of the 
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procedure described in Section 3 in the case of non-linear structures. We assume that the 

Data Generating Process (DGP) is the following: 

btt1d
t1t1tt T,...,1t,ux)L1(;x)0y(I1.0)0y(I5.0y ==−+≤+>= −−           (8) 

,T,...,1Tt,ux)L1(;x)0y(I5.0)0y(I1y btt2d
t1t1tt +==−+≤+>= −−     (9) 

where I(x) stands for the indicator function, and ut is a white noise process. We generate 

Gaussian series using the routines GASDEV and RAN3 of Press, Flannery, Teukolsky and 

Vetterling (1986). 

[Insert Figure 1 about here] 

 Figure 1 contains plots of simple realisations of the model given by (8) and (9) 

with T = 300, Tb = 150, and (d1, d2) = (0, 0), (0.25, 0.25), (0.5, 0.5), (0.25, 0.75), (0.75, 

0.25) and (1, 1). It can be seen that, when the possibility of fractional integration is not 

considered (i.e., d1 = d2 = 0), visual inspection of the series does not clearly reveal the 

occurrence of a structural break. By contrast, when d1 = d2 = 0.25 or 0.5, the break is 

clearly noticeable, and even more so for higher orders of integration (e.g., d1 = d2 = 1). It 

can also be clearly detected when the orders of integration are different for each 

subsample. 

 Tables 1 – 3 report the probabilities of correctly determining the timing of the 

break and the fractional differencing parameters in the model given by (8) and (9). In 

Table 1 it is assumed that in the true DGP, Tb = T/2, d1 = 0.2 and d2 = 0.4. Thus, the two 

subsamples are covariance stationary, though with a component of long-memory 

behaviour. In Table 2, Tb is still equal to T/2, d1 = 0.7 and d2 = 0.3. Finally, in Table 3, the 

break is assumed to take place at T/4, with d1 = 0.6 and d2 = 0.8, and hence the two 

subsamples are now nonstationary. In all cases, we perform the procedure described in 
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Section 3 for a grid of d1, d2 values = 0, 0.2, 0.4, …, 2,1 and values for the break T* = (Tb – 

T/5), (1), (Tb + T/5), where Tb is the correct time of the break.  The number of replication 

is equal to 10,000 in each case. 

 It is apparent from these tables that the adopted procedure determines accurately 

the break date in virtually all cases. We find zero-probabilities for all values of d1 and d2 if 

T* is smaller than Tb - 2 or higher than Tb + 2. Thus, we report in the tables only the 

probabilities corresponding to T* = Tb – 2, Tb – 1, Tb, Tb + 1, and Tb + 2. 

In Tables 1 and 2 the break is assumed to take place at T/2. First, we consider the 

case of d1 = 0.2 and d2 = 0.4 (Table 1). It can be seen that, if T = 100, the procedure yields 

the correct specification of the model in 37.45% of the cases. The other two cases with a 

large percentage correspond both to T* = Tb, with d1 = d2 = 0.2 (32.07%), and d1 = 0.2 and 

d2 = 0.6 (12.35%). For this sample size, the sum of the probabilities of correctly detecting 

the break-time is 93.19%. Increasing the sample size appears to increase the probability of 

correctly specifying the model: this is equal to 57.91% with T = 200; 70.15% with T = 

300, and 84.45% with T = 500. In this last case, the probability of accurately determining 

the break point is equal to 95.68%. 

[Insert Tables 1 – 3 about here] 

In Table 2 we assume nonstationarity for the first subsample (d1 = 0.7) and 

stationarity for the second one (d2 = 0.3), still with a break at T/2. Here the highest 

probabilities are in all cases those corresponding to the true model, followed closely by 

those for the local departures (d1 = 0.7 with d2 = 0.1 and 0.5), with T* = T/2. In Table 3 it 

is assumed that the break takes place at T/4, and that the two subsamples are nonstationary 

(d1 = 0.6 and d2 = 0.8). Here, the probabilities corresponding to the true model are slightly 

                                                 
1  Of course, we could also have considered the case with d1, d2 equal to 0, 0.1, …, 1, or even used a grid of 
0.01 increments, but in such cases the probability of correctly determining the break would be substantially 
reduced by this refinement in the procedure, leading to higher probabilities for the parameter values close to 
the true one. 
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smaller than in the previous cases, though still sufficiently high to detect the true DGP, 

especially if the sample size is large enough.  

On the whole, the evidence presented in this section seems to suggest that our  

procedure for fractional integration with a structural break and non-linear structures 

performs well in finite samples. 

 

5. Empirical results  

All three unemployment rates are seasonally adjusted. The US series is quarterly, and 

covers the period 1960Q1-2004Q4; the source is the IMF’s International Financial 

Statistics. The UK series is monthly, for the time period 1970M1 – 2005M9, and is 

obtained from the Labour Force Survey (http://www. statistics.gov.uk). In the case of 

Japan, the sample period is 1973Q1-2004Q2, and the data source is the OECD statistics.2

In Tables 4 - 6 we display the models selected on the basis of the procedure 

described in Section 3, for five different specifications. First, we consider the case without 

deterministic terms (model 1). Then, we assume a constant, and a constant and a linear 

trend, for each subsample (models 2 and 3); finally, we also consider non-linear TAR 

(model 4) and M-TAR (model 5) structures. More precisely, we estimate the following 

models: 

1.  .,...,2,1,)1(, 1 ibibttid
tt TTtuxLxy +==−= −

2.  .,...,2,1,)1(, 1 ibibttid
tit TTtuxLxy +==−+= −α

3.  .,...,2,1,)1(, 1 ibibttid
tiit TTtuxLxty +==−++= −βα

4.     TTtuxLxyIyIy ibttid
tt

i
t

i
t ,...,2,1,)1(,)0()0( 11211 +==−+<∆+>∆= −−− γγ

                                                 
2 Note that higher data frequencies (with more observations) are preferable for the purpose of fractional 
integration analysis, but monthly data were available only in the case of the UK; therefore, quarterly series 
have been used for the US and Japan.  
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5.    TTtuxLxyyIyyIy ibttid
tt

i
t

i
t ,...,2,1,)1(,)()( 11211 +==−+<+>= −−− δδ , 

where y  in models 4 and 5 refers to the sample mean,  and Tb0 = 1; Tb1 = Tb and Tb2 = T. 

In each case we assume that the I(0) disturbances ut follow first a white noise and then an 

AR(1) process of form: ut = αi ut-1 + εt, i = 1, 2. Higher AR structures were also 

considered, and the results were not significantly different from those presented here. 

[Insert Table 4 about here] 

For the U.S. series, the main results are the following (see Table 4). The break date 

is almost the same in all models, ranging from 72Q2 to 75Q1 (it is 75Q1 in 4 out of the 10 

models presented). It clearly corresponds to the first oil price shock. The values of d1 and 

d2 (the order of integration of the first and second subsample respectively) are in most 

cases between 0 and 1, providing evidence of fractional integration and persistence. The 

estimates of the parameter d1 range between 0.66 and 1.01, and those of d2 between 0.80 

and 1.11. In general, we observe higher orders of integration in the second subsample, 

implying that the degree of persistence is higher after the break. The white noise and 

AR(1) specifications yield rather similar results. When a linear time trend is included in 

the model (model 3), the slope coefficients are statistically insignificant in both 

subsamples. Therefore, model 3 can be discarded in favour of model 2  (with an intercept). 

As for the non-linear structures, the coefficients of model 4 are significant for the first 

subsample ( ), while in model 5 they are significant for the second subsample 

only (  The similarities between the coefficients of the non-linear models in the 

two subsamples seem to indicate that the adjustment process is symmetric in the case of 

US unemployment. Note, for example, that in model 4 the significant coefficients are 

5.342 and 5.419 for the first subsample. In model 5, the values are 2.973 and 3.123 for the 

case of white noise u

1
2

1
1 γγ and

).and 2
2

2
1 δδ

t, and 11.485 and 11.501 with autocorrelated disturbances. 
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[Insert Table 5 about here] 

The results for U.K. are reported in Table 5. As can be seen, in most cases the 

break occurs in the early 80s, namely a decade later than in the US (only in three of the 

estimated models there is an earlier break, more precisely in 1973). Further, unlike in the 

US case, virtually all the fractional parameters are estimated to be higher than 1, implying 

permanent deviations from equilibrium and a much higher degree of persistence in the UK 

unemployment rate.3 Specifically, the values of d1 are found to range between 0.99 and 

1.83, and those of d2 between 1.07 and 1.52. The range of values becomes narrower if the 

three cases corresponding to a break occurring in the 70s are excluded, being now equal to 

[1.50 - 1.83] and [1.37 - 1.52] for d1 and d2 respectively. This is in line with previous 

papers on UK unemployment, finding orders of integration strictly above 1 (Gil-Alana, 

2001b, c). As in the US case, there is no evidence of asymmetries when estimating non-

linear TAR and M-TAR models. For example, in model 5, the significant coefficients in 

the two subsamples are -3.386, 4.031 and -3.406, 4.024, respectively in the case of white 

noise disturbances, and -3.528, 1.974 and -3.535, 1.966 with AR(1) disturbances.  

[Insert Table 6 about here] 

Table 6 reports the results for Japan. It can be seen that in this case all the 

estimated break points are between 1992Q2 and 1993Q2. In fact, in four out of the ten 

models considered, the break takes places in the first quarter in 1993, namely one decade 

later than in the UK, and almost two decades later than in the US. It can be argued that this 

might be a consequence of the sample period considered, which starts in 1973Q1. 

Therefore, as a robustness check, we also applied our procedure to annual data, which are 

available from 1960, and the break was again found to occur in 1993.4 The orders of 

                                                 
3 Anderton (1998) also finds persistence in the UK unemployment, though in his study the break occurs 
slightly earlier, namely in 1979. 
4 Anderton (1998) reports that a break took place in 1974, with an increase in unemployment persistence. 
Our results are more mixed.  
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integration are clearly different in the two subsamples, before and after the break. 

Specifically, before 1993, most of the estimated values are strictly smaller than 1, while 

after that date they are equal to or higher than 1. If ut follows an AR(1) process, the 

estimated values of d1 are very close to 0 in three out of the five models, being equal to 

0.04, 0.03 and 0.14 for model 2, 3, and 5 respectively. In these cases, however, it is clear 

that the low order of integration found in the first subsample is associated with large AR 

coefficients describing the time dependence across the observations, these coefficients 

being equal to 0.969, 0.959 and 0.925 for models 2, 3 and 5 respectively. 

Next, we select for each country the best model on statistical grounds. In the case 

of the US, a time trend appears not to be required, since the slope coefficients are not 

significantly different from zero. Moreover, the estimated coefficients for the two non-

linear models are rather similar in the two subsamples, and therefore these models can be 

ruled out. In the model with an intercept (model 2), the estimated order of integration is 

slightly above 1 in the second subsample for the case with AR(1) disturbances, and the AR 

coefficients are close to zero in the two subsamples. Therefore, the following specification 

is chosen for the US: 

,175,...,2,1,)1(;758.5 68.0 QTtxLxy btttt ===−+= ε  

.,...,1,)1(;837.8 83.0 TTtxLxy btttt +==−+= ε  

 Moving on to the UK, again it appears that the non-linear models can be discarded 

because of the insignificant coefficients (in model 4) and the similarities between the 

coefficients in the two subsamples (in model 5). Model 3 can also be discarded on the 

grounds of the insignificance of the slope coefficients. Thus, we focus on model 2 (with an 

intercept): in both cases (white noise and AR(1) ut) the coefficients for the orders of 

integration are higher than 1, and also higher in the first subsample. We choose the 

specification with autocorrelated disturbances because of the significant coefficients. 
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Therefore, the selected model is the following: 

,481,...,2,1,513.0;)1(;615.3 1
82.1 MTtuuuxLxy bttttttt ==+−==−+= − ε  

.,...,1,271.0;)1(;236.9 1
52.1 TTtuuuxLxy bttttttt +=+−==−+= − ε  

 Finally, in the case of Japan, using the same type of arguments as before, we focus 

on the model with an intercept (model 2). When ut is specified as a white noise the orders 

of integration are 0.93 and 1.42 respectively for the two subsamples, whilst, if ut is 

modelled as an AR(1) process, the corresponding values are 0.04 and 1.42. (As previously 

mentioned, the low order of integration in case of the first subsample is due to the 

competition with the AR coefficient in describing the dependence across the 

observations). Thus, for this country we choose the following model: 

,293,...,2,1,)1(;271.1 93.0 QTtxLxy btttt ===−+= ε  

.,...,1,)1(;392.2 42.1 TTtxLxy btttt +==−+= ε  

[Insert Figure 2 about here] 

 Figure 2 shows the impulse responses to a unit shock computed for the first 25 

periods for each country and each subsample, based on the selected models. It can be seen 

that in the US (and also in Japan in the second subsample) the size of the response 

increases at first and then starts decreasing very slowly. Also, in the US the convergence 

process is slower during the second subsample. By contrast, in the remaining cases (the 

two subsamples in UK and the second one in Japan) the process is explosive and not 

mean-reverting even in the long run, consistently with the earlier findings on persistence. 

 To sum up, the empirical results indicate that there is a single significant break 

occurring in all three cases (though the dating is different: the early 70s in the UK, a 

decade later in the US, and two decades later in Japan). This could be seen as prima facie 

evidence that a structuralist model might be appropriate to describe unemployment 
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behaviour in these countries. However, a closer look at the order of integration of the 

series suggests that this might not be the case for all three economies. Specifically, the fact 

that the estimated fractional parameters are consistently higher than 1 in the UK means  

that in this country the economic environment is such that shocks to unemployment (and 

hence macroeconomic policy) have permanent effects, thereby giving support to a 

hysteresis model. An order of integration higher than 1 is also found in the case of Japan 

in the second subsample, indicating a change in the labour market that has resulted in 

hysteresis. By contrast, in the first subsample, and in both periods in the case of the US, 

the estimated degree of persistence implies that, although the speed of adjustment towards 

equilibrium is slow,5 unemployment exhibits mean reversion, consistently with the natural 

rate hypothesis, appearing to be a near-unit root process, with shocks having long-lasting 

but not permanent effects. This finding, combined with the evidence of a break, gives 

support to a structuralist view of unemployment behaviour. Hence it appears that different 

models (hysteresis and structuralist) are appropriate to account for the unemployment 

experience of the different countries and periods under investigation. The impulse 

response analysis also confirms the earlier findings. 

Overall, our results, and the persistence ranking, are in line with earlier studies 

(e.g., Alogoskoufis and Manning, 1988), also reporting that Japan and the US typically 

display lower degrees of unemployment persistence than European countries. The mixed 

evidence on whether persistence has decreased or increased in the UK since the early 

1980s 6 might at first seem surprising in view of the labour market reforms (aimed at 

eliminating rigidities) implemented by the Conservative government led at the time by 

Mrs. Thatcher. However, other authors, such as Blanchflower and Freeman (1994), have 

                                                 
5 In Anderton (1998), the unemployment persistence parameter is estimated to be highest in the UK, and 
bigger in Japan than in the US, as in the present paper.  
6 We find that the estimated fractional parameters are higher in the first subsample for the selected model 
and in most, but not all cases. (See Table 5). 
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reported a slower transition from unemployment to employment in the Thatcher years. 

 These results can be explained in terms of labour market and institutional 

differences. It is usually argued that the poorer unemployment performance of the 

European economies compared to the US is due to imperfections in the labour market (see, 

e.g., Layard et al, 1991). Features such as decentralised wage determination (see Calmfors 

and Driffill, 1988), low social security and trade union density, and minimum employment 

protection are often thought to account for the better labour market outcomes in the US.7 

But in the period 1970-1990 Japan outperformed even the US in terms of unemployment. 

In the Layard et al. (1991) study, wage flexibility in the small business sector and the fact 

that female workers exit the labour market during recessions were highlighted as 

important factors accounting for the absence of hysteresis in Japan. An OECD study 

(1994) attributed instead the successful Japanese experience to some other key features of 

the Japanese labour market, in particular long-term employment relationships, high 

investment in training and worker loyalty.  As for the higher degree of persistence since 

the early 90s, this might be due to intensive on-the-job training and the resulting firm-

specific skills leading to high costs of hiring and firing: in response to possibly temporary 

negative shocks, firms might be reluctant to fire employees with highly specialised skills, 

who would have to be replaced in the upturn by new workers requiring costly additional 

training. This reduces both job creation and destruction, and hence increases 

unemployment persistence.8  

 

  

                                                 
7 Note, however, that the neoclassical paradigm (with the associated deregulation policies) has been 
criticised as exhibiting some theoretical weaknesses, such as second best problems, externalities etc. (see, 
e.g., Greg and Manning, 1997). Also, it has been pointed out that, in addition to the degree of centralisation, 
other features of the bargaining process, such as the degree of unionisation and coordination, as well as the 
coverage of bargaining, are important (see OECD, 1997). 
8 For a more extensive discussion of the Japanese case, see Brunello (1990). 
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6. Conclusions  

In this paper we have made a twofold contribution. First, we have extended to the non-

linear case a general procedure to detect structural breaks at unknown points in time which 

allows for different orders of integration and deterministic components in each subsample 

(see Gil-Alana, 2006). The suggested procedure has been shown by means of Monte Carlo 

experiments to be able to determine accurately the timing of the break in a non-linear, 

fractionally integrated framework. Second, we have applied it to test for breaks in the US, 

UK and Japanese unemployment rates, and assessed the empirical relevance of alternative 

unemployment theories in each case.  

Our empirical findings suggest that unemployment is subject to infrequent breaks 

(more specifically, a single break has been identified in the three countries under study), 

and that non-linearities do not play a very important role. Moreover, unemployment 

appears to exhibit a higher degree of persistence in the UK compared to the US and Japan 

(although in the case of the US persistence has risen since the beginning of the 80s, and in 

Japan hysteresis is found in the period starting in 1993). Overall, it seems that a 

structuralist interpretation (see Phelps, 1994) is more appropriate for the US and Japan, 

whilst a hysteresis model (see Blanchard and Summers, 1986, 1987, and Barro, 1998) 

accounts better for the UK experience (and also for the Japanese one in the second 

subsample). The persistence ranking and the results in general can be interpreted in terms 

of the different characteristics of the labour market in the countries being analysed. In 

particular, imperfections and rigidities preventing or slowing down labour market 

adjustment and clearing (despite the Thatcher reforms) might be responsible for the 

inferior unemployment performance of the UK compared to the US and Japan. The better 

labour market outcomes achieved in the two latter countries could be attributed to higher 

flexibility and deregulation in the case of the US, whilst long-term employment 
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relationships and other related factors might play a role in the case of Japan (see Layard et 

al, 1991). 

Our analysis could be extended by estimating a multivariate fractional model, 

including regressors such as real oil prices and real interest rates, which might account for 

the observed behaviour of the unemployment rate, and also allowing for possible cross-

country linkages. This could be particularly informative when analysing the impulse 

response of unemployment to various types of shocks (e.g. price shocks), including shocks 

affecting unemployment in other countries in the first instance. However, this is beyond 

the scope of the present study, and is left for future research. 
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FIGURE 1 

Examples of simple realisations with non-linear terms, fractional integration and structural 
breaks 
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TABLE 1 

Probabilities of detecting the true model with a break at T/2 and d1 = 0.2 and d2 = 0.4 

)2/(,...,1,)1(;)0(1.0)0(5.0 2.0
11 TTtuxLxyIyIy btttttr ===−+≤+>= −−  

,,...,1,)1(;)0(5.0)0(1 4.0
11 TTtuxLxyIyIy btttttr +==−+≤+>= −−  

T* d1 d2 T = 100 T = 200 T = 300 T = 500 
0.2 0.4 0.0019 0.0019 0.0000 0.0037 Tb –2 
0.2 0.6 0.0019 0.0019 0.0000 0.0018 
0.2 0.2 0.0099 0.0000 0.0038 0.0000 
0.2 0.4 0.0119 0.0039 0.0174 0.0244 
0.2 0.6 0.0059 0.0115 0.0000 0.0000 

 
Tb – 1 

0.4 0.4 0.0019 0.0000 0.0000 0.0000 
0.2 0.2 0.3207 0.2316 0.1356 0.0676 
0.2 0.4 0.3745 0.5791 0.7015 0.8445 
0.2 0.6 0.1235 0.0888 0.0542 0.0261 
0.2 0.8 0.0039 0.0000 0.0000 0.0000 
0.4 0.2 0.0518 0.0094 0.0058 0.0018 
0.4 0.4 0.0418 0.0405 0.0368 0.0150 
0.4 0.6 0.0099 0.0077 0.0019 0.0018 
0.6 0.4 0.0039 0.0000 0.0000 0.0000 

 
 
 
 

Tb  

0.6 0.6 0.0019 0.0000 0.0000 0.0000 
0.2 0.2 0.0159 0.0057 0.0096 0.0018 
0.2 0.4 0.0119 0.0135 0.0251 0.0073 
0.2 0.6 0.0019 0.0039 0.0019 0.0037 
0.4 0.2 0.0019 0.0000 0.0000 0.0000 

 
 

Tb + 1 

0.4 0.4 0.0019 0.0000 0.0019 0.0000 
Tb +2 0.2 0.4 0.0000 0.0000 0.0039 0.0000 

  In bold, the probabilities corresponding to the true model. 
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TABLE 2 

Probabilities of detecting the true model with a break at T/2 and d1 = 0.7 and d2 = 0.3 

)2/(,...,1,)1(;)0(1.0)0(5.0 7.0
11 TTtuxLxyIyIy btttttr ===−+≤+>= −−  

,,...,1,)1(;)0(5.0)0(1 3.0
11 TTtuxLxyIyIy btttttr +==−+≤+>= −−  

T* d1 d2 T = 100 T = 200 T = 300 T = 500 
0.3 0.1 0.0036 0.0000 0.0000 0.0000 
0.3 0.3 0.0019 0.0000 0.0000 0.0000 
0.5 0.1 0.0036 0.0000 0.0000 0.0000 
0.5 0.3 0.0036 0.0093 0.0015 0.0013 
0.7 0.1 0.0055 0.0062 0.0015 0.0013 
0.7 0.3 0.0055 0.0139 0.0185 0.0215 
0.7 0.5 0.0018 0.0015 0.0015 0.0000 
0.9 0.1 0.0018 0.0000 0.0000 0.0000 

 

 

Tb – 2 

0.9 0.3 0.0036 0.0000 0.0000 0.0000 
0.3 0.3 0.0019 0.0015 0.0000 0.0000 
0.5 0.1 0.0092 0.0015 0.0000 0.0000 
0.5 0.3 0.0055 0.0062 0.0061 0.0013 
0.7 0.1 0.0092 0.0030 0.0030 0.0026 
0.7 0.3 0.0147 0.0170 0.0231 0.0269 
0.7 0.5 0.0018 0.0000 0.0015 0.0013 

 
 
 

Tb – 1 

0.9 0.3 0.0036 0.0015 0.0000 0.0000 
0.1 0.3 0.0036 0.0000 0.0000 0.0000 
0.3 0.1 0.0220 0.0019 0.0000 0.0000 
0.3 0.3 0.073 0.0000 0.0000 0.0000 
0.3 0.5 0.036 0.0000 0.0000 0.0000 
0.5 0.1 0.0662 0.0481 0.0169 0.0081 
0.5 0.3 0.1104 0.0729 0.0601 0.0377 
0.5 0.5 0.0313 0.0124 0.0030 0.0000 
0.7 0.1 0.1694 0.1770 0.1203 0.0661 
0.7 0.3 0.1915 0.3742 0.5540 0.7125 
0.7 0.5 0.0497 0.0465 0.0354 0.0148 
0.9 0.1 0.0773 0.0326 0.01008 0.0026 
0.9 0.3 0.0681 0.0652 0.0478 0.0229 

 
 
 
 
 
 

Tb  

0.9 0.5 0.0202 0.0077 0.0092 0.0013 
0.5 0.1 0.0019 0.0046 0.0015 0.0000 
0.5 0.3 0.0147 0.0015 0.0060 0.0039 
0.5 0.5 0.0019 0.0015 0.0000 0.0000 
0.7 0.1 0.0239 0.0046 0.0169 0.0107 
0.7 0.3 0.0184 0.0496 0.0447 0.0553 
0.7 0.5 0.0092 0.0093 0.0092 0.0013 
0.9 0.1 0.0165 0.0030 0.0015 0.0000 

 
 
 

Tb + 1 

0.9 0.3 0.0073 0.0061 0.0045 0.0054 
0.5 0.5 0.0019 0.0031 0.0000 0.0000 Tb +2 
0.7 0.1 0.0055 0.0155 0.0000 0.0000 

  In bold, the probabilities corresponding to the true model. 
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TABLE 3 

Probabilities of detecting the true model with a break at T/4 and d1 = 0.6 and d2 = 0.8 

)4/(,...,1,)1(;)0(1.0)0(5.0 6.0
11 TTtuxLxyIyIy btttttr ===−+≤+>= −−  

,,...,1,)1(;)0(5.0)0(1 8.0
11 TTtuxLxyIyIy btttttr +==−+≤+>= −−  

T* d1 d2 T = 100 T = 200 T = 300 T = 500 
0.4 0.6 0.0044 0.0000 0.0000 0.0000 
0.4 0.8 0.0088 0.0079 0.0075 0.0051 
0.4 1.0 0.0044 0.0000 0.0000 0.0000 
0.6 0.8 0.0021 0.0177 0.0132 0.0323 
0.8 0.6 0.0021 0.0000 0.0000 0.0000 

 

Tb – 2 

0.8 0.8 0.0044 0.0059 0.0075 0.0034 
0.4 0.6 0.0088 0.0000 0.0000 0.0000 
0.4 0.8 0.0154 0.0177 0.0150 0.0034 
0.6 0.6 0.0088 0.0019 0.0000 0.0000 
0.6 0.8 0.0022 0.0197 0.0189 0.0357 
0.8 0.6 0.0088 0.0019 0.0018 0.0017 

 
 
 

Tb – 1 

0.8 0.8 0.0022 0.000 0.0113 0.0017 
0.4 0.6 0.0927 0.0256 0.0189 0.0034 
0.4 0.8 0.2980 0.2984 0.1988 0.1499 
0.4 1.0 0.0794 0.0256 0.0056 0.0017 
0.6 0.6 0.0463 0.0494 0.0284 0.0051 
0.6 0.8 0.1346 0.3379 0.4659 0.5928 
0.6 1.0 0.0463 0.0276 0.0113 0.0034 
0.8 0.4 0.0066 0.0000 0.0000 0.0000 
0.8 0.6 0.0198 0.0079 0.0037 0.0000 
0.8 0.8 0.0684 0.0869 0.0928 0.0562 
0.8 1.0 0.0198 0.0118 0.0075 0.0000 
1.0 0.6 0.0110 0.0000 0.0000 0.0000 
1.0 0.8 0.0286 0.0019 0.0000 0.0000 

 
 
 
 
 
 

Tb  

1.0 1.0 0.0088 0.0000 0.0000 0.0000 
0.4 0.6 0.0066 0.0000 0.000 0.0000 
0.4 0.8 0.0088 0.0059 0.0056 0.0034 
0.6 0.6 0.0088 0.0039 0.0000 0.0000 
0.6 0.8 0.0022 0.0197 0.0340 0.0579 
0.8 0.6 0.0176 0.0000 0.0000 0.0000 
0.8 0.8 0.0066 0.0079 0.0208 0.0102 

 
 
 

Tb + 1 

1.0 0.6 0.0044 0.0000 0.0018 0.0000 
0.6 0.6 0.0044 0.0039 0.0000 0.0000 
0.6 0.8 0.0021 0.0059 0.0189 0.0255 
0.6 1.0 0.0000 0.0039 0.0000 0.0017 

Tb +2 

0.8 0.8 0.0044 0.0019 0.0094 0.0052 
  In bold, the probabilities corresponding to the true model. 
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TABLE 4 

Results for the UNITED STATES 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1)

Tb 73Q4 75Q1 75Q1 74Q4 75Q1 75Q1 72Q2 74Q3 74Q4 74Q3 

d1 0.88 0.92 0.68 0.71 0.67 0.72 0.72 1.01 0.74 0.66 

d2 0.96 0.92 0.83 1.03 0.80 1.11 0.96 0.86 0.86 1.03 

1α  --- --- 
5.758 
(10.48) 

4.994
(4.36) 

5.799
(10.16) 

4.887
(3.36) --- --- --- --- 

2α  --- --- 
8.837 
(15.42) 

16.349
(8.31) 

10.701
(6.86) 

10.948
(2.82) --- --- --- --- 

1β  --- --- --- --- 
-0.007
(-0.27) 

0.0052
(0.16) --- --- --- --- 

2β  --- --- --- --- 
-0.003
(-1.32) 

-0.038
(-0.68) --- --- --- --- 

1
1γ  --- --- --- --- --- --- 

5.342
(8.93) 

0.503 
(1.03) --- --- 

2
1γ  --- --- --- --- --- --- 

0.350 
(1.18) 

0.363 
(1.47) --- --- 

1
2γ  --- --- --- --- --- --- 

5.419
(9.30) 

0.606 
(1.27) --- --- 

2
2γ  --- --- --- --- --- --- 

0.598
(2.09) 

0.601 
(2.51) --- --- 

1
1δ  --- --- --- --- --- --- --- --- 

-0.609 
(-1.07) 

-0.536
(-0.43) 

2
1δ  --- --- --- --- --- --- --- --- 

2.973 
(5.17) 

11.485
(5.26) 

1
2δ  --- --- --- --- --- --- --- --- 

-0.327 
(-0.56) 

-0.234
(-0.19) 

2
2δ  --- --- --- --- --- --- --- --- 

3.123 
(5.29) 

11.501
(5.20) 

1τ  --- -0.162 --- -0.053 --- -0.044 --- -0.095 --- 0.100 

2τ  --- -0.111 --- -0.316 --- -0.418 --- -0.002 --- -0.291
t-values in parentheses. In bold, significant coefficients at the 95% significance level. 
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TABLE 5 

Results for the UNITED KINGDOM 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1)

Tb 73m11 73m11 83m1 81m4 83m1 81m1 73m9 80m3 82m12 81m3 

d1 1.03 1.03 1.53 1.82 1.52 1.84 0.99 1.50 1.52 1.83 

d2 1.18 1.17 1.37 1.52 1.37 1.52 1.19 1.47 1.37 1.52 

1α  --- --- 
3.754 
(70.42) 

3.615
(38.11) 

3.725
(65.34) 

3.681
(28.28) --- --- --- --- 

2α  --- --- 
11.293 
(151.7) 

9.236 
(46.34)

12.761
(2.94) 

16.696
(2.30) --- --- --- --- 

1β  --- --- --- --- 
0.058 
(1.38) 

0.069 
(0.66) --- --- --- --- 

2β  --- --- --- --- 
-0.010
(-0.34) 

-0.073
(-1.18) --- --- --- --- 

1
1γ  --- --- --- --- --- --- 

0.479
(2.04) 

-0.008 
(-0.56) --- --- 

2
1γ  --- --- --- --- --- --- 

0.035 
(0.20) 

0.015 
(1.12) --- --- 

1
2γ  --- --- --- --- --- --- 

-0.005
(-0.02) 

-0.084 
(-0.03) --- --- 

2
2γ  --- --- --- --- --- --- 

0.041
(2.38) 

0.054 
(0.55) --- --- 

1
1δ  --- --- --- --- --- --- --- --- 

-3.386 
(-44.80 

-3.528
(-33.43)

2
1δ  --- --- --- --- --- --- --- --- 

4.031 
(3.21) 

1.974 
(9.92) 

1
2δ  --- --- --- --- --- --- --- --- 

-3.406 
(-63.76) 

-3.535
(-3.76) 

2
2δ  --- --- --- --- --- --- --- --- 

4.024 
(3.11) 

1.966 
(9.77) 

1τ  --- 0.035 --- -0.513 --- -0.527 --- 0.016  --- -0.520

2τ  --- -0.107 --- -0.271 --- -0.260 --- -0.032 --- -0.271
t-values in parentheses. In bold, significant coefficients at the 95% significance level. 
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TABLE 6 

Results for JAPAN 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1) W. N. AR(1)

Tb 93Q1 92Q4 93Q2 93Q1 93Q2 93Q1 92Q3 92Q2 93Q1 92Q4 

d1 1.07 1.06 0.93 0.04 0.95 0.03 1.02 1.16 0.93 0.14 

d2 1.11 1.16 1.42 1.00 1.40 1.00 1.16 1.17 1.45 1.00 

1α  --- --- 
1.2711 
(4.75) 

2.701 
(6.47) 

1.283 
(4.78) 

3.428 
(4.03) --- --- --- --- 

2α  --- --- 
2.3925 
(22.19) 

-151.66
(*.**) 

-1.568 
(-0.29) 

-47.710
(-18.10) --- --- --- --- 

1β  --- --- --- --- 
-0.020 
(-0.49) 

-0.013 
(-1.08) --- --- --- --- 

2β  --- --- --- --- 
0.048 
(0.75) 

0.046 
(2.30) --- --- --- --- 

1
1γ  --- --- --- --- --- --- 

0.276 
(3.94) 

0.032 
(0.65) --- --- 

2
1γ  --- --- --- --- --- --- 

-0.146 
(-0.74) 

-0.361 
(-1.65) --- --- 

1
2γ  --- --- --- --- --- --- 

0.246 
(3.56) 

0.008 
(0.17) --- --- 

2
2γ  --- --- --- --- --- --- 

-0.016 
(-0.08) 

-0.413 
(-1.71) --- --- 

1
1δ  --- --- --- --- --- --- --- --- 

-1.432 
(-4.34) 

-0.211 
(-0.81) 

2
1δ  --- --- --- --- --- --- --- --- 

-0.624 
(-4.25) 

-153.25
(-18.60)

1
2δ  --- --- --- --- --- --- --- --- 

-1.513 
(-5.66) 

-0.275 
(-1.09) 

2
2δ  --- --- --- --- --- --- --- --- 

-0.479 
(-4.64) 

-153.19
(-18.59)

1τ  --- 0.038 --- 0.969 --- 0.956 --- -0.378 --- 0.925 

2τ  --- -0.793 --- 0.016 --- 0.054 --- -0.704 --- 0.016 
t-values in parentheses. In bold, significant coefficients at the 95% significance level. 
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FIGURE 2 

Impulse response functions corresponding to the selected models  
for each country and each subsample  

US: 1960Q1-1975Q1 US: 1975Q2-2004Q4 
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