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Abstract 12 

The stiffness and the natural frequencies of a rectangular and a V-shaped micro-cantilever 13 

beams used in Atomic Force Microscope (AFM) were analysed using the Finite Element (FE) 14 

method. A determinate analysis in the material and dimensional parameters was first carried 15 

out to compare with published analytical and experimental results. Uncertainties in the 16 

beams’ parameters such as the material properties and dimensions due to the fabrication 17 

process were then modelled using a statistic FE analysis.  It is found that for the rectangular 18 

micro-beam, a ±5% change in the value of the parameters could result in 3 to 8-folds (up to 19 

more than 45%) errors in the stiffness or the 1st natural frequency of the cantilever. Such big 20 

uncertainties need to be considered in the design and calibration of AFM to ensure the 21 

measurement accuracy at the micron and nano scales. In addition, a sensitivity analysis was 22 

carried out for the influence of the studied parameters. The finding provides useful guidelines 23 

on the design of micro-cantilevers used in the AFM technology. 24 

 25 
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 28 

1. Introduction 29 

Atomic Force Microscopes (AFMs) have been widely used for scanning measurement at 30 

the micron and nano scales. A micro-cantilever with a sharp probe at its free end is a key 31 

component of an AFM, as shown in Fig. 1. It works in a way similar to a gramophone stylus. 32 

While the probe scans a surface of a sample, the contact force between the probe tip and the 33 

surface being scanned leads to a small elastic deflection of the micro-cantilever. The 34 

deflection is measured by reflecting a laser beam to a position-sensitive photodetector which 35 

records the movement of the reflected laser beam. By converting the signal generated from 36 

the photodetector, a topographic image of the scanned surface can be generated.  37 

The quality of the image obtained from an AFM is greatly dependent on knowing the 38 

elastic parameters of the cantilever. Depending on the mode of application, either the bending 39 

stiffness or the 1st natural (resonant) frequency of the cantilever is used. A good knowledge of 40 

these, often referred to as the calibration of the cantilever, is of fundamental importance to 41 

both the manufacturer and the user as it determines the accuracy of the measurement. Since 42 

the invention of AFM, the study of the calibration of AFM cantilevers has been an essential 43 

subject in the development of the technology [1]. 44 
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 45 

Fig. 1 The working principle of an AFM 46 

An AFM can be used in different modes of measurement, such as contact, noncontact and 47 

tapping modes [1-3]. The classification is based on the type of the interaction between the 48 

probe tip and the surface being scanned. For the contact mode, the probe touches the sample 49 

surface all the time. It is customary to call this type of measurement as the static mode. As a 50 

high magnitude contact force may damage the sample surface, a cantilever of a lower 51 

stiffness is preferred. A flexible cantilever will also yield in large deformation, leading to 52 

higher measurement sensitivity.  53 

An AFM can also be used in a non-contact and tapping manner as termed the dynamic 54 

mode. In the dynamic mode, the cantilever is externally oscillated at or close to its 1st natural 55 

frequency about 5 to10 nano-meter above the sample surface such that the probe only comes 56 

in contact with the sample once in each vibration cycle. Changes in the frequency due to the 57 

contacts provide information of the sample surface profile. In this mode, a higher stiffness, or 58 

higher natural frequencies, normally only the 1st one being used for resonance response, 59 

would give more accurate results.  60 
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There exist a variety of shapes for AFM cantilevers which are used in different modes for 61 

different applications. The most commonly used ones are the rectangular and the V-shaped 62 

configurations, as shown in Fig. 2.  63 

 64 

 65 

 66 

 67 

 68 

 69 

  70 

Fig. 2  SEM (Scanning electron microscope) images of (a) a rectangular cantilever and (b) a 71 

V-shaped cantilever. The arrow in (b) indicates the probe tip. A better view of the tip is 72 

shown in Fig. 6 73 

 74 

AFM cantilevers are mostly made of silicon and silicon nitride in a microelectronic 75 

fabrication process. Cantilevers are made by first patterning a circular silicon dioxide dot on a 76 

silicon wafer. Silicon beneath the silicon dioxide dot is then etched, undercut and oxidized. 77 

Subsequently, the silicon post becomes a tip after the removal of the oxide. Then, the 78 

cantilever is formed by etching the boron doped silicon [1, 2]. 79 

The micro-fabrication process, however, often leads to variable stoichiometry of the 80 

cantilevers, which causes difficulties in controlling the dimensions of the cantilever, such as 81 

the thickness and the length, as well as in ensuring the value of the material properties, such 82 

as the Young’s modulus and the density. All these will cause variation in the stiffness and the 83 

natural frequencies of fabricated cantilevers [4]. 84 

(a) (b) 
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To obtain the value of the stiffness and the natural frequencies of the cantilever, both 85 

experimental and analytical approaches have been proposed. For the measurement of the 86 

stiffness, the cantilever is pushed at the free end by a force of a known magnitude and the 87 

corresponding deflection is measured, from which the stiffness can be calculated based on the 88 

classic elastic beam theory. The known force can be produced in different ways.  One way is 89 

to attach a tungsten sphere [5] of a known mass as shown in Fig. 3. Another commonly seen 90 

method is to use a reference cantilever of known stiffness to press against the unknown one. 91 

From the deflection of the know cantilever, the interaction force can be determined. This 92 

force is then used together with the deflection of the unknown cantilever to determine its 93 

stiffness. Such static methods can achieve an accuracy of 2~5% [6].  94 

 95 

Fig. 3 A cantilever with a tungsten sphere glued to its free end [8] 96 

 97 

The stiffness can also be determined by dynamic test methods which rely on the 98 

determination of the natural frequencies of the cantilever. One method is to fix a mass [7] to 99 

the free end then monitoring the change in the natural frequency of vibration. This technique 100 

is applicable to any cantilevers. However, as the mass has to be permanently added (to 101 

sustain with the vibration) it is destructive and the error in measurement is relatively large [9, 102 

10]. 103 

Apart from experimental measurements, analytical modelling has also been used to derive 104 

theoretical values of the stiffness and the natural frequencies based on the classic structural 105 
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mechanics. For V-shaped cantilevers, different formulae have been proposed, eg. Butt et al. 106 

[12], Sader and White [13] and Sader et al. [14]. One of the examples is the Parallel Beam 107 

Approximation (PBA) by Albrecht et al. [11] in which the V shape is approximated by two 108 

rectangles in parallel. Analytical modelling requires accurate knowledge of the cantilever 109 

properties, such as the Young’s modulus and the geometry, with the latter usually measured 110 

from scanning electron micrograph (SEM).  111 

The structural geometry parameters of a rectangular and a V-shaped cantilever are shown 112 

in Fig. 4, with notations indicating the dimensional parameters needed in determining the 113 

mechanical performance of the cantilever. 114 

 115 

Fig. 4  Geometric parameters of the rectangular and V-shaped cantilevers (the probe tip at 116 

the free end is ignored as negligible in affecting the mechanical performance) 117 

 118 

AFM cantilevers are typically very thin and SEM measurement accuracy error can be of 119 

3%. This may lead to errors in calculation as the thickness is of 3rd power in beam deflection 120 

formula. In addition, material constants such as the Young’s modulus may also vary due to 121 

the anisotropic deposit of the thin film, to a variation range typically more than 3% [13].  122 

In this work, we are motivated to use the finite element (FE) method as an alternative 123 

approach to obtain the stiffness and the natural frequencies of an AFM cantilever, and to 124 

introduce a range of randomness to the numerical model to examine the influence of the 125 

uncertainties in the material and dimensional parameters of the cantilever. The FE model will 126 
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also allow a sensitivity study to be carried out to determine the significance of the parameters 127 

involved.  128 

Both the dynamic and static FE models were built for a rectangular and V-shaped 129 

cantilever, respectively. The paper is organised in the following order. First a deterministic 130 

FE analysis is discussed to verify the FE outcomes with published theoretical and 131 

experimental results. Then the variation in the beam dimensions and the Young’s Modulus 132 

are introduced, assuming a uniform random distribution in the values of the parameters such 133 

as the geometric and the Young’s modulus between ±5% of their nominal values.  Finally a 134 

sensitivity analysis was carried out to obtain the influential effect of the parameters on the 135 

stiffness and the 1st natural frequency of the cantilever. 136 

 137 

2. Finite element analysis 138 

A commercial finite element code ANSYS (Ansys Inc.) was used to model the micro-139 

cantilevers. The nominal values of the parameters used in the simulations were obtained from 140 

a manufacturer of the cantilevers, for instance, AC-160 tapping mode rectangular cantilever 141 

shown in Figs. 5 and 6 by Olympus Corporation [16]. These include both the dimensions and 142 

the material properties, as listed in Table 1. 143 

Measurements of the physical dimensions were also performed using SEM [8]. The 144 

average length and width are 159.6 µm and 51.28 µm, respectively, with the uncertainty 145 

relative to the nominal value being less than 1%. The thickness of the cantilever is critical for 146 

bending deflection, and the uncertainty was found to be much higher. Compared to the 147 

nominal value of 4.6µm, the measured thickness varies from 3.84 to 4.97µm (corresponding 148 

error -16.5% and 8%), respectively. In the FE model, an average thickness of 4.88µm was 149 

used based on SEM measurement. 150 

 151 
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 152 

 153 

 154 

                                                                             (b) 155 

 156 

 157 

 158 

(a)                                                  (b)                                                    (c) 159 

Fig. 5 (a) The manufacturer’s dimensions of the AC-160 micro cantilever [16], (b) and (c) 160 

SEM images of plane view dimensions [8]  161 

 162 

      163 

 (a)       (b) 164 

Fig. 6 SEM images of the thickness of the cantilever [8] (a) View in the axial direction at the 165 

free end, (b) close-up side view of the cantilever root 166 

 167 

The value of the Young’s modulus, density, Poisson’s ratio and geometric parameters used 168 

in the FE analysis are listed in Table 1 for the rectangular configuration and Table 2 for the 169 

V-shaped one. To cater for the variation in the parameters, a randomness of uniform 170 

distribution in dimensions and the Young’s modulus were introduced in a range of ±5% of 171 
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the corresponding nominal values. The density and Poisson ratio were assumed constant due 172 

to lack of available data. The nominal values of the parameters (either the average of the 173 

measurement, or the value provided by the manufacturer) were used in a deterministic 174 

analysis first to verify the FE model with literature results. The cantilevers were assumed to 175 

be isotropic and homogeneous, with one end fully clamped as the boundary condition.  176 

 177 

Table 1 Inputs of the FE model for the rectangular cantilever 178 

Parameters Nominal value Min. value (-5%) Max. value (+5%) 

Length L (µm) 160 152 168 

Width W (µm) 50 47.5 52.5 

Thickness t (µm) 4.6 4.37 4.83 

Young’s Modulus E (GPa) 167.4 159.0 175.8 

Density ρ (kg/µm³) 2.33×10-15 

Poisson’s ratio υ 0.27 

 179 

Table 2 Inputs of the FE model for the V-shaped cantilever 180 

Parameters Nominal value Min. value (-5%) Max. value (+5%) 

Length L (µm) 190 180.5 199.5 

Length L1 (µm) 87.5 83.125 91.875 

Width b (µm) 165 156.75 173.25 

Single limb width w (µm) 33.3 31.635 34.965 

Thickness t (µm) 0.6 0.57 0.63 

Young’s Modulus E (GPa) 179.0 170.1 188.0 

Density ρ (kg/µm³) 2.33×10-15 

Poisson’s ratio υ 0.27 

 181 

The models were built using a quadrilateral shell element provided by ANSYS. After a 182 

convergence test, approximately 27000 elements were used for the rectangular model and 183 
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46000 elements for the V-shaped cantilever model. Fig. 7 illustrates an example of the output 184 

of dynamic analyses of both configurations. 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

2.1 Rectangular cantilever 196 

Dynamic FE modelling for natural frequencies 197 

For the modal analysis of the rectangular cantilever, the first three modes are shown in 198 

Table 3. The nominal frequency values listed in the table indicate the frequencies obtained 199 

with the nominal values of the parameters, while the minimum and maximum are the 200 

frequencies from the corresponding minimum (95% of the nominal) and maximum (105%) 201 

input parameters as listed in Table 1. The percentage values in brackets in Table 3 are the 202 

differences to the nominals. It is clearly shown that the ranges of difference from -16.1% to 203 

19.4% are much bigger than the 5% variation in the input parameters.  204 

 205 

Table 3 First three natural frequencies of the rectangular cantilever 206 

Mode Deformation 
Natural Frequency (kHz) 

Nominal  Minimum  Maximum  
1st Flexure 247.74 207.83 (-16.1%) 295.73 (19.4%) 

Fig. 7 The first mode of free vibration of (a) the rectangular cantilever and (b) the V-shaped 
cantilever  

(a) (b) 
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2nd Flexure 1546.9 1299.1 (-16.0%) 1750.0 (13.1%) 

3rd Torsion 1607.7 1480.1 (-7.9%) 1845.0 (14.8%) 

 207 

The stiffness k can be calculated analytically from the first natural frequency,  208 

  emfk 2
02                                 (1) 209 

where 0f  is the first natural frequency of the cantilever vibration. The effective mass em  is 210 

equal to the multiplication of the cantilever mass m and a geometrical factor n. n is proposed 211 

as 0.2427 by Sader et al [9], or 0.25 by Cleveland et al [7]. Table 4 shows the value of the 212 

stiffness from Eqn. (1) and the classic beam theory. Again, big variations are shown from -213 

16.1% and 49.2% to the nominal values, corresponding to -5% and +5% change in the input 214 

values, respectively. 215 

 216 

Table 4 Stiffness obtained from the 1st natural frequency 217 

 Nominal  Minimum  Maximum  

1st natural frequency (kHz) 247.74 207.83 (-16.1%) 295.73 (19.4%) 

 
 
 

Stiffness 
k (N/m) 

Eq. (1) with  
n = 0.2427 [9] 

50.42 33.63 (-33.3%) 75.25 (49.2%) 

Eq. (1) with   
n = 0.25 [7] 

51.94 34.64 (-33.3%) 77.52 (49.2%) 

Analytical 

3

3

4L

wEt
k   

49.73 33.24 (-33.2%) 74.02 (48.8%) 

 218 

Static FE modelling for stiffness 219 

The static method is an alternative way to calculate the stiffness using deflections under 220 

specific loading. In the FE model, a point load of the magnitude of 1 and 10µN was applied 221 

perpendicular to the cantilever at its free end. Table 5 gives the deflection and the stiffness 222 

calculated. Note that variations of deflection changes are the opposite sense to those of the 223 

stiffness. The two loads produce identical stiffness under elastic deformation. 224 
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 225 

Table 5   FEA results of the stiffness of the rectangular cantilever model 226 

load Nominal  
 

Minimum  Maximum  

 

F=1N 

Deflection 0.019 0.028 (48.7%) 0.012 (-36.8%) 

Stiffness K (N/m) 53.180 35.759 (-32.8%) 80.302 (51.0%) 

 

F=10N 

Deflection 0.188 0.280 (48.9%) 0.125 (-33.5%) 

Stiffness K (N/m) 53.180 35.759 (-32.8%) 80.301 (51.0%) 

 227 

The stiffness is given as 53.18 N/m by the static FEM, 49.73 N/m by the analytical 228 

modelling, 50.42 N/m by the dynamic FEM and 42 N/m by the manufacturer, as compared is 229 

in Fig. 8. It shows that both FE models and the theoretical method agree well, but with a 230 

notable difference (more than 20%) to the value provided by the manufacturer. 231 

 232 

Fig. 8 Comparison of the stiffness of the rectangular cantilever obtained by different methods 233 

 234 

2.2 V-shaped Cantilevers 235 

For the V-shaped cantilever, a randomness variation of ±5% was also introduced in the 236 

input value of the parameter. Results of the dynamic FEM for the nominal, minimum and 237 
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maximum values are shown in Table 6. The “magnified” errors in the natural frequencies are 238 

given in brackets. 239 

Table 6 The first five natural frequencies of V-shaped cantilevers and differences to the normal value 240 

Mode Description 
Natural Frequency (kHz) 

Nominal  Minimum  Maximum  
1st Flexure 33.243  26.939 (-19.0%) 41.097 (23.6%) 

2nd Flexure 171.797 141.644 (-17.6%) 208.652 (21.5%) 

3rd Torsion 190.727 157.166 (-17.6%) 231.784 (21.5%) 

 241 

The first mode is compared with the theoretical result and experimental measurement [5] 242 

as given in Table 7, showing an error range within 8% for the 1st mode and 14% for the 2nd.  243 

Table 7  Comparison of the 1st natural frequencies from theory, experimental [5] and FEA 244 

Theoretical (kHz) Experimental (kHz) FEM (kHz) 

34 31.5 33.2 

 245 

A static FE analysis was also carried out with ±5% error introduced to the input value, as 246 

shown in Table 8. Like in the realiser results, the increased errors are clearly evidential. 247 

 248 

Table 8   FEA results of the stiffness under different loads for the V-shaped beam model 249 

Force Nominal  Minimum  Maximum  
 

F=1N 

Deformation 10.289 14.766 (43.5%) 7.198 (-30.0%) 

Stiffness K 0.0972 0.068 (-30.0%) 0.139 (43.0%) 

 

F=10N 

Deformation 102.887 147.659 (43.5%) 71.981 (-30.0%) 

Stiffness K 0.0972 0.068 (-30.0%) 0.139 (43.0%) 

 250 

Results of different theoretical models [12-14], the dynamic FEM, and the static FEM 251 

agree well except that of Albrecht [11], as shown in Fig. 9. 252 
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 253 

Fig. 9  Comparison of the stiffness of the V-shaped beam obtained by different methods.  254 

 255 

Results of finite element simulations clearly show an increased error bands in the 256 

cantilevers stiffness and natural frequencies due to small variations in the input values of 257 

cantilever dimensions and material property. For design and calibration purpose, the “error 258 

contribution” of each of the input parameters needs to be investigated. In the following 259 

section, a sensitivity study is discussed, aiming to identify the influence of the input 260 

parameters on the overall performance of the cantilevers.  261 

 262 

3. Sensitivity Study 263 

3.1. Mathematical model for sensitivity analysis  264 

For both the rectangular and V-shaped cantilevers, a 5% variation in the parameter values 265 

leads to much bigger changes in the natural frequencies and the stiffness. From the design 266 

view point, it is useful to know the scale of influence of each parameter on the performance 267 
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of the cantilevers. In this section, a sensitivity analysis is presented on the significance of the 268 

dimension and material parameters.  269 

Sensitivity to a variable is defined by the first-order derivative of a function with respective 270 

to the variable. For instance, for a multivariate function )(Xf with X representing the variable 271 

vector of k parameters, ),,,( 21 kxxxX  , the sensitivity of function f to its j-th parameter xj 272 

can be expressed as 273 

kj
x

Xf
S

j
i ,,2,1

)( 



        (2) 274 

A higher magnitude of Sj indicates a stronger sensitivity of f to xi. Note that Sj can be both 275 

positive and negative for the correlation of f to xi. 276 

In the static analysis, the global governing equations is  277 

}{}]{[ FK                       (3) 278 

where ][K  denotes the structure’s stiffness matrix, }{  the nodal displacement and }{F  the 279 

external loading. 280 

Taking partial derivatives of Eqn. (3) and noticing that the external loading F is 281 

independent of the structural and material parameters, thus 0



jx

F
, we have  282 

}{
][

][
}{ 1 

jj x

K
K

x 




            (4) 283 

From FEA, the nodal displacement }{  can be calculated. Then the displacement 284 

sensitivity
jx

 }{
can then be obtained from equation (4).   285 

For the dynamic analysis, the equation of free vibration can be expressed as  286 

niMK ii ,,2,10}]{[][       (5) 287 
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where ][M  is the mass matrix; i  the i-th eigenvalue of the natural frequency, }{ i  the i-the 288 

order eigenvectors; and n  the total number of degree of freedom. 289 

Taking partial derivative of Eq. (5) with respect to the parameter jx yields in 290 

0}{
][

][
][























i
j

i
j

i

j x

M
M

xx

K 
         (6) 291 

Multiplying Eqn. (6) on the left by T
i}{ and introducing a generalized mass 292 

}]{[}{ i
T

ii Mm  , the sensitivity of the i-th order eigenvalue λi with respect to the j-th 293 

parameter jx  is  294 

i

i
j

i
j

T
i

j

i

m

x

M

x

K

x

}){
][][

(}{ 
 











         (7) 295 

The variation of input parameters in this study was limited within the range from -5% to 296 

+5% of their nominal values and was chosen randomly based on the uniform distribution 297 

assumption. After the value of the parameters was randomly chosen, a finite element 298 

simulation was carried out. From the FE results, the sensitivity data was calculated from Eqns. 299 

(4) and (7). This is virtually a Monte Carlo approach when dealing with uncertainty in 300 

variables. 301 

A commercial code Isight (Dassault Systems Co) was used for the sensitivity study in 302 

connection with ANSYS. Isight picks up parameter values based on random sampling for 303 

each parameter in a uniform distribution. The chosen values were then used by ANSYS for 304 

simulation. The obtained FE results are then used by the Isight again to calculate the partial 305 

derivatives to obtain the sensitivity of the stiffness or the 1st natural frequency on individual 306 

input parameter. 307 

 308 

3.2. Sensitivity analysis results 309 
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The effect of the input parameter variables on the stiffness and the first natural frequencies 310 

were obtained, as given in Fig. 10, for both the rectangular and V-shaped micro-cantilevers. 311 

The notations of the legends are defined in Fig. 4.  In Fig. 10, the horizontal axes shows the 312 

range of variations of the input parameters, and the vertical axes give the value of the 313 

magnitude of the stiffness or the 1st natural frequency. The influence appears to be all linear 314 

approximately, due to the narrow range of variation.  315 

For the rectangular cantilever in Fig. 10(a), the cantilever length L has the biggest impact 316 

overall on both the stiffness and the 1st natural frequency with negative slopes, meaning that 317 

an increase in the length will lead to a reduction in the stiffness and the 1st natural frequency 318 

(ie. negative correlation). This is expected from the classic beam theory as the flexural 319 

behaviour of a cantilever is reversely proportion to the length of a beam. Useful conclusions 320 

can be drawn from the figure. For instance, we can see that for every 1% increase in the 321 

cantilever’s length, the natural frequency is reduced by approximately5.0 Hz. For every 1% 322 

increase in beam thickness, the natural frequency is increased by 2.5Hz. The values of the 323 

slope of these linear relationships in Fig. 10 are given in Table 9 for the significance of the 324 

influence of each parameter. 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 
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 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

(a)  Rectangular cantilevers                            (b) V-shape cantilevers 343 

Fig. 10  Effect of input parameters on the stiffness and the 1st natural frequency. Parameter 344 

notations are defined in Fig. 4. 345 

Table 9  variation of the 1st natural frequency and the stiffness to 1% change of each input 346 

parameter’s nominal value 347 

 348 

A pareto diagram is constructed in Fig. 11 to show the contribution of influence of the 349 

input parameters to the 1st natural frequency, as against the overall influence (100%) by all 350 

parameters. Fig. 11(a) shows that the contribution rate of the length L is found to be 351 

approximately 60%, and in the negative correlation, while the thickness is the next most 352 

influential parameter for the rectangular beam.  353 

It is interesting to see that the thickness t has a much stronger effect for the V-shaped 354 

cantilever, as seen in Fig. 11(b), even more than that of the length. Considering the difficulty 355 

  L t w E L1 b 

Rectangular 

1st Natural frequency (kHz) -4.98 2.49 0.04 1.24   

Stiffness (N/m)   -1.53 1.52 0.52 0.50   

V-shaped 

1st Natural frequency (kHz) -0.73 0.39 0.12 0.23 -0.03 -0.14 

Stiffness (N/m) -0.003 0.003 0.001 0.001 -0.001 -0.0001 
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in controlling the thickness in the fabrication process and in its measurement (in comparison 356 

to the length L), this should be the parameter of utmost significance for the design, 357 

fabrication and calibration of the macro-cantilever in AFM.  It is also noted that the Young’s 358 

modulus has a bigger effect proportionally for the V-shaped cantilever than that for the 359 

rectangular one (20% vs. 13%). It shows that different strategies should be adopted in 360 

selecting parameters for the design and fabrication of different cantilevers. 361 

 362 

 363 

 364 

 365 

 366 

 367 

(a)  Rectangular cantilevers                                (b) V-shape cantilevers 368 

Fig. 11. Contribution percentage of main parameters on the 1st natural frequency 369 

 370 

4. Conclusions 371 

The finite element method was used to calculate the stiffness and the natural frequencies of 372 

two micro-cantilevers commonly used in AFM. The dependence of the behaviour of the 373 

rectangular and V-shaped cantilevers on the uncertainty of their dimensional and material 374 

parameters was studied. The error limit in this study was set at ±5% of the nominal value of 375 

the parameters which are either the average of the measurement or the one provided by the 376 

manufacturer. FE simulations show that the stiffness and 1st natural frequency of both 377 

cantilevers vary at a much bigger range than the randomness limit introduced in the design 378 

parameters. In order to enhance modelling accuracy, the measurement precision of the 379 
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dimensional parameters must be improved and variations in material properties need to be 380 

minimised though strictly controlled fabrication process. 381 

 A sensitivity analysis was used to study the influence of design parameters on the 1st 382 

natural frequency and the stiffness. It was found that the main factors affecting the accuracy 383 

are the length, the thickness, and the Young’s modulus, among others. The cantilever length 384 

L has the greatest impact on the natural frequency and the stiffness, and is in a negative 385 

correlation. In terms of significance, the thickness of the cantilever t is the second parameter, 386 

and the Young’s modulus E third, affecting the natural frequency with a positive correlation.  387 

For the V-shaped cantilever, the cantilever thickness t affects the natural frequency most in 388 

a positive correlation. This is followed by the length L in a negative correlation. The effect of 389 

the Young’s modulus is similar to that of a rectangular cantilever.  390 

In this study, approximation was taken for a simplified fully clamped boundary condition. 391 

Moreover, the material is assumed homogeneous and isotropic, which is questionable. For 392 

instance, growth lines across the thickness of silicon deposits can be seen in Fig. 5, which 393 

may contain oriented textures or defects, resulting in non-homogeneity. All these may 394 

contribute to the relatively large difference between the measured and modelled results. This 395 

remains to be further studied. 396 

This study provides a clear understanding on the influence of the uncertainty of influential 397 

parameters on the behaviour of micro cantilevers used in the AFM technology. It provides 398 

useful insights and guidance for the design and calibration of micro cantilevers in AFM.  399 
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