
HOW DO I KNOW WHETHER TO TRUST A RESEARCH RESULT?

MARTIN SHEPPERD,

BRUNEL UNIVERSITY LONDON, UK

Magazines such as this, together with many journals are filled with articles presenting findings,

new methods, tools and all kinds of software engineering advice. But how can we know if we

can trust a research result? Or to put it another way, should the research influence decision

making? For practitioners these are important questions. And it will come as no kind of surprise

in a column such as this that the role of evidence is emphasised. It helps us decide whether

the research can indeed be trusted. It is gratifying therefore to see that empirical evaluation is

increasingly becoming a tool for modern software engineering researchers.

Inconsistent Results in Software Engineering

The following are three examples of systematic litera-

ture reviews that have failed to find ‘conclusion stabil-

ity’ [9] followed by a large experiment comprising many

individual tests.

Jørgensen [5] reviewed 15 studies comparing model-

based to expert-based estimation. Five of those studies

supported expert-based methods, five found no differ-

ence, and five supported model-based estimation.

Mair and Shepperd [8] compared regression to analogy

methods for effort estimation and similarly found con-

flicting evidence. From a total of 20 primary studies,

seven supported regression, four were found no differ-

ence and nine favoured analogy.

Kitchenham et al. [7] identified seven primary studies

of which three found cross-company models were not

significantly worse than using within-company models,

and four found that cross-company models were signif-

icantly worse.

Zimmermann et al. [11] learned defect predictors from

622 pairs of projects 〈P1, P2〉 In only 4% of pairs did

defect predictors learned in P1 predicted effectively for

P2.

So that should be the end of

the matter. Look at the evi-

dence. Unfortunately it would

seem not to be quite that sim-

ple. In many situations the

evidence may be contradictory

or at least equivocal. Fur-

thermore, this can happen even

when one examines the body

of evidence using a systematic

literature review to identify all

relevant studies and then meta-

analysis (that is statistical tech-

niques to combine multiple re-

sults by some means or other

into a single answer).

This lack of consistency sug-

gests that it’s not just a matter

of seeking replications of results

— although this is obviously

important — as the results may

not accord (see the Side Bar en-

titled “Inconsistent Results in

Software Engineering”). How-

ever, the problem doesn’t stop

there. In other fields such as

medicine there is “strong evi-

dence of an association between significant results and publication; studies that report positive or
1



2 MARTIN SHEPPERD, BRUNEL UNIVERSITY LONDON, UK

significant results are more likely to be published and outcomes that are statistically significant

have higher odds of being fully reported.” Dwan et al. [1].

In a classic, though controversial, paper entitled “Why most published research findings are

false” John Ioannidis states that there is “increasing concern that in modern research, false

findings may be the majority or even the vast majority of published research claims” [4]. Rejecting

the explanation that most scientists are charlatans why then might this be so? One issue is the

expedient but open to debate tendency of claiming conclusive findings solely on the basis of a

single study assessed by formal statistical significance, typically for a p-value less than 0.05 that

that the null hypothesis of no effect is true. This is fine but it neglects consideration of the

prior probabilities. As an example, if I conduct an experiment and announce to the world that

I have developed a working anti-gravity machine (p = 0.049, α = 0.05) I shouldn’t be surprised

if this not accepted as compelling evidence by the wider community. The reason being that

my p = 0.049 is dominated by the a priori probability that such a result is extremely unlikely.

Of course this example is foolishness but some fields are vulnerable. Ioannidis suggests that

this is most likely to occur when (i) there is little theory so the primary research methods are

experimental, (ii) where such methods, protocols and analysis techniques are still evolving, (iii)

where effect sizes are not expected to be large and (iv) the prior probability of the research

finding being false is high. He highlights machine learning as being particularly vulnerable.

Types of Bias

researcher bias: this is the combination of research

design, analysis and reporting factors that tend to

produce research findings when they should not be pro-

duced leading to distortions in a particular direction.

This is different from the natural probability of Type I

and II errors arising from the settings of α and β.

publication bias: this is the tendency of the peer

review system to be more likely to accept positive than

negative results and to publish them more rapidly.

This impacts a study in its entirety.

selection bias: this is selective reporting of some but

not all experimental results within a study on the basis

that some results are more ‘interesting’ than others.

Another difficulty derives

from selective reporting of re-

sults. Researchers may have

preference for some results over

others, for example positive re-

sults may be perceived as more

useful or acceptable. Other re-

sults may simply be more in ac-

cord with the researchers prior

beliefs. The likely bias arising

from selective outcome report-

ing is to “overestimate the ef-

fect of the experimental treat-

ment.” [3]

So do all these problems oc-

cur in computer science? To

answer this question I along

with co-researchers Tracy Hall

and David Bowes conducted a

meta-analysis to understand why different studies that looked at the same or overlapping ques-

tions might come up with different answers [10]. We focused on software defect prediction because

there has been a good deal of research activity and we could capitalise upon a prior systematic

review by Hall et al. [2].

To do this we performed a meta-analysis of all the published studies we could find that provided

sufficient information for our purposes. This came to 42 individual primary studies that contained

a total of 600 separate experimental results where each experiment tries to compare the predictive

performance of a particular classifier, e.g. logistic regression, support vector machines, etc. for a



HOW DO I KNOW WHETHER TO TRUST A RESEARCH RESULT? 3

given data set. Typically an experiment compares multiple classifiers across multiple data sets

using what is formally known as a repeated measures design.

By a certain amount of reverse engineering we were able to extract a common response variable

of prediction performance for all studies which was the Matthews correlation coefficient (MCC).

This ranges from +1 for a perfect classifier through 0 for a random classifier to -1 for a perfectly

perverse classifier. Figure 1 shows the distribution of predictive accuracy grouped by the type

or family of classifier as a side by side boxplots. The horizontal lines within the boxes indicate

the median prediction accuracy and the shaded area the 95% confidence limits. The chart shows

considerable overlap between the methods with only the näıve benchmarks clearly performing

worse than the majority of other classifier families. Effectively the variation within a type of

classifier is greater than the variation between the classifiers. This is awkward as it suggests that

the thing researchers want to know, i.e., what’s the best way to predict software defects is being

swamped by variation from other sources.

Figure 1. Boxplots Showing the Comparative Performance (MCC) of Defect
Prediction Systems by Classifier Family. Key: ANN = artificial neural network;

CBR = case-based reasoning; DecTree = decision tree including random forests; Search

= metaheuristic search; SVM = support vector machine.

To better understand what was happening we modelled the results (predictive performance

measured by MCC) using the type of classifier family and three other moderators (which are

variables that can interact on the relationship between the variable of interest (choice of classifier)

and the response variable. We used:

data set: this was introduced since we might reasonably expect some data set characteris-

tics (e.g., size, presence of categorical features, noise, etc) to favour some classifiers over

others.



4 MARTIN SHEPPERD, BRUNEL UNIVERSITY LONDON, UK

input metrics: the classifiers can use quite different sets of inputs some based on process

measures, others on the changes between releases and others using static code analysis

so perhaps this was impacting results.

research group: was added as we wondered whether different groups might have access

to different types of expertise. Groups were determined using co-authorship links and

agglomerative clustering leading to 23 clusters containing 1-10 authors.

In addition our model allowed for higher order interactions between any of the factors. The

results were quite startling. Table 1 shows the results. We see that by itself the choice of classifier

is scarcely significant and contributes a little over 1%. In contrast the research group dominate

and contributes more than 30%. What this means is that the main factor that influences our

research results is not the thing we’re investigating (how to predict defects) but who does the

work.

Table 1. Proportion of total variance in predictive accuracy (MCC) ‘explained’

Factor %

Research Group 31.0%

Data set 11.2%

Research Group:Classifier 6.6%

Input metrics 5.2%

Classifier Family 1.3%

ResearcherGroup:Dataset 1.0%

So it would seem that at least some areas of computer science are not immune to researcher

bias either. In support of this position a separate meta-analyis of experimental results by Magne

Jørgensen and co-workers has also uncovered evidence of researcher bias, in that statistically sig-

nificant results occurred approximately twice as frequently as might be expected from modelling

the base rates [6].

Although there is an element of speculation it would seem contributory reasons include varying

levels of expertise, comparing highly optimised versions of some classifiers with ‘vanilla’ versions

of others and selective reporting. This might seem highly pejorative about us researchers but it

must be stressed this isn’t an attack on anyone’s integrity but merely to progress an important

area of scientific research. After all the ultimate aim of scientific methods is to reduce bias.

Consequently we have made three recommendations that researchers should (i) conduct blind

analysis, (ii) improve reporting protocols and (iii) conduct more intergroup studies in order to

mitigate expertise problems.

So returning to the original question, I would suggest rather than mistrust all scientific research

we need to pose the following questions.

• How likely is the finding to be true based on a priori scientific knowledge?

• To what extent has blinding been used as part of research methods? For example, blind

analysis might protect against selection bias.

• Have appropriate benchmarks, in particular näıve and random methods, been used?

• Are there independent replications?

In the meantime we researchers need to give serious considerations to these concerns.



HOW DO I KNOW WHETHER TO TRUST A RESEARCH RESULT? 5

References

[1] K. Dwan, D. Altman, J. Arnaiz, J. Bloom, A.-W. Chan, E. Cronin, E. Decullier, P. Easterbrook, E. Von Elm,

C. Gamble, D. Ghersi, J. Ioannidis, J. Simes, and P. Williamson. Systematic review of the empirical evidence

of study publication bias and outcome reporting bias. PLoS ONE, 3(8):e3081, 2008.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature review on fault prediction

performance in software engineering. IEEE Transactions on Software Engineering, 38(6):1276–1304, 2012.

[3] J. Hutton and P. Williamson. Bias in meta-analysis with variable selection within studies. Applied Statistics,

49(3):359–70, 2000.

[4] J. Ioannidis. Why most published research findings are false. PLoS Medicine, 2(8):e124, 2005.

[5] M. Jørgensen. A review of studies on expert estimation of software development effort. J. of Systems &

Software, 70(1-2):37–60, 2004.

[6] M. Jørgensen, T. Dyb̊a, K. Liestøl, and D. Sjøberg. Incorrect results in software engineering experiments:

How to improve research practices. J. of Systems and Software, under review, 2014.

[7] B. Kitchenham, E Mendes, and G. Travassos. Cross versus within-company cost estimation studies: A

systematic review. IEEE Transactions on Software Engineering, 33(5):316–329, 2007.

[8] C. Mair and M. Shepperd. The consistency of empirical comparisons of regression and analogy-based software

project cost prediction. In 4th Intl. Symp. on Empirical Softw. Eng. (ISESE). IEEE Computer Society, 2005.

[9] T. Menzies and M. Shepperd. Editorial: Special issue on repeatable results in software engineering prediction.

Empirical Software Engineering, 17(1-2):1–17, 2012.

[10] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of machine learning in software defect

prediction. IEEE Transactions on Software Engineering, 40(6):603–616, 2014.

[11] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect prediction: a large

scale experiment on data vs. domain vs. process. In Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, pages 91–100.

ACM, 2009.


