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Abstract. Linearizability has become the standard correctness criterion for fine-
grained non-atomic concurrent algorithms, however, most approaches assume a
sequentially consistent memory model, which is not always realised in practice.
In this paper we study the correctness of concurrent algorithms on a weak mem-
ory model: the TSO (Total Store Order) memory model, which is commonly im-
plemented by multicore architectures. Here, linearizability is often too strict, and
hence, we prove a weaker criterion, quiescent consistency instead. Like lineariz-
ability, quiescent consistency is compositional making it an ideal correctness cri-
terion in a component-based context. We demonstrate how to model a typical con-
current algorithm, seqlock, and prove it quiescent consistent using a simulation-
based approach. Previous approaches to proving correctness on TSO architectures
have been based on linearizabilty which makes it necessary to modify the algo-
rithm’s high-level requirements. Our approach is the first, to our knowledge, for
proving correctness without the need for such a modification.

1 Introduction

This paper is concerned with correctness of concurrent algorithms that typically arise
in the multicore processor context, in which shared variables or data structures such
as queues, stacks or hashtables are accessed concurrently by several processes. These
are becoming prevalent in libraries such as java.util.concurrent and operat-
ing system kernels. To increase efficiency, these algorithms dispense with locking, or
only lock small parts of a data structure. Thus the shared variables or data structure
might be concurrently accessed by different processors executing different operations
— correctness of such algorithms is therefore a key issue.

To date, the subject of correctness has focussed on a condition called linearizability
[11]. This requires that fine-grained implementations of access operations (e.g., reading
or writing of a shared variable) appear as though they take effect instantaneously at
some point in time within the operation’s interval of execution — thereby achieving the
same effect as an atomic operation. There has been an enormous amount of interest in
deriving techniques for verifying linearizability. These range from using shape analysis
[1, 4] and separation logic [4] to rely-guarantee reasoning [21] and refinement-based
simulation methods [8, 6].

The vast majority of this work has assumed a sequentially consistent memory model,
whereby program instructions are executed by the hardware in the order specified by



the program [14]. However, processor cores within modern multicore systems often
communicate via shared memory and use (local) store buffers to improve performance.
Whilst these weak memory models give greater scope for optimisation, sequential con-
sistency is lost (as the effect of a write to the shared memory is delayed by the local
buffer). One such memory model is the TSO (Total Store Order) model which is imple-
mented in the x86 multicore processor architecture [19].

The purpose of this paper is to investigate correctness of concurrent algorithms in
the TSO memory model. There has been limited work in this area so far, with cur-
rent approaches [3, 9] based on linearizabilty, which makes it necessary to modify the
algorithm’s high-level requirements. Instead, we focus here on the weaker notion of qui-
escent consistency as a correctness criterion. Like linearizability, quiescent consistency
is compositional making it an ideal correctness criterion in a component-based context.
Quiescent consistency was introduced in [2, 18] and has been advocated recently by
Shavit as the correctness condition to be used in the multicore age [17]. Although these
papers provide neither a formal definition nor a proof method for quiescent consistency,
both these shortcomings were addressed in [5], for sequentially consistent architectures.

Like linearizability [11], the definition in [5] is formalised in terms of histories of
invocations and responses of the operations of the concurrent algorithm, while the proof
method is based on coupled simulations [7] of history-enhanced data types [6]. How-
ever, the methods in [5] only address concurrent data structures that are designed to be
quiescent consistent and execute under sequentially consistent memory. The aim of this
paper is to investigate the use of quiescent consistency as the correctness requirement
under TSO memory, then adapt the proof method in [5] to verify such algorithms. We
are not proposing that quiescent consistency is the definitive correctness criterion for
TSO, but rather that it is an alternative to linearizability that may be useful in some
circumstances. We illustrate this with our running example in the paper.

We make three contributions. First, we show how we can adapt the definition of qui-
escent consistency to a TSO memory model (Section 2). Second, we show in Section 3
how we can use Z to model algorithms on a TSO architecture, then in Section 4 using
this model we show how we can adapt the simulation-based proof method to verify
quiescent consistency. We conclude in Section 5.

2 Background

2.1 The TSO Memory Model

In the TSO (Total Store Order) architecture (see [19] for a good introduction), each
processor core uses a write buffer, which is a FIFO queue that stores pending writes to
memory. A processor core performing a write to a memory location enqueues the write
to the buffer and continues computation without waiting for the write to be committed to
memory. Pending writes do not become visible to other cores until the buffer is flushed,
which commits (some or all) pending writes to memory.

The value of a memory location read by a process is the most recent value for that
location in the processor’s local buffer. If there is no such value (e.g., initially or when
all writes corresponding to the location have been flushed), the value of the location is



fetched from memory. The use of local buffers allows a read by one process, occurring
after a write by another, to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU. However, a programmer may explic-
itly include a fence, or memory barrier, instruction in a program’s code to force a flush
to occur. Therefore, although TSO allows some non-sequentially consistent executions,
it is used in many modern architectures on the basis that these can be prevented, where
necessary, by programmers using fence instructions. To model concurrent algorithms
on TSO we assume the following behaviour, which is reflected our Z models [20]: 1

– A write operation to a memory location adds the entry to the tail of its store buffer.
– The head of the store buffer is flushed into the memory. This flush is under the

control of the CPU and thus happens non-deterministically.
– A read of a memory location takes as its value the most recent value in the store

buffer if available, and the value from memory otherwise.

Example 1. Consider the following example, with two global variables x and y which
are both initially 0, and operations to write to and read from the variables.

word x=0, y=0;

set_x(in word d) {x=d;}
read_x(out word d) {d=x;}

set_y(in word d) {y=d;}
read_y(out word d) {d=y;}

A possible execution in TSO is the following sequence of operation calls and flushes:

s1 = 〈(p,set x(1)), (p,read y(0)), (q,set y(1)), (q,read x(0)),
flush(p),flush(q)〉

where (p,read y(0)), for example, means that process p performs a read_y opera-
tion that returns 0, and flush(p) corresponds to a CPU flush of a single value from p’s
buffer. Note that both reads return 0, which is not possible on a sequentially consistent
architecture. This is because the corresponding set operations write to the process’s lo-
cal buffer, and these writes are not globally visible until that process’s buffer is flushed.
Here that happens at the end of the execution. 2

2.2 Concurrent Consistency Models

In what sense is a concurrent algorithm correct? Not only do we have executions as in
the example above, but the fine-grained nature of operations means that processes do not
perform the whole operation at once — an operation’s steps might be interleaved with
steps of another operation executed by another process. To formally capture the fact that
operations can overlap in this way, we introduce the notion of histories as sequences of
events. Events in the sequential world are invocations or returns of operations. In TSO,
they will be an invocation, response or a flush. The sets of events are denoted Event and
EventTSO respectively. Flushes are performed by the CPU and operate on a particular
process’s buffer.

1 We do not need a full formal semantics of TSO, but interested readers are referred to [16, 15]
for formal definitions.



A method is pending if it has been invoked but has not yet returned. A history
is sequential if all invoke events are immediately followed by their matching returns.
Where this is not the case, methods overlap. A quiescent state is one in which there are
no pending methods, and all buffers have been flushed.

Invocations and returns of operations from a set I are performed by a particular pro-
cess from a set P with an input or output value V . We let⊥ denote empty inputs/outputs
and assume that ⊥ ∈ V . Thus we define:

Event ::= inv〈〈P× I × V〉〉 | ret〈〈P× I × V〉〉
EventTSO ::= inv〈〈P× I × V〉〉 | ret〈〈P× I × V〉〉 | flush〈〈P〉〉

Example 2. A TSO history corresponding to the sequence s1 above is:2

h1 = 〈inv(p,set x, 1), ret(p,set x, ), inv(p,read y, ), ret(p,read y, 0),
inv(q,set y, 1), ret(q,set y, ), inv(q,read x, ), ret(q,read x, 0),
flush(p), flush(q)〉

It is in a quiescent state initially and at its end but not anywhere in between. 2

Correctness means that the histories of an implementation should correspond ’in
some sense’ to those of its abstract specification (in which overlapping operations are
not possible). Varying the meaning of ‘in some sense’ results in different correctness
conditions [10]. Of these, linearizability has been widely used as the correctness cri-
terion in sequentially consistent architectures. However, issues arise in the context of
TSO since the direct application of linearizability to TSO requires the natural abstract
specification to be weakened (see the approaches of both [9, 3]). Thus it seems that
linearizability might impose too many constraints to be a useful criterion for a weak
memory model such as TSO since it requires sequential consistency amongst the sys-
tem processes [10]. Instead, here we use an alternative (weaker) correctness criterion,
quiescent consistency [17]. Informally it states that operations separated by quiescent
states should appear to take effect in their (real-time) order.

Quiescent consistency has been recently formalised in [5] for sequentially consistent
architectures and a proof method developed for it. Our first task therefore is to adapt the
definition for a TSO model. First of all some preliminaries. For a history h, #h is the
length of the sequence, and h(n) its nth element (for n : 1..#h). Predicates inv?(e),
ret?(e), and flush?(e) are used to check whether an event e ∈ Event ∪ EventTSO is an
invoke, return or flush, respectively. We let e.p ∈ P, e.i ∈ I and e.v ∈ V be the process
executing the event e, the operation to which the event belongs, and the input/output
value of v, respectively. Furthermore, for a TSO event e that is a return or flush, we
assume e.bv is the boolean corresponding to the event, which holds iff all local buffers
are empty immediately after e occurs. Finally, we let Ret! be the set of all TSO return
events.

We now need a preliminary definition saying what it means to be a matching pair of
invocation and return, a pending invocation, a legal history (where each process calls at
most one operation at a time), and a quiescent history (a history which is in a quiescent
state at its end). Unlike, earlier work, we record concrete flush events in the concrete
histories to handle TSO memory, and hence, the definition below differs from [5, 6],
which were defined for SC architectures.

2 We elide empty inputs or outputs in the events, e.g., write ret(p,set x, ) for ret(p,set x,⊥).



Definition 1. Suppose h ∈ seq Event ∪ seq EventTSO. Two positions m, n : 1..#h form
a matching pair iff mp(m, n, h) holds; n in h is a pending invocation iff pi(n, h) holds; h
is legal iff legal(h) holds; and h is quiescent iff qu?(h) holds, where:

mp(m, n, h) =̂ h(m).p = h(n).p ∧ h(m).i = h(n).i ∧ inv?(h(m)) ∧ ret?(h(n)) ∧
∀ k • m < k < n ∧ h(k).p = h(m).p⇒ flush?(h(k))

pi(n, h) =̂ inv?(h(n)) ∧ ∀m • n < m ≤ #h ∧ h(m).p = h(n).p⇒ flush?(h(n))
legal(h) =̂ h ∈ seq EventTSO ∧ h 6= 〈 〉 ∧ inv?(h(1)) ∧

∀ n : 1..#h • if inv?(h(n)) then pi(n, h) ∨ ∃m • mp(n,m, h)
elseif ret?(h(n)) then ∃m • mp(m, n, h)

qu?(h) =̂ legal(h) ∧ h(#h).bv ∧ ∀ n : 1..#h • ¬pi(n, h) 2

Both linearizability and quiescent consistency are defined by comparing the histories
generated by concurrent implementations with the sequential histories of some given
abstract atomic specification. Here we will adapt the standard definitions to TSO.

Our formal definitions of linearizability and quiescent consistency for TSO are
given below. Both are defined using a function smap that maps the indices of the con-
current history to a sequential history, and linearizability uses an additional function
complete that removes all pending invokes. Bijections from X to Y are denoted X �→ Y .
We assume a function remflush(h, z) which transforms h to z by removing all flushes
from h, but keeps the order of all other events in h the same. Function remflush can be
defined recursively, but its formal definition is elided here for space reasons.

eveq(e, e′) =̂ e ∈ Event ∧ e′ ∈ EventTSO ∧ e.p = e′.p ∧ e.i = e′.i ∧ e.v = e′.v
smap(h, f , hs) =̂ ∃ z : seq EventTSO • remflush(h, z) ∧ f ∈ 1..#z�→ 1..#hs ∧

∀m, n : 1..#z • eveq(hs(f (n)), z(n)) ∧
(mp(m, n, z)⇒ f (m) + 1 = f (n))

Definition 2 (Linearizability and Quiescent consistency on TSO). Let h be a TSO
history, hs a sequential history. The history h is said to be quiescent consistent with hs
iff qcons(h, hs) holds and linearizable with respect to hs iff lin(h, hs) holds, where:

qcons(h, hs) =̂ ∃ f • smap(h, f , hs) ∧
∀m, n, k : 1..#h • m < n ∧ m ≤ k ≤ n∧

qu?(h[1..k]) ∧ ret?(h(m)) ∧ inv?(h(n))⇒ f (m) < f (n)
lrel(h, hs) =̂ ∃ f • smap(h, f , hs) ∧

∀m, n,m′, n′ : 1..#h •
n < m′ ∧ mp(m, n, h) ∧ mp(m′, n′, h)⇒ f (n) < f (m′)

lin(h, hs) =̂ ∃ h0 : seq Ret! • legal(ha h0) ∧ lrel(complete(ha h0), hs) 2

The key point to note is that quiescent consistency allows the operations of processes
between quiescent states to be reordered, whereas linearizablity does not. As in [5], we
have the following property.

Proposition 1 (Linearizability implies quiescent consistency).
For any h ∈ seq EventTSO and hs ∈ seq Event, lin(h, hs)⇒ qcons(h, hs). 2

Example 3. Let us return to Example 1 above. In what sense is this correct with respect
to an abstract specification which has one operation for each concrete one? Consider h1



again. Because of the effect of the local buffers, both read operations return 0. This is
only possible at the abstract level if the reads occur before the writes. For example, h1
could be mapped to sequential history:

h2 = 〈inv(p,read y, ), ret(p,read y, 0), inv(q,read x, ), ret(q,read x, 0),
inv(p,set x, 1), ret(p,set x, ), inv(q,set y, 1), ret(q,set y, )〉

Such a reordering is possible under quiescent consistency, but not linearizability. 2

This example highlights a typical consequence of using a TSO architecture. We
should allow for programmers to exploit such consequences in order to improve the ef-
ficiency of their algorithms. Therefore, in some circumstances it makes sense to adopt
quiescent consistency as the correctness criterion for TSO. The only existing work on
correctness on TSO [3, 9] has looked at linearizability, and to do so has needed to mod-
ify the high-level requirements of the algorithms by either adding implementation-level
details such as buffers and flushes, or nondeterminism reflecting operation reorderings
to the abstract specifications. There has been no work, as far as we are aware, on quies-
cent consistency as the correctness criterion for TSO.

3 Modelling an Algorithm on the TSO Architecture

As a more complex motivating example, we examine the Linux locking mechanism
seqlock [13], which allows reading of shared variables without locking the global mem-
ory, thus supporting fast write access. We begin by showing that while seqlock is lin-
earizable on a standard architecture, it is neither linearizable nor quiescent consistent
on TSO without the use of memory barriers. We then turn our attention to a one-writer
variant of seqlock (based on the non-blocking write protocol of [12]) which we show is
quiescent consistent in Section 4.

Example 4. In the usual seqlock algorithm all processes can read and write. A process
wishing to write to the shared variables x1 and x2 acquires a lock and increments a
counter c. It then proceeds to write to the variables, and finally increments c again before
releasing the lock. The lock ensures synchronisation between writers, and the counter
c ensures the consistency of values read by other processes. The two increments of c
ensure that it is odd when a process is writing to the variables, and even otherwise.
Hence, when a process wishes to read the shared variables, it waits in a loop until c
is even before reading them. Also, before returning it checks that the value of c has
not changed (i.e., another write has not begun). If it has changed, the process starts
over. A typical implementation of seqlock (based on that in [3]) is given in Figure 1. A
local variable c0 is used by the read operation to record the (even) value of c before
the operation begins updating the shared variables. In general, the release operation
does not include a fence instruction and so does not flush the buffer. 2

Abstract specification - AS. The algorithm is captured abstractly in Z [20], a state-
based specification formalism that allows specification of data types by defining their
state (variables), initial state and operations. All these are given as schemas, consisting
of variable declarations plus predicates further constraining the variables. Input and



word x1 = 0, x2 = 0;
word c = 0;

write(in word d1,d2) {
acquire;
c++;
x1 = d1;
x2 = d2;
c++;
release; }

read(out word d1,d2) {
word c0;
do {

do {
c0 = c;

} while (c0 % 2 != 0);
d1 = x1;
d2 = x2;

} while (c != c0); }

Fig. 1. Seqlock implementation

output variables are decorated by ‘?’ and ‘!’, respectively, and notation v′ denotes the
value of a variable v in the post state of an operation. Unprimed variables of a schema S
are introduced into another schema by including S in the declaration, and both unprimed
and primed variables are introduced using ΞS or ∆S, the former constraining variables
to remain unchanged. For the program in Fig. 1, the abstract specification is:

AS
x1, x2 : N

ASInit
AS

x1 = x2 = 0

Writeq

∆AS
d1?, d2? : N

x′1 = d1? ∧ x′2 = d2?

Readq

ΞAS
d1!, d2! : N

d1! = x1 ∧ d2! = x2

The abstract state (as defined by schema AS) consists of two variables x1 and x2
of type N, representing x1 and x2 in Fig. 1, respectively. The initial state is given by
ASInit, which ensures that execution begins in a state in which the value of both x1
and x2 is 0. Parameterised schemas Writeq and Readq, where q denotes the process
performing the step, represent abstractions of the fine-grained operations write and
read in Fig. 1, respectively. Writeq (atomically) sets the values of x1 and x2 by ensuring
the values of x′1 and x′2 equal to d1? and d2?, respectively. Readq sets the outputs d1!
and d2! to x1 and x2, respectively.

Histories of the abstract specification are generated by initialising the state as spec-
ified by ASInit, then repeatedly choosing a process q and schema Writeq or Readq non-
deterministically, and transitioning to the next state as specified by the chosen schema.

Proposition 2. Seqlock is linearizable with respect to the abstract specification AS on
a sequentially consistent architecture.

Choosing the final statement of each concrete operation as its linearization point (i.e.,
the point where the operation appears to take effect), the proposition can be proved
using the existing approach of Derrick et al. [6]. 2



Proposition 3. Seqlock is not linearizable with respect to the abstract specification AS
on the TSO architecture, nor is it quiescent consistent.

Proof By Proposition 1 linearizability does not hold if quiescent consistency does not
hold. To show quiescent consistency does not hold, we provide a counter example,
which follows from the fact that flushes from successive writes can interleave resulting
in inconsistent reads. For example, in the following concrete history process r reads the
values 3 and 2 for x1 and x2, respectively, which cannot occur according to the abstract
specification:
〈inv(p,write, (1, 2)), ret(p,write, ), inv(q,write, (3, 4)), ret(q,write, ),
flush(p), flushF(p), flush(q), flush(q), flush(q), flush(q), flush(p), flush(p),
inv(r,read, ), ret(r,read(3, 2))〉

The four flushes for each of p and q correspond to the flushing of the first write to c,
the write to x1, the write to x2, and the second write to c, respectively. Note that this
counter-example is only possible since the write operations may not include a fence.
2

To avoid such inconsistent behaviour in practice, a memory barrier is required at the
end of the write operation. Since reads cannot complete while a write operation is
pending, with this memory barrier there are no behaviours possible on TSO other than
those possible on a sequentially consistent architecture. Hence, the algorithm can be
proved linearizable by Proposition 2.

To illustrate correctness proofs on a TSO architecture further, we examine a variant
of seqlock in which all processes can read, but only one can write. In this case, no writer
lock is required and the write operation can be simplified by removing the acquire
and release commands. To verify quiescent consistency (or indeed linearizability)
we need a formal specification of this system, which we give now.

Concrete specification - CS. Let P be a set of processes and PC denote program
counter values.

PC ::= 1 | w1 | w2 | w3 | r1 | r2 | r3 | r4
The state CS comprises both the global variables, and program counters, local variables
and buffers for each process.

CS
x1, x2, c : N
pc : P→ PC
d1, d2, c0 : P→ N
b : P→ seq({x1, x2, c} × N)

CSInit
CS

x1 = x2 = c = 0
∀ q : P • pc(q) = 1 ∧ b(q) = 〈 〉

The elements of the processes’ buffers (denoted by variable b) are ordered pairs, the
first element of which identifies a global variable (using a label, e.g., x1, written in sans
serif), and the second the value written to it by the process. To simplify the presentation
of the operation specifications, we adopt the following two conventions:

1. Any values (of variables or in the range of functions) that are not explicitly defined
in an operation are unchanged.



2. x1(q) denotes the value of x1 read by a process q. This value is either the most
recent in its buffer or, when no such value exists, the value of the global variable
x1. Simarly, for x2(q) and c(q).

Let p : P denote the writer process. The write operation is captured by four operations
in Z: one for each of its lines (given that the acquire and release commands have
been removed). The subscript p acts as a parameter to the operations.

W1p

∆CS
d1?, d2? : N

pc(p) = 1 ∧ pc′(p) = w1

d′1(p) = d1? ∧ d′2(p) = d2?
b′(p) = b(p)a 〈(c, c(p) + 1)〉

W2p

∆LS

pc(p) = w1 ∧ pc′(p) = w2

b′(p) = b(p)a 〈(x1, d1)〉

W3p

∆CS

pc(p) = w2 ∧ pc′(p) = w3

b′(p) = b(p)a 〈(x2, d2)〉

W4p

∆CS

pc(p) = w3 ∧ pc′(p) = 1

b′(p) = b(p)a 〈(c, c(p) + 1)〉

The read operation is captured by 5 operations in Z: R1q for one iteration of the
inner do-loop3, R2q for the assignment to local variable d1, R3q for the assignment to
local variable d2, R4q for starting a new iteration of the outer do-loop (when c 6= c0),
and R5q for returning the read values (when c = c0). In each case, the subscript q : P is
a parameter identifing the process performing the operation. There is also an operation
Flushp corresponding to a CPU flush of the writer process’s buffer.

R1q

∆CS

pc(q) = 1 ∨ pc(q) = r1
c′0(p) = c ∧ if c′0(q) mod 2 6= 0

then pc′(q) = r1
else pc′(q) = r2

R2q

∆CS

pc(q) = r2 ∧ pc′(q) = r3
d′1(q) = x1(q)

R3q

∆CS

pc(q) = r3 ∧ pc′(q) = r4
d′2(q) = x2(q)

R4q

∆CS

pc(q) = r4 ∧ c0(q) 6= c(q)
pc′(q) = r1

3 Any command, and in particular a write to c, occurring between the assignment to c0 and the
check of the loop condition will have the same effect as if it occurred after the check. Hence,
no potential behaviour is prohibited by modelling the two commands by a single operation.



R5q

∆CS
d1!, d2! : N

pc(q) = r4 ∧ c0(q) = c(q)
d1! = d1(p) ∧ d2! = d2(q)
pc′(q) = 1

Flushp

∆CS

b(p) 6= 〈 〉
(b(p)(1)).1 = x1 ⇒ x′1 = (b(p)(1)).2
(b(p)(1)).1 = x2 ⇒ x′2 = (b(p)(1)).2
(b(p)(1)).1 = c⇒ c′ = (b(p)(1)).2
b′(p) = tail b(p)

4 Showing Quiescent Consistency on the TSO Architecture

With this model in place we now consider how we can verify that it is indeed quiescent
consistent. First of all we consider why linearizability is not appropriate.

Proposition 4. Seqlock with one writer process is not linearizable with respect to the
abstract specification AS on a TSO architecture.

This follows from Example 5 below, which gives a history in which reads from the
writer process p and another process q occur in an order that is not possible at the
abstract level. 2

Example 5. The following concrete history is possible.

〈inv(p,write, (1, 2)), ret(p,write, ), inv(p,read, ), ret(p,read, (1, 2)),
inv(q,read, ), ret(q,read, (0, 0)), flush(p), flush(p), flush(p), flush(p)〉

The first flush occurs after q’s read so c will be even, which allows the read to proceed.
The first read in the history (by p) reads the values of x1 and x2 from p’s buffer. The
second (by q) reads from the global memory. The overall effect is that the second read
returns older values than the first; hence, there is no corresponding abstract history. 2

Burckhardt et al. [3] prove this variant of seqlock is linearizable on TSO. However,
in order to do this, they are forced to use an abstract specification that, like the concrete
algorithm, has local buffers and CPU flushes. Hence, reading of older values after newer
values have been read (as in the history above) is allowed by the abstract specification.
It is our goal, however, to show correctness with respect to the stronger, and more
intuitive, abstract specification AS — since an abstract description of seqlock should
not mention buffers and flushes.

Under quiescent consistency, the above history could be reordered as the following
abstract sequential history:

hs = 〈inv(q,read, ), ret(q,read, (0, 0)), inv(p,write, (1, 2)), ret(p,write, ),
inv(p,read, ), ret(p,read, (1, 2))〉

Proposition 5. Seqlock with one writer process is quiescent consistent with respect to
abstract specification AS on a TSO architecture. 2

We describe a proof methodology in Section 4.1 and then give an outline proof of this
proposition using the schemas from AS and CS in Section 4.2.



4.1 Simulation Rules for Quiescent Consistency

We adapt a refinement-based proof method for verifying quiescent consistency on se-
quentially consistent memory models defined in [5]. Let our abstract specification be
given as A = (AState,AInit, (AOPp,i)p∈P,i∈I) and concrete specification be given as
C = (CState,CInit, (COPp,j)p∈P,j∈J) where the sets I and J are used to index the
abstract and concrete operations and P is the set of all process identifiers. The func-
tion abs : J → I maps each concrete operation to the abstract operation it imple-
ments. In the definitions below, we treat operations as functions in the following two
ways: AOpp,i(ini, outi) denotes an operation with its input and output parameters, and
in COpp,j(in, cs, cs′) we have made the before and after states explicit.

The simulation rules for quiescent consistency use a non-atomic, or coupled, simu-
lation [7] which matches the concrete return events that result in a quiescent state with
a sequence of abstract operations, and (abstractly) views all other concrete events as
skips. For this to work, we need to keep track of the progress of the concrete operations
in non-quiescent states. Thus we extend the retrieve relation R (between abstract and
concrete states) with a history H, giving a family of retrieve relations RH . For transi-
tions to a quiescent state, we need to match up with a sequence of all abstract operations
corresponding to the invoke and return events occurring in H. Quiescent consistency al-
lows us to potentially reorder H to achieve this.

quiescent quiescent

A :

AOpp,1
o
9 AOpq,1

H1 = 〈inv(p,AOp1, )〉
H2 = H1

a 〈inv(q,AOp1, )〉
H3 = H2

a 〈ret(q,AOp1, )〉

COpp,a COpq,a COpq,b COpp,b

C :

RH1R〈 〉 RH2 RH3 R〈 〉

Fig. 2. Coupled simulation for some example run

Figure 2, taken from [5], illustrates an example where the abstract operation AOpp,1

is implemented as COpp,a
o
9 COpp,b (so abs maps both a and b to 1). Processes p and q

execute concrete steps. In the initial and final quiescent states, the systems are related
by R〈 〉. In non-quiescent states the systems are related by a retrieve relation that has
recorded (via invocation and return events) the concrete operations that have completed.
These will ultimately have to be matched when transitioning to a quiescent state. As
with all simulations, to apply the proof method one needs to define the simulation rules,
and prove that all the squares (and triangles) in diagrams such as Figure 2 commute.

Notation: The definition of coupled simulation uses predicates inv?(Op), ret?(Op),
int?(Op), and flush?(Op) that hold iff the concrete operation Op is an invocation, return,
internal (i.e., neither invoke, return or flush), and flush event respectively.

To allow the concrete reordering we write hs ' H for two histories hs : seq Event
and H : seq EventTSO iff hs ∼ H \ {| flush |} where ∼ is permutation equivalence and
H \ {| flush |} removes all flushes from the history H.



Furthermore, we let AOP denote the set of all abstract operations and define a func-
tion hist which constructs the sequential history corresponding to a sequence of abstract
operations:
hist(〈AOpp1,1(in1, out1), . . . ,AOppn,n(inn, outn)〉) =̂
〈inv(p1,AOp1, in1), ret(p1,AOp1, out1), . . . , inv(pn,AOpn, inn), ret(pn,AOpn, outn)〉

For a sequential history hs and abstract states as and as′ we define
seqhist(hs, as, as′) =̂ ∃ aops : AOP∗ • aops(as, as′) ∧ hist(aops) = hs,

which holds iff (a) there is some abstract sequence of operations aops whose composi-
tion (in order) is a relation between as and as′, and (b) the sequential history generated
from aops is hs.

Example 6. The abstract history hs of Example 5 maps the state as = {x1 7→ 0, x2 7→
0} to as′ = {x1 7→ 1, x2 7→ 2}. Hence, we have seqhist(hs, as, as′). 2

A coupled simulation for proving quiescent consistency is given below. It uses the
following definition where h is an abstract history and cs is a concrete state:

qu(h, cs) =̂ ∀ n : 1..#h • ¬pi(n, h) ∧ ∀ p : P • cs(b(p)) = 〈 〉
which holds iff (a) there are no pending invocations in h, and (b) all process buffers are
empty in cs, where we assume b models the buffer for each process. This is used to
determine when an execution is in a quiescent state. For example, in seqlock reads are
completed by their returns, whereas writes require at least one flush after their return
to complete. Therefore, we reach a quiescent state in one of the following two ways.
Either all buffers are empty and the lasting pending read returns, or all processes are
idle and a flush empties the last non-empty buffer.
Note that unlike Definition 2, which uses concrete histories to determine quiescence,
Definition 3 below uses both the histories H and the concrete state built up in RH .

Definition 3 (QC Coupled simulation for TSO). Let A and C be abstract and con-
crete specifications. Let H : seq EventTSO. A family of relations RH ⊆ AState × CState
is a QC (quiescent consistent) coupled simulation from A to C iff ∀ as : AState, cs, cs′ :
CState, in, out : V, p : P, i : I, j : J such that RH(as, cs), each of the following holds:

1. COpp,j(in, cs, cs′) ∧ inv?(COpp,j)⇒ RHa〈inv(p,AOpabs(j),in)〉(as, cs′)
2. COpp,j(cs, cs′) ∧ int?(COpp,j)⇒ RH(as, cs′)
3. COpp,j(cs, cs′, out) ∧ ret?(COpp,j)⇒

if ¬qu(H a 〈ret(p,AOpabs(j), out)〉, cs′) then RHa〈ret(p,AOpabs(j),out)〉(as, cs′)
else ∃ as′ : AState • R〈 〉(as′, cs′) ∧
∃ hs • hs ' H a 〈ret(p,AOpabs(j), out)〉 ∧ seqhist(hs, as, as′)

4. COpp,j(cs, cs′) ∧ flush?(COpp,j)⇒

if ¬qu(H a 〈flush(p)〉, cs′) then RHa〈flush(p)〉(as, cs′)
else ∃ as′ : AState • R〈 〉(as′, cs′) ∧
∃ hs • hs ' H a 〈flush(p)〉 ∧ seqhist(hs, as, as′)

together with the initialisation condition: ∀ ci : CInit • ∃ ai : AInit • R〈 〉(ai, ci). 2



We now describe these proof obligations. Rule 1 is for a step that starts (invokes) an
operation, e.g., W1p, where the event corresponding to the step is added to the history
H collected thus far. The proof obligation requires that if RH holds before the invoca-

tion then RHa〈inv(p,AOpabs(j),in)〉 holds after, and the abstract system does not take a step.
Rule 2 applies to steps that are neither invocations nor returns, e.g., W2p, and requires
that RH is maintained. Again, the abstract system does not take a step.

Rule 3 applies to a return step, e.g., W4p, and has two cases. The case is deter-
mined by appending the corresponding return event to H and testing whether or not
qu holds. For a return to non-quiescent step, the abstract state does not change, but

RHa〈ret(p,AOpabs(j),out)〉 must hold in the poststate provided RH holds in the prestate. Re-
turn to quiescence is more complicated, and requires that there exists a sequential his-
tory hs that is a permutation of Ha〈ret(p,AOpabs(j), out)〉 such that overall effect of the
steps corresponding to hs is equivalent to a transition from the abstracting start state as
to as′. Furthermore, as′ is related to the concrete poststate cs′ via R〈 〉, where the history
collected thus far is empty because the system has returned to quiescence.

These rules are in essence the same as those for sequentially consistent architectures
in [5]. For TSO, we need an additional rule for flushes, Rule 4. This rule is similar
to Rule 3. For a return to non-quiescent step, the abstract state does not change, and

RHa〈flush(p)〉 must hold in the poststate provided RH holds in the prestate. Return to
quiescence requires that there exists a sequential history hs that is a permutation of
H a 〈flush(p)〉 such that overall effect of the steps corresponding to hs is equivalent to
a transition from the abstracting start state as to as′. Again, as′ is related to the concrete
poststate cs′ via R〈 〉.

Quiescent consistency, as with linearizability, is a safety property and no liveness is
guaranteed. Therefore, Definition 3 does not mention any applicability conditions.

Following the proof strategy in [5], it can be shown that coupled simulation is a
sound proof technique for quiescent consistency (the proof of this follows from the
definition).

Theorem 1. Let A and C be abstract and concrete specifications, respectively. If there
is a coupled simulation RH from A to C, then C is quiescent consistent wrt. A. 2

4.2 Proof Outline for Seqlock

To apply Definition 3 one needs to define RH and also give the explicit reordering of the
concrete history on returning to quiescence (conditions 3 and 4). RH is a conjunction
of a number of individual cases corresponding to possible values of the buffer in any
state. The proof consists of a number of small proof steps which individually are not
complicated but we do not have space to give them all here. Rather we just aim to give
a flavour of what is involved.

First we need to determine which condition(s) of Definition 3 needs to be proved
for each of the concrete Z operations. Condition 1 needs to be proved for W1p and
R1q which are the invocation events of the write and read operations respectively.
Condition 3 needs to be proved for W4p and R5q which are the return events of the



write and read operation respectively, and condition 4 for the occurrence of Flushp.
Condition 2 needs to be proved for all other operations.

1. Defining R〈 〉: R〈 〉 relates abstract states and quiescent concrete states. The latter
are those in which pc(q) = 1 for all processes q, and the buffer of the writer process p
is empty. In these states, the abstract and concrete values of x1 and x2 are equal, and c
is even. That is, letting A.x1 and A.x2 denote the abstract variables x1 and x2, R〈 〉 is true
when

A.x1 = x1 ∧ A.x2 = x2 ∧ c mod 2 = 0 ∧ (∀ q : P • pc(q) = 1) ∧ b(p) = 〈 〉

2. Defining RH: For H 6= 〈 〉, RH includes a number of conjuncts depending on the
values of pc and b for the individual processes. For example, when H’s last event is
an invocation of the write operation with input values d1? and d2?, RH includes the
following conjuncts.

– If pc(p) = w1 the inputs from the pending write operation are in d1(p) and d2(p).

pc(p) = w1 ⇒ d1(p) = d1? ∧ d2(p) = d2? (1)

– If pc(p) = w2 the inputs from the pending write operation are either in the last
entry of b(p) and d2(p), or x1 and d2(p) when the writer process’s buffer has been
completely flushed.

pc(p) = w2 ∧ b(p) 6= 〈 〉 ⇒ last b(p) = (x1, d1?) ∧ d2(p) = d2? (2)
pc(p) = w2 ∧ b(p) = 〈 〉 ⇒ x1 = d1? ∧ d2(p) = d2? (3)

3. Proof obligations for initialisation and non-quiescent states. Given the com-
plete definition of RH it is possible to prove the initialisation condition and the coupled
simulation conditions for each concrete Z operation that does not result in a quiescent
state. For example, consider just the conjuncts (1) to (3) above.

The invocation event for the write operation is W1p. This operation sets d1(p) to
d1?, and d2(p) to d2?, and so establishes the consequent of (1). Since pc(p) = w1 in its
poststate, (1) to (3) hold.

Operation W2p is an internal event. It adds (x1, d1(p)) to the end of b(p). Since
(1) holds in the prestate of the operation, last b(p) = (x1, d1?) in the poststate. Also
since (1) holds in the prestate and the operation does not change d2(p), d2(p) = d2?
in the poststate. Hence, the consequent of (2) is established. Since W2p also establishes
pc(p) = w2 and b(p) 6= 〈 〉 in its poststate, (1) to (3) hold.

When pc(p) = w1 or pc(p) = w2, a Flushp operation can also result in a non-
quiescent state. It does not change pc(p). When pc(p) = w1, since the consequent of
(1) holds in the prestate of the operation, it will also hold in the poststate since Flushp

does not change d1(p) or d2(p). Hence, (1) to (3) hold.
When pc(p) = w2, since b(p) 6= 〈 〉 in the prestate of Flushp the consequent of

(2) holds. If in the poststate b(p) 6= 〈 〉 then, since Flushp does not change last b(p) or
d2(p), the consequent of (2) continues to hold as required. If in the poststate b(p) = 〈 〉
then in the prestate there was only one entry in the buffer which we know from the
consequent of (2) is (x1, d1?). Hence, in the operation’s poststate we have x1 = d1?



and, since Flushp does not change d2(p), d2(p) = d2?. Hence, the consequent of (3)
holds as required. Therefore in both cases, (1) to (3) hold.

Finally, when pc(p) = w1 or pc(p) = w2, a process other than p can do any of the
concrete Z operations capturing the read operation, as an invocation or internal event.
In each case, since no local variables of p nor any global variables are changed, (1) to
(3) will continue to hold.

In the full proof, the above reasoning would be extended to all conjuncts which
comprise RH for each concrete history H beginning from a quiescent state.

4. Proof obligations for quiescent states. The remaining steps of the proof require
showing that each concrete Z operation that results in a quiescent state simulates an
abstract history which is a reordering of the concrete history since the last quiescent
state. As discussed earlier there are two ways of a reaching a quiescent state. The first is
when all buffers are empty and the lasting pending read returns. In this case, the else
condition of Rule 3 applies. The other case is when all processes are idle and a flush
empties the last non-empty buffer. In this case the else condition of Rule 4 applies.

To prove the rules we are required to find a reordering of the sequence of the con-
crete history, which can be determined for both Rule 3 and 4 as follows.

Case 1 : ret(p, read, ( , )) occurs between ret(p, write, ( , )) and the final flush(p)
of that write.
In this case, there is no to reorder the operations (since the read is from p’s buffer
and so is consistent with the write) and the abstract history corresponds to the
order of returns.

Case 2 : ret(q, read, ( , )) occurs between ret(p, write, ( , )) and the final flush(p)
of that write.
In this case, the clue for finding a valid reordering is found in Example 5 where
a process reads an older value after a newer value has been read. To avoid this
situation, we can reorder the concrete history as follows. In the reordered abstract
history, we want the read by q to occur before the write by p. Therefore, we
move the return (and if necessary, invocation) of the read to be immediately before
the return of the write. As in Case 1, the order of the abstract history is then the
order of the returns. If there is more than one such read operation, the order they
appear in before the write operation is arbitrary.

Case 3 : ret(p, read, ( , )) occurs after both ret(p, write, ( , )) and the final flush(p)
of that write.
In this case, there is no to reorder the operations and the abstract history corre-
sponds to the order of returns.

Case 4 : ret(q, read, ( , )) occurs after both ret(p, write, ( , )) and the final flush(p)
of that write.
In this case, there is no to reorder the operations and the abstract history corre-
sponds to the order of returns.

The reordered concrete history will have no read operations on q while a write
operation on p is pending or has not yet been completely flushed to the global mem-
ory. Hence, there will be no effects from writes being delayed: all reads by processes
other than the writer process will occur either before the write begins, or after it has



been completely flushed to memory. Therefore, there will be an abstract history corre-
sponding to the reordered concrete one. As an example, consider the following concrete
history with a single write and three reads.
〈inv(p,write, (1, 2)), inv(r,read, ), ret(p,write, ), inv(p,read, ), inv(q,read, ),
ret(q,read, (0, 0)), flush(p), flush(p), ret(p,read, (1, 2)), flush(p), flush(p),
ret(r,read,(1,2)〉

At the end of this history, we are in a quiescent state. All buffers are empty and
the lasting pending read returns, hence Rule 3 applies. To reorder this, we note that
Case 1 applies to the read by p and Case 4 to the read by r. Therefore, no reordering
is required. For the read by q Case 2 applies. Therefore, the return of this read is
moved to immediately before the return of the write. In this case, we also need to
move the invocation of the read (since it occurs after the return of the write.

The reordered concrete history is therefore as follows.

〈inv(p,write, (1, 2)), inv(r,read, ), inv(q,read, ), ret(q,read, (0, 0)),
ret(p,write, ), inv(p,read, ), flush(p), flush(p), ret(p,read, (1, 2)), flush(p),
flush(p), ret(r,read,(1,2)〉

The order of the operations in the corresponding sequential abstract history hs is
given by the order of returns above:

〈inv(q,read, ), ret(q,read, (0, 0)), inv(p,write, (1, 2)), ret(p,write, ),
inv(p,read, ), ret(p,read, (1, 2)), inv(r,read, ), ret(r,read,(1,2)〉 .

5 Conclusions

This paper has investigated methods for proving correctness of concurrent algorithms
on TSO architectures. Due to the apparent reorderings of reads and writes in a TSO
memory model, we have focussed on quiescent consistency as a correctness criterion.
We have shown how to model an algorithm and prove quiescent consistency using a
simulation-based approach. This was illustrated with a running example based on se-
qlock, but is applicable to other algorithms running on TSO.

Other work on correctness of algorithms on TSO have altered the definition of lin-
earizability. For example, TSO-TSO linearizability [3] and TSO-SC linearizability [9]
have been defined. These approaches, however, prove correctness with respect to ab-
stract specifications which have been altered to include either low-level details of lo-
cal buffers and CPU flushes (TSO-TSO linearizability), or nondeterminism to account
for possible operation reorderings (TSO-SC linearizability). Gotsman et al. [9] provide
the following abstract specification of seqlock, where the abstract state is modelled as
queue: writes are added to the head of the queue, and reads do not return the last value in
the queue but any previously written values. In their notation, this is written as follows
[9, pg20-21].

Queue q = {(0, 0)};

write(in word d1, d2) {
q.enqueue(d1,d2); }

read(out word d1, d2) {
while (*)

q.dequeue();
(d1,d2) = q.top(); }
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Fig. 3. Comparison of different approaches

This is in contrast to our more natural specification where reads return the most recently
written values.

Burckhardt et al. also use a more natural specification:

word x1 = 0, x2 = 0;

write(in word d1, d2) { lock; x1 = d1; x2 = d2; unlock; }

read(out word d1, d2) { lock; d1 = x1; d2 = x2; unlock; }

However, to cope with the effects of TSO memory, each write operation of the ab-
stract specification takes place in two atomic steps: a write to a store buffer and a mem-
ory flush. Therefore, while the abstract specification is seemingly natural, its underlying
semantics is architecturally dependant and includes local store buffers and CPU flushes.
As acknowledged by Burckhardt et al., their notion of linearizability is “different from
the classical definition of linearizability on a sequentially consistent memory model,
which requires methods in the specification to be implemented by one atomic action”
[3, pg100].

An overview of our approach in comparison to TSO-TSO and TSO-SC linearizabil-
ity is given in Fig. 3. TSO-TSO linearizability fails to cross the boundary from the TSO
implementation to a sequentially consistent (SC) abstraction, while TSO-SC lineariz-
ability crosses this boundary at the cost of a weaker non-deterministic specification. On
the other hand, by weakening the linearizability criterion to quiescent consistency, it is
possible to prove a relationship with respect to a more intuitive deterministic abstract
specification.
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