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Abstract

The aim of this thesis is a development of a new class of financial models with

random parameters, which are computationally efficient and have the same

level of performance as existing ones. In particular, this research is threefold.

I have studied the evolution of storable commodity and commodity futures

prices in time using a new random parameter model coupled with a Kalman

filter. Such a combination allows one to forecast arbitrage-free futures prices

and commodity spot prices one step ahead.

Another direction of my research is a new volatility model, where the

volatility is a random variable. The main advantage of this model is high

calibration speed compared to the existing stochastic volatility models such as

the Bates model or the Heston model. However, the performance of the new

model is comparable to the latter. Comprehensive numerical studies demon-

strate that the new model is a very competitive alternative to the Heston or

the Bates model in terms of accuracy of matching option prices or computing

hedging parameters.

Finally, a new futures pricing model for electricity futures prices was de-

veloped. The new model has a random volatility parameter in its underlying

process. The new model has less parameters, as compared to two-factor models

for electricity commodity pricing with and without jumps. Numerical exper-

iments with real data illustrate that it is quite competitive with the existing

two-factor models in terms of pricing one step ahead futures prices, while be-

ing far simpler to calibrate. Further, a new heuristic for calibrating two-factor

models was proposed. The new calibration procedure has two stages, offline

and online. The offline stage calibrates parameters under a physical measure,

while the online stage is used to calibrate the risk-neutrality parameters on

each iteration of the particle filter. A particle filter was used to estimate the

values of the underlying stochastic processes and to forecast futures prices one

step ahead.

The contributory material from two chapters of this thesis have been sub-

mitted to peer reviewed journals in terms of two papers:

• Chapter 4: “A fast calibrating volatility model” has been submitted to

the European Journal of Operational Research.



• Chapter 5: “Electricity futures price models : calibration and forecasting”

has been submitted to the European Journal of Operational Research.
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Chapter 1

Introduction

1.1 A brief history of financial modelling

The modern economy has narrowed the boundaries between national markets

for financial securities. There is an enormous amount of data available on fi-

nancial transactions at regulated exchanges, including historical price changes,

transaction sizes and trading volumes. Professional investors use this informa-

tion to model the behaviour of asset prices and devise possible ways to optimise

the return on investment or reduce the exposure to the risk of investing in se-

curities with an uncertain or unknown future return.

This thesis looks at asset price behaviour models based on stochastic pro-

cesses. The contribution of the thesis lies in building models for certain as-

set pricing applications which are computationally simpler than the existing

benchmark ones, but yield a comparable accuracy.

Louis Bachelier [8] was the first to set a price of an asset to be a stochas-

tic process following an arithmetic Brownian motion. The unique assumption

allowed the development of a new approach for pricing market contracts. How-

ever, the idea was met with scepticism from scientists. With the support of

Henri Poincaré, this idea remained alive, but received a little attention in the

literature for almost half a century. The development of probability theory

and stochastic calculus allowed the construction of more efficient and complex

theories about market behaviour.

Investing in only one asset leaves an investor exposed to risk of high losses.

To avoid this limitation, Markowitz [57] developed a theory of portfolio opti-

misation, based on the historical performance of an asset, which was awarded
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with a Nobel prize in 1990. This theory has a huge impact on the development

in stochastic finance. It uses the fact that, in a portfolio of a bank account, an

option and the underlying asset, one can choose weights of the cash and the

asset holding at each time, such that the resulting portfolio eliminates risk[58].

Henceforth, the fact that any risk-free portfolio earns a unique risk-free rate of

return allows us to price the option in terms of a solution of a partial differential

equation (PDE). The solution to the PDE for ‘vanilla’ put and call options was

proposed in [13]. Despite Bachelier’s assumption that, the underlying process

is adopted by an arithmetical Brownian motion, Black and Scholes specified an

asset price to follow a geometrical Brownian motion (GBM). With a positive

drift, this model ensures that the company net worth grows over time on aver-

age. An extension to the Black-Scholes model was introduced by Merton [60]

in 1973. It was concerned about very quick price changes (jumps), which were

modelled with a compound Poisson process. However, this approach doesn’t

have a closed form solution for options. There is an open question of whether

there are real jumps on the market and the validity of using the compound

Poisson process to model them.

Further study on stochastic models allowed the development of stochastic

interest rate models. The first major research was proposed by Vasicec in

[77]. A short-rate process was treated as a mean-reversion stochastic process,

which is based on an ‘Ornstein-Ulenbeck’1 process. Such an approach is also

popular for currency option models because of the nature of currency price

behaviour. The weakness of the approach is that this model might produce

negative interest rates. Later, Cox, Ingersoll and Ross (CIR) [21] assumed

that instantaneous interest rate has a stationary gamma distribution. A CIR

process is a square root process, which eliminates the possibility of negative

values for interest rates.

All the models discussed so far, viz Black-Scholes and Merton models for as-

set prices and Vasicec and CIR models for interest rates, assume that volatility

has no separate source of uncertainty, other than the asset price or the interest

rate itself. These models are called local volatility models2, with a constant

volatility model such as the Vasicec model being a special case. However, local

1This process is popular in physics, which usually represents movement of a spring re-
leased after a load.

2Local volatility means that a volatility is a function of the asset price process and time,
i.e. its value at a given time is completely determined by the value of the asset price process
at the given time.
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volatility models do not explain certain features of the observed market be-

haviour such as a volatility smile and smirk, i.e. the variation in the volatility

implied by option prices with the strike price, at the same expiration date. We

will re-visit this issue in chapter 4.

The solution to this problem has been suggested by Wiggins [80] with the

assumption that volatility is not constant and can be represented as stochastic

process. Hull and White [49] assumed that, in a stock return model stochas-

tic volatility can itself have the form of GBM, which is uncorrelated with the

interest rate process. The advantage of this model is the availability of an

explicit solution for the option prices in terms of infinite series. Despite hav-

ing stochastic volatility in this model, one more question for this model was

still unanswered: Is the process for volatility chosen right?. Since both pro-

cesses,viz., asset return and stochastic volatility are GBM, it means that, on

average they will grow or decline infinitely. This problem was solved by Stein

[74]. He used an OU process for stochastic volatility, which allowed the ex-

pected value of the volatility to converge to a pre-defined long run mean value.

However, a mean-reverting process is not bounded from below and can yield

negative values. Consequently, new assumptions were made about the pro-

cess driving stochastic volatility. Heston [44] substituted the volatility process

in Stein’s model with a CIR process. As a result, the possibility of negative

values for volatility was eliminated with the square-root term. In addition, a

semi-closed form solution was developed through characteristic functions for

option prices.

We will look at option pricing in far more detail in chapters 2 and 4. Since

we will also consider pricing of certain commodity securities in this thesis, we

will discuss commodity markets next.

1.2 Commodity market

A brief introduction to modern commodity price models is provided here. The

definition of commodities and commodity markets came from economic studies.

According to Marx’s idea [59], commodity prices can be evaluated using labour

theory of value, with respect to discrete parameters such as labour, rent and

profit. This idea was criticised in the works of David Ricardo [69] and Adam

Smith [72], where the supply-demand relationship was established to estimate

the commodity prices. This approach was later adopted by Mackey [55], where
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the variation of the market price of a commodity was presented as a balance

of supply and demand. Hence, the most complicated part of this model is

that the supply function is stochastic, due to the dependence on the supply

schedule.

Understanding commodity markets involves understanding forward rate

curves and futures contracts written on commodities. In 1931, Hotelling

[46] criticised the overuse of exhaustible resources and the economic situa-

tion around them. He introduced a mathematical approach for evaluating

exhaustible resources. His hypothesis states that an owner of a commodity

would always like to have a maximum profit from selling it and if the interest

rate is constant, then the present value of a unit of profit at a future time will

be proportional to a negative exponential discount rate. Moreover, he defined

the relationship between current commodity price and its price in the future.

In 1949, Working [81] introduced an inter-temporal price relation, which is

now referred to as a forward curve. He analysed the relationship between the

shape of the forward curve and provided an explanation of how it depends on

the price of commodity storage.

The development of the probability theory and stochastic modelling pushed

the development of models for forecasting market variables. Hubbert [47], in

1956, introduced an approach to forecast oil and gas production in the United

States and worldwide. He derived a model to predict the dates when the

production of these commodities will achieve their peaks. Samuelson in [70]

studied the stochastic behaviour of commodity prices. The idea of existence

of a free competitive market3 was criticized in [70]. In addition, a hypothesis

was proposed that commodity prices change over time by performing a ran-

dom walk with no predictable bias. Furthermore, Samuelson presented the

fundamental evidence that futures with longer time to maturity have lower

volatilities than futures with a short time to maturity. Later this phenomenon

was called the ‘Samuelson effect’.

Fischer Black in [12] provided a comprehensive study of commodity con-

tracts. He clarified the meaning of futures and forward contracts and intro-

duced his futures option pricing model. An assumption was made that the

commodity price is a price at which it can be bought or sold for immediate

delivery. In his idea, the commodity price tends to follow a seasonal pattern,

e.g., for agricultural commodities, the price before harvest is higher than after

3In this context, a free competitive market means that there is a buyer for every seller.
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a harvest. Moreover, commodity patterns don’t always provide opportunities

for profit. For example, a spot price on an agricultural commodity can rise

constantly at any rate below the storage cost per unit time for the commodity,

without raising a profit opportunity.

Modelling the commodity price behaviour involves understanding a variety

of factors such as the evaluation of natural resource investment projects, and

this is the difference with other type of assets. In comparison to stock prices,

which represent the performance of the company over time, commodities rep-

resent a full business cycle associated with them (e.g. investment, production,

weather effects, etc). One of the first works on the stochastic control of com-

modity projects was done by Brennan and Schwartz [14]. They applied tech-

niques of time arbitrage and stochastic control on mining projects. The idea

was to find a mathematical representation of a self-financing portfolio with the

absence of an arbitrage opportunity. In addition, they introduced interest rate

as a deterministic function of time and modelled a portfolio as a problem of

stochastic control. This research provided an example of an optimal decision

making model for investors and project managers.

Fama and French [34] focused on two theories in futures pricing. The

first one was based on the theory of storage, which explains the difference

between contemporaneous futures and spot prices according to the changes in

interest rates, warehousing costs and convenience yields. The second one is

based on two components viz., the expected premium and the expected value

of the spot price at maturity time. Their study focused on the behaviour of

commodity futures prices. They provided an analysis of the convenience yield

and a method to determine whether it was caused by the risk-premium or the

storage cost theory.

One of the first stochastic models for commodity pricing was introduced

by Gibson and Schwartz [39]. The two-factor model was presented for pricing

financial and real assets contingent on the price of oil and short term valuation

of futures prices.

An additional study on the behaviour of commodity prices was done by

Deaton and Laroque [25]. They applied the standard rational expectations

competitive storage model to the real market using yearly data. This was made

to compare the prices of commodities with and without storage costs. As a

result, differences were reported in the probability density and the skewness of

commodity prices. They also provided the evidence that empirical prices are
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auto-correlated yearly. This model explains whether price spikes will appear

or not during a bad harvest season and how they depend on storage.

Further discussion on commodity and futures price modelling will continue

in chapters 3 and 5.

1.3 Foreword

Even though financial models have become more sophisticated with time, many

commonly used models are often quite complicated to calibrate and to use in

pricing or forecasting. In this work, we aim to to develop new financial models

for pricing and forecasting which are simpler to calibrate and to use than the

existing benchmark models, while still delivering an acceptable accuracy. We

will focus on models for two different purposes: index option pricing and energy

commodity futures pricing. In the latter area, we look at pricing storable (oil,

gasoline and natural gas) as well as non-storable (electricity) futures contracts

separately. Simplification of the models is achieved through replacing complex

stochastic processes with random model parameters and modifying the pric-

ing formulae accordingly. It is shown that the newly developed models yield

comparable pricing and forecasting performance on real financial data as the

relevant benchmark models, while being computationally easier to calibrate

and use. Moreover, we use filtering algorithms for parameter estimation and

introduce new heuristics to calibrate the models for electricity futures pricing.

The research in this thesis has achieved the following goals:

• We have proposed new financial asset pricing models (specifically, for

index option pricing and commodity pricing).

• We have demonstrated through extensive numerical experiments that the

new models have explanatory power comparable to existing benchmark

models. These new models are computationally far simpler to calibrate

and to use in comparison to the existing benchmark models.

• Further, the new heuristic procedures have been developed to simplify

and speed up the calibration procedure for these models.

Subsequent chapters are organised as follows.
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• Chapter 2 outlines the necessary mathematical and financial preliminary

information. The first section is focused on a futures pricing framework

and its extension with jump processes. The next section discusses an

option pricing framework. The last section provides the preliminary

information on the model calibration techniques used in this thesis.

• Chapter 3 discusses the development of a one-factor model with a ran-

dom parameter for energy commodity price behaviour. My idea is to

develop a model with one factor, i.e., with one stochastic process and

one random variable, which mimics the properties of a model with two

factors i.e. with two (non-trivial) stochastic processes. Two-factor mod-

els were taken as benchmark models against which the new one-factor

models were tested. A simple version of a seasonality function is used for

both the one-factor and the two-factor models. This chapter combines

theory and practice by carrying out a variety of numerical experiments

and benchmarks across the discussed models.

• In chapter 4, we define a new class of random volatility models for option

pricing. The new volatility model assumes that volatility, rather than

being a stochastic process, is a function of time with a random parameter.

The distribution of the volatility is assumed to be log-normal, which

can be rigorously justified in a classical stochastic process framework.

However, the model class allows us to use almost any distribution with a

few restrictions, such as an existence of all the moments. An option price

formula is given in terms of an infinite series, which allows for an easy

approximation. The results show that the model can be used for pricing

European options, path dependant options and for computing hedging

parameters. Extensive numerical experiments compare the calibration

effort and the pricing accuracy of the new model with those of the Heston

model and the Bates model.

• Chapter 5 discusses a new random volatility electricity price model. The

new random volatility model is based on assumption that volatility is

a random number. We provide an approximate expression for the elec-

tricity futures price for this model. In addition, we introduce a new and

simplified offline calibration procedure for the two-factor models and the

online calibration stage for all the models. Moreover, this chapter is con-
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cerned with an empirical investigation into the use of jump-risk premium,

which is used to compensate for the risk due to jumps in a compound

Poisson process. This approach to account for the jump-risk was recently

developed by [16]. A particle filter was used for a one step ahead futures

price forecasting in numerical experiments.

• A summary of the contributions of this thesis is provided in chapter 6,

along with future research directions.

• The plots regarding evolution of certain variables (noise variances and

risk premium) and the expressions for the moments for a two-factor pro-

cesses with jumps for chapter 5 are provided in Appendix A.

• Technical documentation on attached software used for this research is

provided in Appendix B.
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Chapter 2

Preliminaries

2.1 Commodity market models

The main requirement for a commodity price model for a sufficient liquid

market is the absence of an arbitrage opportunity. Hence, a correct framework

for the model has to be defined. For this purpose, the Heath-Jarrow-Morton

framework (HJM) [43] and the results from Manoliu and Tompaidis [56] for

normally distributed log commodity prices distribution are used. In addition,

results by [66], [28], [78] and [16] are used for the jump diffusion models used

in modelling the log commodity price. Explicit formulae are provided for

commodity and futures prices for up to two factors. The next two sections

discuss the futures pricing models with and without jumps.

2.2 Two-factor model for commodities

We use the treatment of commodity price models from [56]. Assume that

spot price St is driven by the vector process Xt = [x
(1)
t , x

(2)
t ]T and t ∈ [0, T ∗],

where T ∗ is a time horizon. Let logSt =
∑

i x
(i)
t : {Xt ∈ Ω} on a probability

space (Ω,P,Ft), where Ω is set of all possible realisations of Xt, P is the

objective probability measure defined on Ω and Ft is the natural filtration. For

representing discrete time intervals, a subscript n is used, (tn : n = 0, .., N ,

t0 < t1 < · · · < tN = T ∗,∆ := tn − tn−1), where N is the number of time

12



intervals. The stochastic process for Xt =
[

x
(1)
t x

(2)
t

]⊤
is described as follows:

dx
(1)
t = (α1 − κx

(1)
t )dt+ σ1dW

P
1,t, (2.1)

dx
(2)
t = α2dt+ σ2dW

P
2,t, (2.2)

dWP
1,tdW

P
2,t = ρdt, (2.3)

where α1, α2, κ, σ1, σ2, ρ are real constants and WP
1,t, W

P
1,t are Wiener processes

on (Ω,P,Ft). Let T = [T1, . . . , TM ] be a vector of maturities, and let Tm <

T ∗, ∀m = 0, . . . ,M .

A futures price of a commodity with maturity time Tm at given time t is

given by the formula:

F (t, Tm) = E
Q(STm

|Ft), (2.4)

where the futures price is the average of an asset in the future with respect to

a risk free rate. One has to apply a change of measure to Xt, to price a futures

contract.

Since the process Xt is a two-dimensional stochastic process, solution to

its system can be found in terms log F̃ (t, Tm) = x
(1)
t eκt + x

(2)
t . A multivariate

Ito’s formula is applied to the latter:

dF̃ (t, Tm)

F̃ (t, Tm)
=
[
(α1e

κt + α2)dt+ σ1e
κtdWP

1,t + σ2dW
P
2,t

]
. (2.5)

Assume, that (2.5) describes the stochastic evolution of a generic futures

contract with maturity date Tm at time t and F̃ (t, Tm) = 0 ∀t : t ∈ (Tm, T
∗].

To show the relationship of (2.5) with (2.4), the existence of an equivalent

martingale measure has to be discussed.

For instance, let Φt be a M + 1 dimensional stochastic process adopted to

the given natural filtration. Φt = (φ1
t , . . . , φ

M
t , ψt) is a futures trading strategy,

where φm
t is the number of futures contracts with maturity date Tm at the given

time t and ψt is the bank account. In addition, let φm
t = 0 ∀t ∈ (Tm, T

∗].

Therefore, the value of a portfolio Vt is defined with the following equation:

Vt =
M∑

m=1

φm
t F̃ (t, Tm) + ψtBt, (2.6)

where Bt is a cash account, which is defined by dBt = rtBt, B0 = 1, where rt

is a deterministic short-term interest rate process.
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The futures trading strategy is called self-financing if Vt satisfies the fol-

lowing SDE (see [56] for more details):

dVt =
M∑

m=1

φm
t dF̃ (t, Tm) + ψtdBt (2.7)

Strategy (2.7) is arbitrage-free, if there is no possibility of making profit,

without cash injections. More details on self-financing strategies, can be found

in [28]. Henceforth, the strategy (2.7) is assumed to be arbitrage-free and,

hence, an expression for F can be derived under the risk neutral measure.

Hence, there exists a martingale measure Q equivalent to P. Let the market

price of risk be a two-dimensional adapted stochastic process ht = [h1t , h
2
t ]

T

on (Ω,Q,Ft), such that Novikov’s condition (e.g. see [67]) is satisfied and the

following holds:

α1e
κt + α2 = σ1h

1
t + σ2h

2
t . (2.8)

Moreover, from Girsanov’s theorem [40]:

dQ
dP = exp

{

−
2∑

i=1

(∫ T

0

hitdW
P
i,t +

1

2

∫ T

0

|hit|2dt
)}

. (2.9)

Substitution of (2.8) into (2.5) and the change of measure yield the following

relationship between Wiener processes:

WQ
i,t = WP

i,t +

∫ t

0

hisds.

Overall, the futures price process (2.5) under the risk-neutral measure is

given as an SDE without a drift component:

dF̃ (t, Tm) = σ1e
κtdWQ

1,t + σ2dW
Q
2,t. (2.10)

Hence, using the fact that (2.8), F̃ (t, Tm) is related to F (t, Tm) by changing

the drift component.

The results in this section are later employed in chapter 3 for numerical

experiments.
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2.2.1 Two-factor model a practical example

Let St be the market commodity price, and let Xt = [x
(1)
t , x

(2)
t ]⊤ be a vector-

valued stochastic process on a probability space (Ω,P,Ft), where Ω is set of all

possible realisations of Xt, P is the objective probability measure defined on Ω

and Ft is the natural filtration. The elements in Xt are chosen such that x
(1)
t

is a mean-reverting process which represents a short term price fluctuations

and x
(2)
t is a Brownian motion representing long term price changes. Now, the

market commodity price can be written as an exponent of the sum of elements

in Xt: log St =
∑2

i=1 x
(i)
t + f(t), where f(t) is a deterministic function of time,

which represents a seasonality factor as before:

dx
(1)
t = (α1 − κx

(1)
t )dt+ σ1dW

P
1,t, (2.11)

dx
(2)
t = α2dt+ σ2dW

P
2,t, (2.12)

f(t) = c1 + c2 sin(c3t+ c4), (2.13)

dWP
1,tdW

P
2,t = ρdt, (2.14)

where α1, κ, α2, σ1, σ2 are constants and dW
P
1,t, dW

P
2,t are Wiener processes with

correlation coefficient ρ. A vector c = [c1, c2, c3, c4]
⊤ represents the seasonality

parameters in f(t).

Using the results from section 2.2, (2.11) and (2.12) can be written under

the risk-neutral measure Q as following:

dx
(1)
t = (α̃1 − κx

(1)
t )dt+ σ1dW

Q
1,t, (2.15)

dx
(2)
t = α̃2dt+ σ2dW

Q
2,t, (2.16)

dWQ
1,tdW

Q
2,t = ρdt (2.17)

where:

α̃1 = α1 − λ1σ1,

α̃2 = α2 − λ2σ2,

and λ1, λ2 are prices of risk. The solution to the equations (2.15) and (2.16 is

obtained by using Ito’s formula and integration over the interval [t, t+∆]. It
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is easy to show that application of Ito’s lemma to (2.15) and (2.16) gives us

the following equations:

E
Q[log St+∆ | x(1)t , x

(2)
t ] = f(t+∆) + e−κ∆x

(1)
t +

α̃1

κ

(
1− e−κ∆

)
+ x

(2)
t + α̃2∆,

(2.18)

VarQ[log St+∆ | x(1)t , x
(2)
t ] =

σ2
1

2κ

(
1− e−2κ∆

)
+ 2

ρσ1σ2
2κ

(
1− e−κ∆

)
+ σ2

2∆.

(2.19)

As before, the futures price F (t, Ti) at time t with maturity date Ti is

defined under the risk-neutral measure Q:

F (t, Ti) = E
Q(STi

| Ft). (2.20)

Since log ST is normally distributed:

logF (t, Ti) = E
Q(logSTi

| Ft) +
1

2
VarQ(log STi

| Ft) (2.21)

This allows us to derive an affine equation for the vector of log futures

prices in terms of the log-spot price:

vec{yit} = E
Q
(

logSTi
| x(1)t , x

(2)
t

)

+
1

2
VarQ

(

log STi
| x(1)t , x

(2)
t

)

. (2.22)

Referring to the filtering terminology mentioned in section 2.7.1, the system

of equations (2.11)-(2.14) is the system of transition equations for the log-

spot price process, which is treated as an unobserved or latent variable. The

logF (t, T ) for the measurement equation is given by (2.18)-(2.19) and (2.22).

In addition, two cases when f(t) = 0 and f(t) 6= 0 are compared as two-factor

model (TF) and two-factor model with seasonality (TFS) respectively. Results

on numerical experiments for these models are presented in Section 3.4.

2.3 Two-factor model with jumps for commod-

ity price modelling

The model discussed before works well with a range of assets. However, the

main assumption is that a (log-) price path generated by the model has a
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Gaussian distribution. This assumption of a Gaussian distribution is often

inadequate. It was widely reported that the distribution of log-spot electricity

prices is observed with fat tails, see e.g. [18], [33], [75] and [45]. The reason is

that electricity is a commodity which cannot be stored. As a result, the market

prices of electricity commodity exhibit high levels of volatility in short-time

intervals. The latter results in very quick and sharp price movements over time

and usually these movements have high amplitudes.

One possibility to model this behaviour is to force κ in (2.1) to take high

values. This will allow process (2.1) to move around the long-run mean faster

over time. However, this solution is temporary, which is limited by the chosen

time frame, since an asset behaviour is not always ‘explosive’. More modelling

approaches to this problem are briefly discussed in chapter 5.

One solution to the problem can also be obtained by adding a compound

Poisson (CP) process to the short-term process. The latter is called an affine-

jump diffusion (AJD) process. The solution of the AJD process is complicated

and require characteristic function based methods.

Here, the inclusion of a compound Poisson (CP) process to (2.1) and the

solution to this is also discussed.

Let us use the system of SDEs from the previous chapter, but with some

extra components:

dx
(1)
t = (α1 − κx

(1)
t )dt+ σ1dW

P
1,t + dJt, (2.23)

dx
(2)
t = α2dt+ σ2dW

P
2,t, (2.24)

dWP
1,tdW

P
2,t = ρdt, (2.25)

where Jt is a compound Poisson process with rate λJ and Y = {Y1, .., Yt} ∼
N(µJ , σ

2
J) is the collection of jump amplitudes. The remaining components are

defined in section 2.2. Note, Jt is uncorrelated with Wiener processes. The

extra jump process in this equation complicates the solution. However, [29]

used a jump-transform method to obtain the expression for the futures price.

The solution is discussed here for a one dimensional CP process with a constant

jump rate.

First, the following vectors and matrices are defined corresponding to equa-
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tions (2.23) and (2.24):

K0 = [α1 α2]
⊤, (2.26)

K1 = [κ 0]⊤, (2.27)

Σ =

[

σ2
1 σ1σ2

σ1σ2 σ2
2

]

(2.28)

Let v(x) be a jump size distribution and g(x) be a corresponding density

function respectively. Let θ(x) be the characteristic function of Gaussian dis-

tribution, then θ(x) =
∫

R
exzdv(z) =

∫

R
exzg(z)dz. Let ξ ≡ ([K0, K1],Σ, θ, r)

be the structure which captures both the distribution of x
(1)
t and the effects of

discounting. where r is defined as a constant interest rate. The transform Ψξ

is defined as:

Ψξ(u,X, t, T ) = E
ξ
[
e−r(T−t)eux | Ft

]
, (2.29)

where E
ξ is the expectation operator with respect to ξ. Duffie et al [29] note

that the difference between Ψξ and a conditional characteristic function is the

discount factor. They also prove in [29] that Ψξ has the exponential-affine

form:

Ψξ(u, x, t, T ) = exp{α(u, t, T ) + β(u, t, T )x}, (2.30)

where α(·) and β(·) are solutions to the following Riccati equations:

∂α(u, t, T )

∂t
= r −K⊤

0 β(u, t, T )−
1

2
β(u, t, T )⊤Σβ(u, t, T ) (2.31)

−λ(θ(β(u, t, T )− 1)

∂β(u, t, T )

∂t
= −K1β(u, t, T ) (2.32)

with boundary conditions α(u, T, T ) = 0 and β(u, T, T ) = u, where u = 1.

A futures price of a commodity is given as before in section 2.2, now:

E
Q(STm

|Ft) = E
Q(ex

(1)
Tm

+x
(2)
Tm |Ft)

= er(Tm−t)EQ(e−r(Tm−t)ex
(1)
Tm

+x
(2)
Tm |Ft)

= er(Tm−t)Ψξ(u, x
(1)
t + x

(2)
t , t, Tm). (2.33)

This summarises the relationship between the jump-transform and futures

price formula. An example of an application of a two-factor model with jumps

for electricity futures is given in the next section.
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2.4 Two-factor jump-diffusion Model a prac-

tical example

To define a jump-diffusion model for electricity futures prices, we start by mod-

elling the behaviour of the commodity spot price. As in the previous section,

assume a filtered probability space (Ω, F,P) with P being the historical mea-

sure and F being the natural filtration. The log commodity price is modelled

in this case as:

log St = f(t) + xt + ζt, (2.34)

dxt = (ᾱ− κxt)dt+ σ1dW
P
1,t + dJt, (2.35)

dζt = µdt+ σ2dW
P
2,t, (2.36)

f(t) = c1 + ς sin(c2t+ c3), (2.37)

ρdt = dW1,tdW2,t, (2.38)

The spot price process St consist of thee components: xt represents a short-

term mean-reversion process with price shocks driven by a compound Poisson

process Jt which has intensity λ and jump sizes Y = {Y1, .., Yt} ∼ N(µJ , σ
2
J); ζt

represents a long-term price process; seasonality f(t) is a deterministic function

of time. Instead of using a Fourier series based model, a simple, single sinusoid

plus a level term is used. This form of f(t) is used to de-seasonalise data for

all the models in the numerical experiments, including the random volatility

model described earlier. The coefficients λ, µJ , σJ , α, κ, σ1, σ2, ς, c1, c2, c3 are

constants, W i
t , i = 1, 2 are Wiener processes with a constant correlation ρ.

Note that the models with two Wiener processes are referred as ‘two-factor

models’ in this chapter. If the model has a jump component in addition to two

Wiener processes, it is specified separately as a two-factor model with jumps.

Futures price F (t, T ) (t ∈ [0, T )) of a commodity with spot price St is

F (t, T ) = E
Q[elogST |Ft]. Since the spot price process formulae (2.34)-(2.38)

are given under a physical measure and the futures price formula is under a

risk neutral measure, it is important to specify the change of measure involved.

Let xt be a risk-neutral mean-reversion process:

dxt = (α− κxt)dt+ σ1dW
Q
1,t + dJt, (2.39)

where dWQ
1,t is a Wiener process under risk-neutral measure and ᾱ − α =
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hxσ1 +R(λ, σJ , β). hx is a market price of risk of mean-reversion process and

β is a risk-aversion of the jump component. In the former approaches (e.g.,

see [60],[78]), jump risk premium was treated as an idiosyncratic component,

which means that R(λ, σJ , β) = 0. The formulae from [78] for the log futures

price is modified to account for the excess rate of return R(λ, σJ , β):

logF (t, T ) = f(T ) + e−κ(T−t)xt + ζt + A(T − t) +B(T − t) where (2.40)

A(T − t) = (µ− hζ)(T − t)− hxσ1 +R(λ, σJ , β)

κ
(1− e−κ(T−t))

+
σ2
1

4κ
(1− e−2κ(T−t)) +

ρσ1σ2
κ

(1− e−κ(T−t)) +
1

2
σ2
2(T − t), (2.41)

B(T − t) = λ

∫ T

t

(exp{µJ +
1

2
σ2
Je

−2κ(T−z)} − 1)dz, (2.42)

where hζ is a market price of risk for the process ζt and α is set to 0, as before in

chapter 3. [16] is used to introduce jump risk effects to the model, as outlined

below.

A standard Poisson process Jt with rate λ and {Yt} i.i.d. copies of a random
variable Y has the following property:

φ(a) := E[eaY ] <∞

for a in some connected interval A containing the origin. Lévy exponent1 for a

compound Poisson process is ψ(a) = λ(φ(a)− 1) and the excess rate of return

is then given by:

R(λ, h1, h2) = λ(φ(h1) + φ(−h2)− φ(h1 − h2)− 1), (2.43)

where h1, h2 > 0. Here, Y is assumed to be normally distributed with zero

mean and variance σ2
J :

φ(a) = exp

(
1

2
a2
)

.

In this example, a mean is assumed to be zero for the jump size distribution

and let the linear components of the futures price formula to take care of jump

1If a Lévy process Xt represents the class of General Lévy Models and E[eαXt ] <∞, then
there exists a Lévy exponent ψ(α), such that E[eαXt ] = etψ(α), for more details see [16].
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size. Substitution of φ(a) into the (2.43) yields:

R(λ, σJ , β) = λ(e
1
2
σ2
J + e

1
2
β2 − e

1
2
(σJ−β)2 − 1), (2.44)

where β is the risk aversion of the jump component.

As a result, we have a system of equations (2.34)-(2.38) as the transition

equations for the log spot price process, which is treated as an unobserved or

latent variable. The measurement equation is given by (5.9), with logF (t, T )

given by (2.40), (2.41), (2.42) and (2.44). The new two-factor model includes

the jump risk premium derived recently in [16] and also includes a parametric

periodic function to explicitly account for seasonality.

The particle filter algorithm, described earlier in section 2.7.2, was used for

one step ahead prediction of futures prices for three different models: the ran-

dom volatility model (equations (5.7)-(5.8)), two-factor jump-diffusion model

(equations (2.34)-(2.36) and (2.40)) and the two-factor model without jumps,

which is obtained by setting the relevant parameters in the jump-diffusion

model to zero.

2.5 Hull-White option pricing framework

The stochastic-volatility model for European call option pricing defined by

Hull-White in [49] is discussed briefly in this section. This section will not

provide an exact solution to the problem, but will outline the necessary frame-

work for a new stochastic volatility model discussed in chapter 4.

In the Hull-White model, a security price process S with its instantaneous

stochastic variance Vt = σ2
t has the following form:

dSt

St

= µdt+ σtdWt, (2.45)

dVt
Vt

= αdt+ ηdZt, (2.46)

where σt is an instantaneous volatility, µ, α and η are constants, Wt and Zt

are uncorrelated Wiener processes.

To price a security f depending on (2.45) and (2.46), one can use results

derived by Garman [35]. The partial differential equation for f can be written
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as follows:

∂f

∂t
+

1

2

[

σ2
t S

2
t

∂2f

∂S2
t

+ η2V 2
t

∂2f

∂V 2
t

]

− rf = −rSt
∂f

∂St

− µσ2
t

∂f

∂Vt
, (2.47)

where r is a risk-free rate.

The solution to (2.47) for a European call option with the maturity time

T is given as follows:

f(St, Vt, t) = e−r(T−t)

∫

f(ST , VT , T )p(ST |St, Vt)dST , (2.48)

here f(St, Vt, t) = max[0, S −K], where K is the strike price, and p(ST |St, Vt)

is the conditional distribution of St. Since p(·) depends on two variables,

one can use the following fact. For three related random variables x, y, z the

conditional probability density function (pdf) can be defined as follows:

p(x|y) =
∫

g(x|z)h(z|y)dz, (2.49)

where g(·) and h(·) are conditional probabilities (see [41] for the definition and

the proof). Let V̄ be a mean variance:

V̄ =
1

T − t

∫ T

t

σ2
t dt, (2.50)

then using (2.49) one can write (2.48) as follows:

f(St, Vt, t) = e−r(T−t)

∫ ∫

f(ST , VT , T )g(ST |V̄ )h(V̄ |σ2
t )dSTdV̄ , (2.51)

rearranging the elements in the previous equation gives us the following form:

f(St, Vt, t) =

∫ [

e−r(T−t)

∫

f(ST , VT , T )g(ST |V̄ )dST

]

h(V̄ |σ2
t )dV̄ . (2.52)

Elements in brackets in (2.52) is the Black-Scholes formula. Hence, (2.52) can

be written as:

f(St, Vt, t) = E
[
CBS(V̄ )

]
, (2.53)

where CBS is the Black-Scholes price for a European call option.

Chapter 4 discusses a new stochastic volatility model, which uses the result

discussed in this section.
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The next section discusses popular stochastic volatility models with and

without jumps.

2.6 Heston model and Bates (SVJ) model

The formulae are outlined first for pricing European options using the Heston

and the Bates (SVJ) models. Later, these two models is used as benchmarks for

the new stochastic volatility model defined in chapter 4. All the subsequent

discussion is in a (non-unique) equivalent martingale measure and explicit

mention of measure is omitted for simplicity. For the Heston model, the asset

price dynamics is assumed to be governed by:

dSt = rStdt+
√
vtStdW

1
t , (2.54)

dvt = −θ(v̄ − vt)dt+ σv
√
vtdW

2
t , (2.55)

where r is the risk-free rate, W 1
t and W 1

t are standard Wiener processes with a

given correlation < W 1
t ,W

2
t >= ρ and ρ, σv, θ, v0, v̄ are known constants. The

price of a European call option with strike price K is given by:

CEUR = StP1 −Ke−r(T−t)P2, (2.56)

where St is a spot price at time t, T is a the expiration time and Pj , j = 1, 2

are called the pseudo-probabilities:

Pj =
1

2
+

1

π

∫ ∞

0

Re

[

eix log(
St
K

)eφj(vt,τ,x)

ix

]

dx. (2.57)

Here, τ = T − t and φj(vt, τ, x) = exp{Cj(τ, x)v̄+Dj(τ, x)vt} is the character-

istic function, with

Cj(τ, x) = rxiτ +
θ

σ2
v

[

(bj − ρσvxi+ dj)τ − 2 log
1− dje

djτ

1− gj

]

,

Dj(τ, x) =
bj − ρσvxi+ dj

σ2
v

[
1− edjτ

1− gjedjτ

]

,

gj =
bj − ρσvxi+ dj
bj − ρσvxi− dj

, dj =
√

(ρσvxi)2 − σ2
v(2ujxi− x2),

u1 =
1

2
, u2 = −1

2
, and bj = κ+ θ − (1j=1)ρσv.
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Bates in [11] proposed adding a compound Poisson process in the underly-

ing for the above model, which leads to a modification of (2.54):

dSt

St
= rdt+

√
vtdW

1
t + (eα+βǫ − 1)dJt, (2.58)

where Jt is a Poisson process with a known jump intensity λJ , α, β are known

constants and ǫ ∼ N(0, 1). The process Jt is uncorrelated with W i
t , (i = 1, 2).

The volatility dynamics is described by equation (2.55). The solution for price

of a European call option is given by modifying the characteristic function in

the Heston model above:

φj(vt, τ, x) = exp{Cj(τ, x)v̄ +Dj(τ, x)vt + E(x)τ},

where

E(x) = −λJ ix(eα+β2/2 − 1) + λp(e
ixα−x2β2/2 − 1).

While both these models have proved popular and are known to provide

good fits to option prices, they have a few shortcomings. Some of these are

discussed in [61]. In particular, it was shown that the Heston model usually

fails to fit to a short term market skew while the SVJ model usually fails to fit

an inverse yield curve. In addition, the option price is given through a fairly

involved numerical integral with several parameters, which presents significant

difficulties in calibration.

The next section discusses a class of filtering problems and algorithms for

applications in finance.

2.7 Filtering Algorithms

In finance, there are many instances when the data can be assumed to be cor-

rupted by noise (e.g. bid-offer spread may be considered as noise in a unique

unobserved price) or the variable of interest is unobservable (e.g. the continu-

ously compounded interest rate). Such noisy and/or unobserved variables can

be obtained from observed data using filtering algorithms. These algorithms

can also be used for estimating the parameters of the underlying stochastic

processes.

Harvey [42] suggested representing market data (such as interest rates

changes, stock price movements) as finite or infinite time series. These include
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a trend and seasonal pattern components. Moreover, time series representation

allows to forecast the future asset behaviour.

Schwartz [71] used an Ornstein-Ulenbeck like model for analysing the dy-

namics of commodity prices. He used a Kalman filer [52], which is described

in detail in the next subsection, to estimate the parameters of this model.

Later, Babbs and Nowman [7] introduced the state-space formulation of

the Vasicec term structure model. They showed the application of Kalman

filter for analysing and predicting of underlying interest rates from observed

bond yields. More analysis was made using the Kalman filter on multi-factor

extension of the Vasicek model [24].

More results on the Kalman filter application to model commodity prices

were presented by Manoliu and Tompadis [56]. They introduced a multi-

factor model for pricing of futures where the underlying commodity price is

unobserved. The Kalman filter and maximum likelihood methods were used

for numerical experiments.

Lautier and Galli [54] compared two versions of the Kalman filter: simple

and extended. The extended Kalman filter is a generalisation of the first one,

that allows it to work with some types of nonlinear models. Monoyios [63]

was exploring the impact of the uncertainty by using the Kalman filter for the

optimal hedging.

Thus the Kalman filter is very widely used in finance. The Kalman fil-

ter algorithm is outlined in the next section, before moving on to its various

extensions in the subsequent sections.

2.7.1 Kalman filter

A general model for the Kalman filter can be represented with a stochastic

system with the following state space equations:

dxt = f(xt, t)dt+R(xt, t)dWt (2.59)

yt = h(xt, t) +B(xt, t)dZt, (2.60)

where measurement equation(2.60) represent the observed value yt and transi-

tion equation (2.59)represent the unobserved underlying process xt, functions

f(.) and h(.) are deterministic and can be vector valued, R(.) and B(.) are

deterministic matrix-valued functions, Wt and Zt are Wiener processes. Zt is
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also called the measurement noise.

However, in most applications, the above system can be presented in a

discrete form. This is possible since in the most applications measurements

are discrete, rather than being continuous. Let tn : 0 < t1 < . . . < tN , where N

is the total number of measurements, then xn ≡ xtn and yn ≡ ytn. If the f, h

are affine in xt and if R,Q are constant matrices, equations (2.59) and(2.60)

can be presented in the discrete linear form as follows:

xn+1 = Bxn + g +RWn+1 (2.61)

yn = Axn + d+QZn, (2.62)

where A and B are linear functions of time, g and d are vectors, can also be

functions of time, R and Q are variance matrices, can also be functions of

time, yn represent observed value and xn is the underlying process, presented

by transition equation (2.61) and is a subject to be estimated.

The method for solving this problem was proposed by Kalman in [52].

The estimated value of xn is based on the information up to time tn−1 as

x̂n|n−1, conditional variance of x̂n|n−1 as Pn|n−1 and is is assumed that x̂0|−1

and P0|−1 are known. Noise components and information about the system are

not available. The recursive algorithm for the linear Kalman Filter has the

following structure:

vn = yn − (Ax̂n|n−1 + d) (2.63)

Σn = APn|n−1A
⊤ +QQ⊤ (2.64)

kn = Pn|n−1A
⊤Σ−1

n (2.65)

x̂n|n = x̂n|n−1 + knvn (2.66)

x̂n+1|n = Bx̂n|n−1 + g (2.67)

Pn+1|n = BPn|n−1B
⊤ +RR⊤ − BPn|n−1A

⊤Σ−1
n APn|n−1B

⊤ (2.68)

Here vn represents the innovations of the Kalman filter, Σn represents the

covariance matrix of innovations, x̂n+1|n is the best estimate of xn+1 based

on the information up to time tn and determined by measurement equation

denoted by yn.

However, the Kalman filter can only be used for a class of problems where

x and y have a linear relationship and both have a conditional Gaussian distri-
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bution. In the next section filtering algorithms for nonlinear and non-Gaussian

problems are discussed.

2.7.2 Particle filter

To set up a nonlinear problem for a particle filter, the following state space

system is considered:

xk = fk(xk−1, vk−1), (2.69)

yk = hk(xk, ǫk), (2.70)

where f(·, ·) is a vector function of a state xk−1 and {vk−1}(k ∈ N) is an

i.i.d. process noise sequence, h(·, ·) is a known function, {ǫk} is a zero mean

i.i.d. sequence which corresponds to measurement noise and k represents the

current time-step. As in the previous section xk is unobservable, and the aim

here is to construct the estimate of xk by combining model prediction with the

measurement yk, at each time step k. (2.69) and (2.70) are referred to as the

transition equation and the measurement equation, respectively. To approach

this, the pdf p(xk|y1:k) has to be constructed. Assume that the initial pdf

(prior) p(x0, y0) is known. Then as each new measurement yk arrives, p(xk|y1:k)
can be constructed recursively within two steps: prediction and update. The

prediction step is based on the Chapman-Kolmogorov equation:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (2.71)

where p(xk−1|y1:k−1) is assumed to be known and the transition probability

p(xk|xk−1) is defined by (2.69). After the measurement yk becomes available,

it can be used to update the prior using Bayes’ rule:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|x1:k−1)
(2.72)

where

p(yk|x1:k−1) =

∫

p(yk|xk)p(xk|y1:k−1)dxk (2.73)

In case when the posterior density is not available analytically, the approxima-

tion can be done with a set of random samples (or particles) with associated

probability weights. Assume that the underlying process is a Markov process,
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which will be the case in all the processes considered in this thesis. A short de-

scription is provided for the recursion to update a probability measure {xik, wi
k}

at time tk to a corresponding probability measure at time tk+1, (See, e.g. [6]

for more details).

• Sample xik+1 from q(x|xk, yk+1). q is called a proposal density and serves

as an approximation to the posterior density. The choice of q is crucial

in terms of the quality of estimates. A common choice is q(x|xk, yk+1) =

p(xk+1|xk), although other choices are possible (e.g. Gaussian density

generated using the extended Kalman filter is also frequently employed).

• The weight update can be done using the following relation:

ωi
k+1 ∝ ωi

k

p(yk+1|xik+1)p(x
i
k+1|xik)

q(xik+1|xik, yk+1)
, (2.74)

and the posterior filtered density is given by:

p(xk+1|xk) ≈
Ns∑

i=1

ωi
kδ(xk+1 − xik+1), (2.75)

where δ is the Dirac-Delta function.

An issue which frequently arises in using a particle filter is the degeneracy

phenomenon, when after a few iterations particle weights might start pinning

around one value. However, this can partially be solved by introducing a

measure for the degeneracy problem:

Neff =

(
Ns∑

i=1

(ωi
k)

2

)−1

, (2.76)

where Ns is the actual number of samples. If Neff falls below some pre-defined

threshold, a resampling algorithm is applied. See [6] for more details on re-

sampling algorithms.

The Kalman filter and the particle filter are great algorithms to estimate

the value of unobserved processes or variables, once the model parameters are

available. However, methods to estimate the model parameters from data are

needed. The next section will discuss such algorithms.
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2.8 Optimisation algorithms

This research is focused on three popular methods for estimating model param-

eters. These methods include the weighted least squares method, the maximum

likelihood method and the method of moments. In the following subsection

the weighted least squares method is discussed.

2.8.1 Weighted least squares

The method of least squares was developed in the 17th century. The study of

the behaviour of celestial objects was performed by Gauss. He was the first to

introduce the method of least squares, which is widely used now by scientists.

Nowadays, there are two types of least-squares problems: linear and non-

linear. Linear least-squares methods can be solved using systems of linear

equations and specify an important class of problems in statistics. However,

this research deals with nonlinear problems, and nonlinear least squares is our

priority.

The nonlinear least squares method can be defined in the following way.

Let f(x,Θ) be a real valued function, where x ∈ R
n is a coordinate vector and

Θ ∈ R
m is a vector of a constant real valued parameters, so f : Rn×R

m → R
n.

Let y ∈ R
n be a measurement vector, with corresponding coordinates x. Then

the nonlinear least-squares optimisation problem is:

min
Θ

||y − f(x,Θ)||. (2.77)

In real life applications with nonlinear function f(x,Θ), cost function (2.77)

can produce poor results. These is the result of equal weights for all the mea-

surements in y, while some elements in y can be less important than others. To

account for possibly differing importance of different measurements, a weighted

least squares method is often used.

A good example for this problem is an option price market. Option price

data on an asset consists of three main parameters: a price of the underlying

asset, strike price and option maturity. Each option has it’s bid and ask prices

updated at each unit of time. The difference between them is called a bid-

ask spread. The spread indicates the liquidity of the option. Smaller values

indicates higher liquidity and visa versa. Let bid ∈ R
n and ask ∈ R

n be

the vectors of market closing bid and ask quotes respectively, and let y =
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1
2
(bid − ask) be a closing mid price. These vectors can be used in calibration

of parameters for an option pricing model by adjusting (2.77) with bid-ask

weights vector ω = 1/(bid − ask)N , where N is an arbitrary natural number

(usually empirically chosen). Then problem (2.77) is:

min
b

n∑

i=1

(y − f(x,Θ))2ωi. (2.78)

The latter is widely used in calibration of option pricing models. However,

parameter N should be chosen carefully, because it affects the sensitivity of

weighting, hence calibration. (2.78) can be solved numerically on any high-

level programming language such as Matlab.

Discussion on applications of weighted least-squares are continued in chap-

ter 4.

The next subsection will discuss a different approach for calibration.

2.8.2 Maximum Likelihood

Finding parameters for financial models can be implemented using a Maximum

Likelihood method. Let x ∈ Rn be a vector of identically distributed obser-

vations, f(·|Θ) be a distribution function of x with a vector of parameters Θ

defined as before. Since x is a collection of iid samples, f(·|Θ) can be written

as a joint-pdf:

f(x|Θ) =

n∏

i=1

f(xn|Θ). (2.79)

Now, let L(Θ; x) be a likelihood function, where the vector Θ is a free variable,

and the vector x is given:

L(Θ; x) =
n∏

i=1

f(xn|Θ), (2.80)

such that the value of L(Θ; x) describes how likely Θ defines the distribution

of x.

For example, let x ∼ N(µ, σ2). Then Θ = [µ, σ]⊤. Now, the problem is to

find the best estimate Θ̂, which will more likely describe the given sample x.
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For a Gaussian distribution:

f(x|Θ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (2.81)

then the likelihood function is given by:

L(Θ; x) =
1

(
√
2πσ)n

n∏

i=1

e−
(xi−µ)2

2σ2 . (2.82)

Now one can write the optimisation problem for finding Θ̂:

Θ̂ = argmax
Θ

1

(
√
2πσ)n

n∏

i=1

e−
(xi−µ)2

2σ2 . (2.83)

However, in real-life applications the log-likelihood is used instead due to

computational efficiency. Hence, the logarithm of a product is a sum, which is

computationally faster. By taking the logarithm of (2.82) and taking out the

constants the following optimisation problem is given:

Θ̂ = argmax
Θ

−
(

n

2
log σ2 +

1

2σ2

n∑

i=1

(xi − µ)2

)

. (2.84)

In practice, xt is often modelled as having a multivariate normal distri-

bution and the mean vector and the covariance matrix may be functions of

underlying model parameters. This situation is encountered in chapter 3.

The calibration of the objective function can be performed using derivative

and non-derivative methods. However, in some situations for non-Gaussian

distributions finding the value of the derivative is complicated. In these situ-

ations simplex methods are used.

The next subsection will discuss moment matching methods for finding

parameters.

2.8.3 Method of moments

Likelihood methods are effective when the distribution of the observation is

known. However, some financial models don’t have an explicit form of prob-

ability distribution. For example, stochastic models with jumps don’t have

an explicit form for a probability distribution. In this case, the method of

moments can be implemented. The main idea of this method is matching
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the sampled moments of the observed data to the analytical moments of the

model.

In chapter 5 the moments of the distribution of the electricity spot prices

are used to estimate parameters for the two-factor model with jumps. The fact

is used that the knowledge of the characteristic function of the distribution of

the model allows one to obtain an explicit form for the moments up to any

required order. In combination with least squares methods, this yields the

solution to the problem. More detailed discussion on this problem is continued

in chapter 5.
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Chapter 3

Commodity price forecasting

using the Kalman filter

3.1 Introduction

This chapter is concerned with the problem of forecasting commodity spot

prices using futures price information. As futures on commodities tend to be

more liquid than the commodities themselves in the spot market, they contain

more information about the future behaviour of spot prices than the current

spot market prices. Scatter1 and correlation plots on figure 3.1 illustrate that

futures prices are not perfectly correlated with spot prices and different futures

contracts contain different information, than the spot price history, regarding

the future behaviour of spot prices.

This fact can be exploited to infer the future spot price behaviour using

futures prices via a Kalman filter, with the spot price as a latent state variable.

Filtering has been used in estimating the spot prices from futures prices in [71],

[56] and [54]. A multi-commodity implementation is presented in [19], where

the futures prices on different commodities are used simultaneously to forecast

the commodity prices. The inclusion of jumps to a commodity price process

and its subsequent use of particle filter for inference on commodity prices is

advocated in [2]. In [20], a three factor model for oil futures prices is suggested,

which departs from a Bayesian viewpoint used in filtering and infers prices

using a numerical (but simple) optimization instead. [62] provides a model

1Natural Gas spot prices were plotted against futures prices with different maturities for
an interval of 1500 days, from 29.11.2007 to 12.09.2012.
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Figure 3.1: Scatter and correlation plots for Natural Gas commodity and fu-
tures (1500 data points).
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where the seasonality components are also stochastic and hence allow for a

frequency variation.

Besides estimation of the commodity prices, the Kalman filter is discussed

in section 2.7.1 and its various modifications have also been used within finan-

cial mathematics for modelling and forecasting of interest rates ([7], [24]) and

estimating asset price volatility from intra-day stock prices [10]. Linear filter-

ing is used in [63] in the context of hedging in incomplete markets, for updating

the estimates of uncertain drift parameters in the price process. [23] provides

a review of applications of filtering within finance. Date at al in [22] developed

a regime switching model for commodity futures pricing and forecasting under

Hidden Markov Model framework.
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In this chapter, the approach taken by Manoliu and Tompaidis in [56] has

been followed and extended. They [56] introduced a multi-factor model for

futures pricing with unobserved underlying commodity prices. The emphasis

here is on storable energy commodities with highly liquid futures markets, viz

crude oil, gasoline and natural gas. The evolution of log-spot price is mod-

elled as a mean-reverting process, resulting in a linear state space system with

log futures price vector as observable variable. Unlike [56], which uses a non-

parametric seasonality component, the seasonality factor is modelled explicitly

in this chapter through a simple parametrized sinusoid. The long run mean

of the log spot price is set to be random, which offers a very parsimonious

way of adding an extra source of randomness. A detailed empirical study of

calibration and out-of-sample forecasting of commodity prices is provided for

three different commodities, with two different data-sets considered for each

commodity. A comparison of various models in terms of parametric complexity

and out-of-sample prediction accuracy is done. To ours knowledge, compar-

ison of out-of-sample forecasting performance has not been reported in the

literature on commodity futures price modelling before.

The rest of this chapter is structured as follows. Section 3.2 presents the

formulation of the models for evolution of futures prices. In Section 3.3, the

state space representation of the same models is described, which is used for

Kalman filtering and maximum likelihood based parameter estimation. In sec-

tion 3.4, the numerical experiments are presented, including information about

data, algorithms, validation metrics and the results of experiments on the fore-

casting ability of the models. Finally, section 3.5 summarises the contributions

of this chapter.

3.2 Formulation of the models

In this section, a short formulation of one-factor arbitrage-free model is pro-

vided for the futures price dynamics. The formulation is based on [56], to

which the reader is referred to for proofs. The added contributions are related

to adding a random long run mean and a parametrized seasonality factor,

and to a comprehensive empirical evaluation of the forecasting performance of

models in subsequent sections. Four different models are described, depending

on whether there are one or two-factors and whether or not there is a season-

ality component. It is straightforward to extend this work beyond two-factors,
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although ours numerical experience indicates that models with three of more

factors are rather difficult to calibrate reliably and tend to perform poorly

out-of-sample, as far as forecasting is concerned.

3.2.1 One factor model

Assume that a spot price St is driven by the process, xt = logSt : {xt ∈ Ω} on

a probability space (Ω,P,Ft), where Ω is a set of all possible realisations of

xt, P is the objective probability measure defined on Ω and Ft is the natural

filtration. For representing discrete time, the subscript n is used, (tn : n =

0, .., N , t0 < t1 < · · · < tN , ∆ := tn − tn−1), where N is the total number of

time intervals.

The log-spot price is assumed to follow an Ornstein-Ulenbeck type process:

dxt = (α− κxt)dt+ σdWP
t , (3.1)

where κ and α represent mean-reversion speed and long-run mean of xt, re-

spectively, and WP
t is a Wiener process. The fundamental theorem of asset

pricing states that the absence of arbitrage opportunities on the market im-

plies an existence of the equivalent martingale measure. Hence, process xt has

the following form if generated by a risk-neutral Wiener process WQ
t :

dxt = (α̃− κxt)dt+ σdWQ
t . (3.2)

The drifts are related by α̃ = α− λtσ for some process λt, i.e. dW
Q
t = dWP

t +

λtdt; see, e.g. [28] for the exact conditions on λt. λ is assumed to be a constant

here, which is a commonly used assumption in the literature.

Under the risk-neutral measure, the process xt is normally distributed.

Using Ito’s lemma for the function f(xt, t) = eκtxt, it can be easily shown that

xt has the following mean and variance:

E
Q(xt+∆ | Ft) = xte

−κ∆ +
α̃

κ
(1− e−κ∆), (3.3)

VarQ(xt+∆ | Ft) =
σ2

2κ

(
1− e−2κ∆

)
. (3.4)

To add further flexibility to the model at a very modest increased com-

plexity, in (3.1) the assumption that α ∼ N(µ0,Θ
2) is used. This allows the
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log-spot price to converge to a random mean and potentially improves the

predictive ability of the model, at the cost of a single added parameter to the

parametric model. The investigation on whether this added parameter im-

proves price prediction or not is continued in section 4. The random mean is

assumed to be uncorrelated with the Wiener process. Hence, the expressions2

for conditional mean and variance can be written as:

E
Q(xt+∆ | Ft) = xte

−κ∆ +
µ0 + λσ

κ
(1− e−κ∆), (3.5)

VarQ(xt+∆ | Ft) =
Θ2

κ2
(
1− e−κ∆

)2
+
σ2

2κ

(
1− e−2κ∆

)
. (3.6)

Next, let T = {Ti : i = 1, ..., m, 0 < T1 < T2 < · · · < Tm} be the collec-

tion of the futures maturity dates. Then futures price for maturity Ti for a

commodity with log-spot price xt at time t < Ti can be written as a condi-

tional expectation of the commodity price at the maturity time of the futures

contract: F (t, Ti) = E
Q(ex

i | Ft), i = 0, .., m, where the expectation is taken

under the Q measure and xi := xTi
, for brevity of notation. In the case if

Ti > t, the futures price F (t, Ti) > 0, otherwise it is zero. The time to expiry

of the ith futures contract is represented by ∆i
t = Ti−t. Since St is log-normally

distributed, the futures price is given by:

F (t, Ti) = E
Q(ex

i | Ft) = eE
Q(xi|Ft)+

1
2
VarQ(xi|Ft). (3.7)

This allows us to derive an affine equation for the vector of log futures prices

in terms of the log-spot price:

vec{yit} = xte
−κ∆i

t +
µ0 − λσ

κ
(1− e−κ∆i

t)+
σ2

4κ
(1− e−2κ∆i

t)+
Θ2

2κ2

(

1− e−κ∆i
t

)2

,

(3.8)

where yit = logF (t, Ti) and the vec operator is defined by

vec(zi) =
[

z1 z2 · · · zn

]⊤
.

Note that the convenience yield is not modelled explicitly and assume that it

is already reflected in the prices of futures contracts. Again, our approach is

consistent with the framework followed in [56]. In contrast, convenience yield

is explicitly modelled in [50].

2Note that, conditional on xt and α, xt+∆ is still Gaussian.
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3.2.2 One factor model with seasonality

Since energy futures prices depend on the weather conditions, any seasonal-

ity pattern needs to be taken into account. In the literature, a variety of

seasonality functions for different financial application is used. For example,

Manoliu and Tompaidis [56] used a discrete seasonality function with separate

parameters representing each month, while Sorensen [73] used a Fourier series

to model seasonality. However, a complicated seasonality function makes pa-

rameter estimation more difficult and may lead to poorer estimates, especially

when the data set is small relative to the number of the parameters. To re-

duce the parameter estimation complexity, a simple function for seasonality is

considered, which is parametrised as follows:

f(t) = exp(c1 + c2 sin(c3t+ c4)), (3.9)

where c1 is a constant level, c2, c3 and c4 are constants representing amplitude,

the frequency and the phase of a seasonal pattern respectively. Accordingly,

the prices of futures are modified as follows:

F (t, Ti) = f(Ti)E
Q(ex

i | Ft), (3.10)

and

vec{yit} = log f(Ti) + xte
−κ∆i

t +
µ0 − λσ

κ
(1− e−κ∆i

t) +
σ2

4κ
(1− e−2κ∆i

t)

+
Θ

2κ2
(
1− e−κ∆

)2
, (3.11)

which denotes a vector of log futures prices, with ith element of the vector

denoting log futures price for time to maturity ∆i
t, as before. In practice, one

may parametrise seasonality using multiple sinusoids. However, in our experi-

ence, this complicates parameter estimation without necessary improving the

quality of out of sample price forecasting.

3.2.3 Observable commodity prices

Finally, a simple model of commodity price is described, which will be used as

a benchmark. In this model the futures prices are not used as an extra source

of information and the log-spot price in (3.1) is considered as observable, with
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α ∼ N(µ0,Θ
2). In this case, the process and the model can be discretized,

which preserves the exact conditional moments, and the process is given by

xn+1 = E
P(xn+1 | Fn) +

√

VarP(xn+1 | Fn)Wn+1, (3.12)

where E
P(xn+1 | Fn) and VarP(xn+1 | Fn) are defined by (3.5) and (3.6)

respectively, λ = 0 (no measure change) , W ∼ N(0, 1) i.i.d. and xn represents

the value of a variable x at time t = tn.

For a given set of observations S = {x0, x1, ..., xN}, the joint log-likelihood
function can be written for the log-spot price observations as follows:

L(Ψ) := −
N∑

i=1

(
(xn+1 − E

P(xn+1 | Fn))
2

VarP(xn+1 | Fn)
+ log(VarP(xn+1 | Fn))

)

,

where the constant terms in the log likelihood function are ignored. Max-

imising L(Ψ) will yield parameter estimates Ψ̂ = (µ0, κ, σ,Θ), by using an

off-the-shelf solver routine such as fminsearch in Matlab. Then (3.12) can

be used for predicting the future commodity prices. Note, however, that this

model cannot be used for arbitrage-free prediction of futures prices, since the

price of risk can not be estimated from the historical commodity prices alone.

3.3 Linear state space representation for la-

tent commodity price models

For the models described in subsections 3.2.2 and 2.2.1, a state space repre-

sentation is used, with a measurement equation based on the observable time

series of futures prices and a discretized transition equation of log-spot com-

modity price, which is assumed to be unobservable. This allows us to use the

Kalman filter to estimate the parameters by constructing and maximising a

likelihood function, and to forecast the log-spot price when new futures price

measurements become available. The state space equations for one factor with

seasonality model in subsection 3.2.2 and two-factors with seasonality model

in subsection 2.2.1 are provided below. The models without seasonality are

obtained by setting the relevant parameters to zero.
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3.3.1 One-factor model with seasonality

The state space equations corresponding to the model in section 3.2.2 can be

written as

xn+1 = Bxn + g +Rwn+1, (3.13)

yn = Anxn + dn +Qzn, (3.14)

where the state space model parameters may be expressed in terms of original

model parameters as:

f(tn) = c1 + c2 sin(c3tn + c4), (3.15)

B = e−κ∆, g =
µ0

κ
(1− e−κ∆), (3.16)

R2 =
σ2

2κ
(1− e−2κ∆) +

Θ

κ2
(
1− e−κ∆

)2
, An =







e−κ∆1
n

...

e−κ∆m
n






, (3.17)

dn =







µ0−λσ
κ

(1− e−κ∆1
n) + σ2

4κ
(1− e−2κ∆1

n) + Θ
2κ2

(

1− e−κ∆1
n

)2

+ f(T1)
...

µ0−λσ
κ

(1− e−κ∆m
n ) + σ2

4κ
(1− e−2κ∆m

n ) + Θ
2κ2

(
1− e−κ∆m

n

)2
+ f(Tm)






.

(3.18)

Here, ∆i
n = ∆i

tn = Ti−tn for brevity of notation andm is the number of futures

prices available at each tn. Q = ηIm, where η is a scalar constant indicating

the standard deviation of measurements and Im is an m×m identity matrix.

Recall that α ∼ N(µ0,Θ
2).
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3.3.2 Two-factor model with seasonality

In this case, the parameters of (3.13)-(3.14) are:

f(tn) = c1 + c2 sin(c3tn + c4), (3.19)

B =

(

e−κ∆ 0

0 1

)

, g =

(

0

α2∆

)

, (3.20)

R2 =

(
σ2
1

2κ∆
(1− e−2κ∆) ρσ1σ2

κ
(1− e−κ∆)

ρσ1σ2

κ
(1− e−κ∆) σ2

2∆

)

, (3.21)

An =







e−κ∆1
n 1

...

e−κ∆m
n 1






, (3.22)

dn =







−σ1λ1+ρσ1σ2

κ
(1− e−κ∆1

t ) + (α2 − σ2λ2 +
1
2
σ2
2)∆

1
n +

σ2
1

4κ
(1− e−2κ∆1

n) + f(T1)
...

−σ1λ1+ρσ1σ2

κ
(1− e−κ∆m

n ) + (α2 − σ2λ2 +
1
2
σ2
2)∆

m
n +

σ2
1

4κ
(1− e−2κ∆m

n ) + f(Tm)






.

(3.23)

The brief outline on how this state space representation is used along with

Kalman filter for parameter estimation can be found in section 2.7.1; see,

e.g. [31] for more details on financial time series filtering using state space

models.

3.3.3 Maximum Likelihood(ML) estimation

For the given log futures prices measurements F = {y1, y2, . . . , yN} up to time

tN , Kalman filter can be applied to calibrate parameters of (3.15)-(3.18) and

(3.19)-(3.23). The joint likelihood function for F can be written as follows:

L̂(F ) = p(y1)

N∏

i=2

p(yi | Fi−1), (3.24)

which, after substituting for joint probabilities and taking logarithms becomes

log L̂(F ) = −
N∑

i=1

(log | Σi | +vTi Σ−1
i vi), (3.25)
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where vi,Σi are the innovations at time ti and the covariance of innovations

at time ti respectively, and are as defined in section 2.7.1. The constant terms

which do not depend on the model parameters are ignored. For a given vector-

valued time series {y1, y2, . . . , yN} and a vector of unknown model parameters

Ψ, the optimisation problem can be stated as following:

Ψ̂ = argmax
Ψ

log L̂(F ), (3.26)

Ψ̂ is then used for forecasting experiments. Note that the implementation of

maximum likelihood based calibration in this case is considerably more com-

plicated than that in observable commodity price model described in section

3.2.3. However, it yields a richer class of models which use far more information

in terms of futures prices.

3.4 Numerical experiments

3.4.1 Data

For an empirical study of the efficacy of the models in explaining the behaviour

of commodity prices, the daily data is considered for Henry Hub Natural Gas,

Gasoline and Light Sweet Oil, which includes:

• Henry Hub natural gas: spot commodity price and 12 different futures

prices daily with maturities (5.15y, 5.24y, 5.32y, 5.41y, 5.49y, 5.58y, 5.66y,

5.75y, 5.84y, 5.92y, 6.01y 6.09y).

• Gasoline: spot commodity price and 7 different futures prices daily with

maturities (2.65y, 2.74y, 2.82y, 2.92y, 3y, 3.08y, 3.17y).

• Light sweet oil: spot commodity price and 12 different futures prices

daily with maturities (5.18y 5.27y, 5.35y, 5.44y, 5.52y, 5.61y, 5.69y, 5.78y,

5.87y, 5.96y, 6.05y, 6.13y).

The data was collected from Bloomberg for each of the commodities and sepa-

rated into two panels as given in table 3.1. Panels were split for each data set

into two parts: one for the model calibration and one for out-of-sample vali-

dation. Data was used as it is without any detrending and deseasonalization.

Statistics of the observed log-spot prices in table 3.2 shows that kurtosis

values are slightly different from the normal distribution for all the three data
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sets. The distributions are negatively skewed, which may possibly be explained

by the seasonality factor.

Table 3.1: Data Panels for experiments

Gasoline
Panel A Panel B

In-sample 19.10.2007- 29.12.2008 28.04.2010- 01.07.2011
Out-of-sample 30.12.2008- 06.03.2010 02.07.2011- 10.09.2012

Henry Hub Natural Gas
Panel A Panel B

In-sample 29.11.2007- 05.02.2009 28.04.2010- 06.07.2011
Out-of-sample 06.02.2009- 19.04.2010 07.07.2011- 12.09.2012

Light Sweet Oil
Panel A Panel B

In-sample 19.11.2007- 28.01.2009 20.04.2010- 27.06.2011
Out-of-sample 28.01.2009- 09.04.2010 28.06.2011- 05.09.2012

Table 3.2: Log Spot Price Statistics

Max Mean Variance Skewness Kurtosis

Gasoline 5.8478 5.5763 0.0267 -0.4910 2.0788
Natural Gas 1.6465 1.2623 0.0571 -0.7273 2.3704

Light Sweet Oil 4.9787 4.4244 0.0709 -0.9928 4.2581

3.4.2 Methodology

Choice of models

The relative performance is compared in terms of out of sample commodity

price forecasting and model complexity for the following models:

• OCP: Observable commodity price model (section 3.2.3);

• OF: One-factor model (section 3.2.2);

• OFS: One factor model with seasonality (section 3.2.2);

• TF: Two-factor model (section 2.2.1, case f(t) = 0);

• TFS: Two-factor model with seasonality (section 2.2.1).
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The calibration routine was implemented in Matlab using its in-built solver,

viz fminsearch which uses the Nelder-Mead algorithm. Note that four models

OF, OFS, TF, TFS each contain two sources of randomness. In one factor

models(OF and OFS), the second source is the random long-run mean, while

two-factor models have two Wiener processes. Our numerical experiments

allow us to test whether adding a richer description of a second source of

uncertainty (as in the TF and TFS case) adds value over a more parsimonious,

but restricted description as in OF and OFS.

Choice of measures of comparison

For comparison of model performance, the sample mean of the relative absolute

error (MRAE) and root mean square error (RMSE) is considered as measures

of errors for commodity price models:

MRAE =
1

N

N∑

i=1

|xi − x̂i|
xi

,

RMSE =

√
√
√
√

N∑

i=1

(xi − x̂i)2

N

where xi is the observed commodity price at time i and x̂i is the best estimate

of log spot price at time i and N is the number of observations. These measures

of error will be used for out-of-sample data, in each of the two data panels and

for each of the three commodities. For in-sample comparison of the increase

in explanatory power relative to increase in model complexity, the Akaike

Information criterion (AIC) [3] is also used, which is defined as follows:

AIC(Θ̂) = (−2) log(maximum likelihood) + 2n

where n is number of elements in the vector Θ̂, which minimizes log-likelihood

value. The AIC value represents the quality of the models by penalising the log-

likelihood values with the number of added parameters, in this case the model

with the smallest AIC value has a better fitness. For small data sets(K/n <

40), where K is the number of data points used, one can use a second-order

criterion (denoted by AICc):

AIC(Θ̂)c = (−2) log(maximum likelihood) + 2n+
2n(n+ 1)

K − n− 1
.
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The results of calibration and model comparison is summarized in the next

section.

3.4.3 Results

The results on calibration and forecasting of the models described above to

NYMEX data are now discussed to highlight the behaviour of the models with

different types of commodities, for the two different data panels mentioned

earlier in section 3.4.1.

Light Sweet Oil

The estimated parameters of the OCP model are presented in table 3.6. The

estimated parameters for OF and OFS models from calibration are presented

in table 3.4. For the Panel A, the values of Θ are relatively small, which

indicates that the long-run mean of the log spot price process can be assumed

to be constant. The value of σ in the Panel A is twice as high than in the

Panel B. This also seems to affect the seasonality amplitude c2 in the Panel

A, which is smaller than for the Panel B. Parameters of two-factor models are

presented in table 3.5. One can see that values of volatility σ1 are dominating

seasonality amplitude ζ in both cases for Panels A and B. For all the cases,

one can see the low correlation ρ between the two Wiener processes.

For light sweet oil data-sets, table 3.3 shows that increasing of the model

complexity (i.e. adding more parameters) does not significantly increase the

quality of model fitness and the AICc value is the highest for OF. The out-

of-sample prediction performance of all the models is similar, except for the

RMSE value of the OCP model for panel A, which is significantly higher than

that of the other models. The values of Θ for one factor models are small

relative to µ0, indicating that a second source of randomness does not add

value in this case.

Figures 3.2 and 3.3 compare the four Kalman filter based models when

it comes to out-of-sample performance in forecasting one day ahead futures

prices, where MRAE is considered for 11 different futures as computed over

the entire out-of-sample data set. These figures show that, in general, the OF

model does a fairly good job of predicting futures prices, being better than

OFS and TF models in both the cases as well as TFS model in one case.
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Table 3.3: Light Sweet Oil Out-of-Sample errors, in-sample Likelihood and
AIC

Panel A

Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 1.32 5.21 1024 -2040
OF 7 2.12 1.644 15698 -31367
OFS 11 2.12 1.645 15695 -31346
TF 10 2.12 1.645 14452 -28862
TFS 14 2.11 1.635 15605 -31153

Panel B
Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 1.44 1.74 2063.36 -1725
OF 7 1.44 1.743 15817 -31606
OFS 11 1.44 1.763 15816 -31587
TF 10 1.43 1.745 15538 -31036
TFS 14 1.44 1.743 15750 -31443

Table 3.4: Light Sweet Oil Parameter estimates for One-Factor models

Panel A Panel B

OF OFS OF OFS
µ0 -0.0658 -0.0905 0.4441 1.1924
Θ 0.0000 0.0000 0.0243 0.0277
κ 0.0376 0.0378 0.1136 0.1031
σ 0.4309 0.4317 0.2980 0.2886
η 0.0100 0.0100 0.0100 0.0100
P0 0.0472 20.5919 0.0270 8.1568
λ 0.3874 0.3714 -0.0523 -1.3620
c4 -0.3426 -0.3484
c2 0.1063 -1.0350
c3 -0.1990 0.3840
c1 1.2237 -0.1504
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Table 3.5: Light Sweet Oil Parameter estimates for Two-Factor models

Panel A Panel B

TF TFS TF TFS
α2 -0.2573 0.3820 0.2496 0.0601
κ 0.0100 0.0100 0.0526 0.1627
σ1 0.1294 0.3575 0.1494 0.3293
σ2 0.0242 0.1555 0.0010 0.0008
η 0.0100 0.0100 0.0100 0.0100
λ1 -0.8669 -1.3187 -2.8441 -0.3547
λ2 -0.0029 -0.0035 0.0023 0.0027
ρ -0.0015 -0.0002 0.0011 0.0009
P01 2.5080 8.5736 1.5811 1.1973
P02 2.3636 0.0001 0.5047 0.0001
c4 0.4503 0.0519
c2 -0.0082 -0.0077
c3 0.0077 -0.0013
c1 0.0032 -0.0014

Table 3.6: Parameter Values for OCP model

α κ σ Θ

Panel A -0.6815 -1e10 0.6219 0.0419
Panel B 12.40 2.76 0.31 0.08
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Figure 3.2: Light Sweet Oil daily Futures Predictions Errors (MRAE): Panel
A
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Henry Hub Natural Gas

Two-factor models parameters presented in table 3.9. For all the panels, the

values of κ, σ1 and σ2 are quite low. From Panel A, one can see that adding

a seasonality factor to the model increases price of risk λ1, and for Panel B it

stays on the same level. For both the panels, models without seasonality have

weak correlation ρ between factors, while addition of the seasonality factor

increases the correlation. The values of the amplitudes c2 are on the same

level, but have a different sign. This effect appears from different data ranges

used for the parameter estimation procedure.

Table 3.7 for Panels A and B shows that the OF model has higher AIC

values than other models, although the difference between the models is modest

(apart from the error values for OCP in data panel B). Note that, for two-

factor models, the rate of mean reversion is very small, as is the correlation

between the two-factors. Figures 3.4 and 3.5 indicate the one step prediction
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Figure 3.3: Light Sweet Oil daily Futures Predictions Errors (MRAE): Panel
B
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performance of the four filtering-based models. Qualitatively, it is clear that

all the models perform very poorly for data panel A, while the OF model

may be deemed to be acceptable for data panel B. The poor out-of-sample

performance of models in panel A can be explained by the collapse of average

natural gas spot prices by 55% during 2009 due to a sharply reduced demand

(owing to recession) coupled with an increased US domestic gas output; see,

e.g. [68].

New York Gasoline

The parameters for one factor models are presented in table 3.12. Panel A,

shows that deviation of the long-run mean θ is zero, while the volatility σ is

high. Moreover, increasing of the complexity of the model doesn’t affect the

price of risk values λ. The parameters for the two-factor models are shown in

table 3.13. Panel A shows a strong correlation between factors for TFS models

as compare to the TF model, this change also drives σ2 values to the lower
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Table 3.7: Henry Hub Natural Gas Out-of-Sample errors, in-sample Likelihood
and AIC

Panel A

Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 3.22 0.19 1821.35 -1813
OF 7 3.24 0.186 9845 -19662
OFS 11 3.23 0.186 9845 -19646
TF 10 3.25 0.187 9787 -19533
TFS 14 3.26 0.187 9802 -19546

Panel B
Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 2.84 0.10 940 -1872
OF 7 2.25 0.086 10870 -21712
OFS 11 2.25 0.086 10873 -21702
TF 10 2.26 0.086 10767 -21493
TFS 14 2.26 0.086 10805 -21553

Table 3.8: Henry Hub Natural Gas parameter estimates for One-Factor models

Panel A Panel B

OF OFS OF OFS
µ0 -0.1273 -0.3446 0.1108 -0.1418
Θ 0.0440 0.0440 0.0000 0.0438
κ 0.0100 0.0100 0.3233 0.0100
σ 0.1892 0.1894 0.2430 0.1891
η 0.0374 0.0374 0.0283 0.0374
P0 1.4369 0.0189 0.6855 0.8556
λ -0.9853 -0.0085 1.5314 -1.0111
c4 0.0002 2.1105
c2 0.0153 -2.1321
c3 0.0058 -0.0020
c1 3.2133 0.4676

50



Table 3.9: Henry Hub Natural Gas parameter estimates for two-Factor models

Panel A Panel B

TF TFS TF TFS
α2 0.1693 0.3330 -0.1893 -0.1158
κ 0.0100 0.0100 0.0100 0.0100
σ1 0.1918 0.1579 0.1058 0.0429
σ2 0.0057 0.1261 0.0010 0.1499
η 0.0376 0.0370 0.0289 0.0283
λ1 -1.6141 -3.2646 1.3859 1.8230
λ2 0.0006 -0.0518 -0.0019 -0.2384
ρ 0.0038 0.0991 0.0006 0.0329
P01 0.0001 0.0001 1.7031 0.2694
P02 8.5445 9.0246 0.0001 0.0034
c4 0.0830 -2.7233
c2 0.1524 -0.2381
c3 -0.3997 -0.6534
c1 0.6816 0.6592

Table 3.10: Natural Gas parameter Values for OCP model

α κ σ Θ

Panel A -0.38 4.07E-10 0.46 1.47
Panel B 18.7564 13.0110 0.2273 5.0084
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Figure 3.4: Henry Hub Natural Gas daily Futures Predictions Errors (MRAE):
Panel A

44 46 48 50 52 54 56
20

30

40

50

60

70

80
E

rr
or

 %

Time to Maturity (Months)

 

 
OF
OFS
TF
TFS

levels in the TFS model. Increasing the complexity of models also increases

the price of risk λ2. Panel B, yields different parameter values as compared to

Panel A, owing to a change in market conditions. TF and TFS model have

the same level of σ1, while σ2 is increasing, when more degrees of freedom are

added. It also can explain the low score for amplitude c2, since the seasonality

factor is overtaken by higher volatility.

In-sample and out-of-sample comparison of models for New York Gasoline

is presented in table 3.11. For both the panels A and B, AICc values for

the OFS model show its dominance over the other models, although the OF

model seems to perform best out-of-sample when it comes to predicting the

commodity price. The OCP model also seems to perform well out-of-sample

in these two data sets. The picture seems to be very different, however, when

one looks at the errors in predicting the futures prices. Figures 3.6 and 3.7

show that TFS model outperforms all the other models in both the data sets,

when it comes to predicting futures prices (rather than predicting the price of
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Figure 3.5: Henry Hub Natural Gas daily Futures Predictions Errors (MRAE):
Panel B
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the commodity itself).

3.5 Summary

In this chapter, a subclass of the commodity price models was implemented.

The implementation is based on extensions of [56]. A comprehensive set of

numerical experiments have been carried out to compare different models, on

three different commodities and for two data sets for each commodity. The

summary of the conclusions from the numerical experiments is provided below:

• Filter-based models do seem to perform well as compared to the simplest,

observable commodity price model. They also allow us to make arbitrage-

free forecasts of futures prices.

• For light sweet oil, using the one factor model with no seasonality seems

to give a good compromise between model complexity and out-of-sample
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Table 3.11: Gasoline Out-of-Sample errors, in-sample Likelihood and AIC

Panel A

Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 2.25 4.68 1733 -1725
OF 7 2.23 4.636 7042 -14070
OFS 11 2.21 4.604 7271 -14518
TF 10 2.30 4.764 7032 -14044
TFS 14 2.30 4.779 7039 -14049

Panel B
Model parameters MRAE RMSE Log-Likelihood AICc

OCP 4 1.32 5.21 1024 -2040
OF 7 1.33 5.229 7807 -15600
OFS 11 2.01 7.146 8269 -16515
TF 10 1.35 5.297 7671 -15320
TFS 14 1.36 5.314 7678 -15327

Table 3.12: Gasoline parameter estimates for One-Factor models

Panel A Panel B

OF OFS OF OFS
µ0 -0.4087 -0.0182 0.2758 4.2419
Θ 0.0000 0.0000 0.0739 0.0394
κ 0.0100 0.0100 0.0100 0.0100
σ 0.3706 0.3690 0.2360 0.2622
η 0.0173 0.0153 0.0122 0.0100
P0 0.0402 22.8173 0.0115 0.5177
λ 0.8409 0.8065 -1.2990 -17.6784
c4 1.2627 -0.0793
c2 -0.8086 0.6721
c3 -0.6074 -1.0127
c1 -0.3522 0.0960

54



Table 3.13: Gasoline parameter estimates for two-Factor models

Panel A Panel B

TF TFS TF TFS
α2 -1.3354 -1.4164 0.7497 0.8348
κ 0.0100 0.0100 0.0100 0.0100
σ1 0.3272 0.3628 0.2404 0.2042
σ2 0.2368 0.0121 0.0056 0.1625
η 0.0172 0.0171 0.0129 0.0129
λ1 3.6756 3.5619 -2.8713 -3.7190
λ2 0.0498 0.6469 0.0017 -0.1002
ρ -0.1404 0.9905 0.0031 -0.1398
P01 42.7547 0.0001 0.4134 0.0001
P02 0.0001 0.0001 0.0001 0.0001
c4 -1.5022 6.3129
c2 -0.0071 -0.0171
c3 0.0323 -0.2191
c1 0.1479 -0.2690

Table 3.14: Gasoline parameter Values for OCP model

α κ σ Θ

Panel A -0.80 1.29E-10 0.53 0.33
Panel B 5.5635 0.9774 0.3085 1.8987
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Figure 3.6: New York Gasoline daily Futures Predictions Errors (MRAE)
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performance, both in terms of commodity price prediction as well as

futures price prediction.

• For natural gas data sets, all the models calibrated from 2007-2009 data

(for data panel A) gave extremely poor performance when predicting

futures prices between 2009-2010. This may be due to the spot gas

price collapse in 2009. Clearly, there is a need to re-calibrate the model

frequently during periods when market is under stress. For data panel

B, the one factor model was again the best performer.

• For the New York gasoline, all the four filtering-based models give very

similar performance when considering commodity price prediction, but

the two-factor with seasonality model clearly outperforms the other mod-

els when it comes to predicting the futures prices.

All in all, different types of energy commodities require different models.

It is obvious that it is impossible to construct the model which will explain
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Figure 3.7: New York Gasoline daily Futures Predictions Errors (MRAE)
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the behaviour of all of the energy market. On the other hand, it is possible to

find a model which will suits best to the specific commodity.
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Chapter 4

A fast calibrating volatility

model for option pricing

4.1 Introduction

The central assumption of the celebrated Black-Scholes formula for European

option pricing is that the volatility of the underlying asset is constant [13].

This is known to be untrue in practice. The observed prices of liquid options

on the same underlying, for a given set of maturities and strikes, imply dif-

ferent volatilities under the Black-Scholes formulation. Modelling the future

evolution of the volatility of the underlying asset, which is consistent with the

observed option prices, is obviously essential to price illiquid securities on the

same underlying asset. The topic of suitable volatility models which provide a

consistent match with the observed prices has resulted in extensive literature

over the past few decades.

There are two broad classes of volatility models: local volatility models and

stochastic volatility models. Note that this is a rather imprecise taxonomy,

but it will be sufficient for the purpose of this chapter. The former class

of models does not have an additional source of uncertainty (apart from the

sources of uncertainty in the underlying) incorporated in the volatility model

and the volatility is assumed to be a deterministic function of the current

underlying price and time. Examples of this type of models include the models

proposed by Dupire [30], Derman and Kani [27] and Alexander [5]. In contrast,

stochastic volatility models include an extra source (or sources) of randomness

and provide more flexibility in modelling the dynamics of the volatility surface.
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Significant models in this class, with an emphasis on option pricing, include

those proposed by Hull and White [49], Merton [60], Heston [44], Bates [11],

Kou [53], Duffie et al [29] and Carr et al [17]. Bakshi et al [9] have compared

a variety of stochastic volatility models in terms of their pricing and hedging

performance. Heston as well as Bates model yields semi-closed form solutions

in terms of Fourier transform of European option price and are hence amenable

to relatively easy calibration to market data. Gatheral [36] and Javaheri [51]

provide comprehensive reviews of the development of volatility models.

In this chapter, a new method is proposed for modelling volatility as im-

plied by option prices. In the new model, the volatility is represented as a

deterministic function of time, with its level being a random variable on posi-

tive support. The proposed volatility model offers the following benefits:

• It provides a very simple approximate pricing function for calibrating

the model from option price data. In the experiments performed, the

evidence suggests that the proposed model requires only around 1% of

the computational time as the Heston model or the Bates model for

calibration, on the same hardware.

• In fifteen different data sets tested for three different indices and us-

ing two different methods of measuring the pricing error, the proposed

model is shown to be extremely competitive in terms of accuracy with

the popular existing stochastic volatility models.

• When calibrated from the same data-set, the proposed model also yields

prices for path-dependent payoffs which are in the same range as the

Heston model and the Bates model. This is important since the prices

of illiquid payoffs are non-unique under stochastic volatility and any new

model which gives significantly different prices from the established mod-

els is unlikely to be accepted by the industrial community.

• When calibrated from the same data-set and using the same numerical

method, the proposed model yields option price sensitivity parameters

which are very close to those found for one of the two benchmark models,

for most data-sets. Option sensitivities (or Greeks) are important for risk

monitoring and hedging purposes and the numerical experiments show

that hedging using the new model is unlikely to provide significantly

different results than hedging using the Heston model.
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Note that, apart from the Bates model and the Heston model, several

other analytically tractable options exist for modelling volatility (as mentioned

earlier). The purpose here is to establish that the new model yields accuracy

comparable to some of the popular existing models, while being significantly

easier to calibrate, and easier to simulate from, than those models. Hence the

benchmark comparison has been restricted to the two aforementioned models.

The rest of this chapter is organized as follows. In the next section, the new

volatility model is presented. Section 4.3 on numerical experiments is split into

three subsections: section 4.3.1 outlines the data used, section 4.3.2 explains

the methodology employed in comparing the performance of different models

and lastly section 4.3.3 provides the results and a discussion. Section 4.4

summarizes this chapter. Finally section 4.5 contains a visual representation

of the results.

4.2 High-Order Moments Stochastic Volatil-

ity model

The basic idea of the model is now introduced. Recall that, by definition,

European call option is a right to buy an asset at maturity time T for a strike

price K. For a non-dividend paying stock, its price at time t is given by

discounted expectation of the terminal pay-off:

Ct = e−r(T−t)
E[(ST −K, 0)+].

Under the Black-Scholes framework with constant volatility, this discounted

expected value is given by

CBS = StN(d1)− e−rτKN(d2),

d1 = (σ
√
τ)−1[log(St/K) + (r + σ2/2)τ ],

d2 = d1 − (σ
√
τ ),

where r is the constant risk-free rate, σ is the volatility, N(x) is the standard

normal cumulative distribution function and τ = T − t is the time to maturity.

The derivation of Black-Scholes price also assumes that short-selling as well as

trading in continuous time is possible. As outlined before in section 2.5, one of
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the simplest frameworks to introduce a stochastic component in the volatility

is to consider a Hull-White type model of the asset price process [49]:

dSt = µStdt+
√
vtStdW

1
t , (4.1)

dvt = f1(t, vt)dt+ f2(t, vt)dW
2
t , (4.2)

where W 1
t and W 2

t are uncorrelated Wiener processes and f1, f2 are smooth

functions bounded by linear growth such that vt remains non-negative almost

surely. [49] shows that the price of European vanilla call option at time 0, for

a time to maturity τ can be derived as the expectation of Black-Scholes price

with respect to the variance rate (see section 2.5 for the proof):

CEUR = E

[

CBS

(
1

τ

∫ τ

0

vtdt

)]

(4.3)

where CBS(x) denotes the Black-Scholes price evaluated at variance x. The

above formula is independent of the exact process followed by vt (under normal

assumptions about t− continuity and uniqueness). Denoting the variance rate
1
τ

∫ τ

0
vtdt by V̄τ and assuming that the moments in question exist, the right

hand side of (4.3) can be expanded around E(V̄τ ) in Taylor series as:

CEUR ≈ CBS(E(V̄τ )) +
M∑

i=2

∂iCBS

∂V̄τ
i

E(V̄τ − E(V̄τ ))
i

i!
, (4.4)

where the partial derivatives are evaluated at E(V̄τ ). The aim of this chap-

ter is to construct a process for vt for which the right hand side of the above

equation is easy to evaluate (for a reasonably large M), while remaining suffi-

ciently flexible to fit the observed option prices. Note that truncating after the

first term will mean that prices of options with all strikes for a fixed time to

maturity should be the same, which is obviously nonsense. This illustrates the

need for non-zero higher moments for V̄τ (and hence the need for randomness

in volatility) in an intuitively simple fashion.

Without loss of generality, let t = 0 be the current time and let t0 > 0 be an

arbitrary time which is less than the shortest time to maturity of any derivative

product which we want to price using the new model. We will allow the

diffusion term in the volatility process of (4.2) to be non-zero only within [0, t0).

This will allow us to use a single random variable, rather than an evolving
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random process, to model the randomness in volatility when pricing securities

at time t = 0, whose payoffs are beyond t0. Note that option pricing models

are always used for pricing securities with finite, rather than infinitesimal, time

to maturity. Further, t0 itself does not appear in the pricing formulae (only

an integrated variance term does, as we shall see) and can be assumed to be

arbitrarily small. Next, assume that vt in (4.2) is governed by the following,

specific stochastic process:

dvt = (µtdt+ γtdW
2
t )vt, (4.5)

where µt is a positive deterministic and integrable function, γt is a positive

deterministic function which is piecewise continuous, with γt = 0, t > t0 and

W 2
t is a standard Wiener process uncorrelated with W 1

t . Using Itô’s lemma,

it is straightforward to show that

vt = exp

(∫ t

0

µsds

)

ζt,

where ζt is a log-normal process with unit mean and a constant variance for

t > t0. In particular,

Var(ζt) =

(

exp

{∫ t0

0

γ2sds

}

− 1

)

, t > t0.

Henceforth it is assumed that t > t0 holds. Let k =
√

Var(ζt). Then the

third and the forth centered moments of ζt, m3 and m4 respectively, can be

expressed as:

m3 = k4(3 + k2), (4.6)

m4 = k4{(1 + k2)4 + 2(1 + k2)3 + 3(1 + k2)2 − 3}. (4.7)

The standard deviation k of the lognormal random variable ζt is parametrised

directly, with no reference to γt or t0. Finally, exp(
∫ t

0
µsds) is parametrised as

exp

(∫ t

0

µsds

)

= σ̂2
0e

−λt + σ̂2
1λte

−λt + σ̂2
2,

where σ̂0, σ̂1, σ̂2, λ are scalar parameters. This allows the following parametriza-
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tion as

vt = ζt(σ̂
2
0e

−λt + σ̂2
1λte

−λt + σ̂2
2), ζt ∼ LN(1, k2), t > t0. (4.8)

Along with (4.1), (4.8) completely specifies the new pricing model within the

chosen pricing measure, which is implicitly specified by the data used for cali-

bration. The model defined here is called high order Moments-based Stochastic

Volatility (MSV) model, since it is based on the use of higher order moments

of the aforementioned random variable. With this definition of vt:

V̄τ :=
1

τ

∫ τ

0

vtdt = ζt

(
σ̂2
0 + σ̂2

1

λτ
+ σ̂2

1 +
σ̂2
2 − σ̂2

1

1− e−λτ

)

(1− e−λτ )

︸ ︷︷ ︸

Qτ

, (4.9)

where Qτ is a deterministic function. Qτ is actually the equation for Nelson-

Siegel [65] spot rate curve used in interest rate modelling. While the applica-

tion discussed here is unrelated to modelling interest rates, this parametriza-

tion is chosen for its known ability to represent a variety of relevant shapes

of term structure (both concave and convex), with a suitable choice of pa-

rameters. Since, European option price for any τ > 0 is a smooth function

with respect to V̄τ , one can apply Taylor series expansion to the Black-Scholes

option price CBS around a point E(V̄τ ) = Qτ :

CEUR(V̄τ ) ≈ CBS +
∂2CBS

∂V̄ 2
τ

E(V̄τ −Qτ )
2

2
+
∂3CBS

∂V
3

τ

E(V̄τ −Qτ )
3

6

+
∂4CBS

∂V̄ 4
τ

E(V̄τ −Qτ )
4

24
, (4.10)

where CBS and its partial derivatives are evaluated at V̄τ = Qτ . These partial

derivatives for a European call option can be evaluated as:

ν :=
∂CBS

∂V̄τ
= Ke−rτφ(−d2)

√
τ ,

∂2CBS

∂V̄ 2
τ

= ν
d1d2
Qτ

,

∂3CBS

∂V̄ 3
τ

=
−ν
Q2

τ

[
d1d2(1− d1d2) + d21 + d22

]
,

∂4CBS

∂V̄ 4
τ

= ν
12d1d2 + 3τQ2

τ (1− d1d2)− d21d
2
2(9− d1d2)

Q3
τ

, (4.11)
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with d1 =
log(S0/K)+(r+Q2

τ/2)τ
Qτ

√
τ

, d2 = d1 −Qτ

√
τ and

φ(x) = (
√
2π)−1

∫ x

0
e−0.5u2

du. Similar expressions can easily be derived for an

approximation to the price of a European put option.

The first four moments of V̄ can be rewritten as the following:

E(V̄τ ) = Qτ ,

E(V̄τ −Qτ )
2 = k2Q2

τ ,

E(V̄τ −Qτ )
3 = k4(3 + k2)Q3

τ ,

E(V̄τ −Qτ )
4 = k4{(1 + k2)4 + 2(1 + k2)3 + 3(1 + k2)2 − 3}Q4

τ . (4.12)

Equations (4.8)-(4.10) together with equations (4.11)-(4.12) define the approx-

imation to the new option pricing model.

Along with the parameters σ̂0, σ̂1, σ̂2, λ which appear in Qτ , the parameter

k which characterises the distribution of ζt completes the set of parameters for

the new volatility model specification.

A few remarks on this model are in order.

• Empirical experiments showed that a third or a fifth order Taylor series

approximation, in place of the fourth order approximation used here,

makes very little difference. However, using k = 0 leads to very poor fits

on calibration, again indicating that randomness is necessary to model

the volatility dynamics adequately.

• Zero correlation is assumed between the sources of randomness in the

underlying and the volatility, and there is no risk premium attached to

the randomness in volatility. However, the choice of a simpler volatil-

ity model seems to provide a fit which is quite competitive in terms

of accuracy when compared to models with non-zero correlation, at a

small fraction of calibration cost, over a large number of data sets. The

admittedly limited evidence indicates that choosing a sufficiently flexi-

ble parametrised function of time can compensate at least partially for

not modelling the correlation between the volatility and the price of the

underlying.
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4.3 Numerical Experiments

4.3.1 Data Specification

For calibration and validation of the new model, the option price data {Strike
price, Maturity, Implied Volatility, Bid, Ask and underlying values on the

date of reading} was obtained from Bloomberg Option Monitor (OMON).

Implied risk free rates were calculated using implied volatilities and option

prices by simple nonlinear least squares, for each maturity. European call

options were chosen with a minimum of 30 days to maturity and up to 3 years

to maturity, with strike prices to be both in-the-money and out-of-the money

values. The total data consisted of closing option prices on 3 different stock

indices {S&P500, FTSE 100 and DAX} on five different days {01 November

2012, 26 November 2012, 25 July 2013, 26 July 2013, 29 July 2013}, with 100

options for each index and day. This gave a total of 15 data sets (one for each

index and each day), from two different years, with 100 prices in each data

set. 1

4.3.2 Methodology

To calibrate and validate the models (the Heston model, the Bates model

and the MSV model), the option prices were randomly separated with pro-

portion 80 and 20 percent for in-sample and out-of-sample model evaluation

respectively, within each of the fifteen data-sets. The in-sample data was used

for calibration as well as validation and the out-of-sample data was used for

validation only.

For calibration, the following minimization problem was solved for each of

the three models:

min
Θ

N∑

i=1

|Cmarket
i − Cmodel

i (Θ)|2
|Bidi −Aski|4

,

where Θ is the vector of parameters, Cmodel
i (Θ) is the price given by the model

parametrised by Θ, N is the number of options in the in-sample data and

Bidi, Aski are closing bid and ask prices of the ith option, respectively. Cmarket
i

is the market price of the ith option which is obtained as an arithmetic average

of Bidi, Aski for each option. The choice of weight, which is the inverse of (op-

1Note that numerical experiments have been carried out over more data-sets and the
results presented here are deemed to be representative.
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tion price spread)4, under-emphasizes any illiquid options during calibration.

Three different powers of bid-offer spread were tried (1, 2, 4) for the choice of

weight and 4 seems to offer the best fit for all of the models. Calibration

was done using Matlab 2012b on a Windows 8 laptop, with Intel i7 processor

and 8 Gb memory. As mentioned earlier, Heston stochastic volatility model

and Bates, i.e. stochastic volatility with jumps model (SVJ) [11] are used as

benchmarks for option pricing models. For Heston and Bates models, 8192

point FFT was used in approximating the option price evaluation integral.

The calibrated models are compared with each other in three different ways:

1. For each in-sample and out-of-sample data set after calibration (30 data-

sets in all - with each of 15 data-sets split into in-sample and out-of-

sample subsets), the two commonly used error metrics were used, viz

Mean Relative Absolute Error (MRAE) and Root Mean Square Error

(RMSE). Further, since computational speed is one of the main selling

points of the new method. The computational time for model calibration

was compared between the benchmark models and the new model. The

two error metrics are defined below:

MRAE =
1

N

N∑

i=1

|Cmarket
i − Cmodel

i |
Cmarket

i

,

RMSE =

√
√
√
√

N∑

i=1

(Cmarket
i − Cmodel

i )2

N
,

where N is the number of data points. These two error metrics and the

computation time will be reported for all the data-sets.

2. Since the Heston and the SVJ models are treated as ‘benchmark’ models,

one expects that any new, sensible model calibrated from the same data-

set as one of these models will yield similar prices for illiquid or non-

traded payoffs. We test whether this is the case for the new model by

pricing down-and-out-call barrier options for a range of strikes, barriers

and expiration, using the three models calibrated from the same data-set.

The experiments were repeated with floating strike, arithmetic average

Asian calls. Note that in both these cases, there are no ‘true’ or unique

prices and we are simply expecting the models calibrated from the same

data to yield similar prices for illiquid securities.
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3. Finally, one also expects the models calibrated from the same data to

yield similar option price sensitivity parameters, which are crucial in risk

monitoring and hedging purposes. This fact is also tested by numerically

calculating ∆ = ∂C
∂S

and Γ = ∂∆
∂S

for options for each of the models, over

all the data sets.

One may ask if it is possible to calculate an option Vega, using the MSV model.

However, Vega, i.e. the rate of change of option price with respect to change in

volatility, is undefined for stochastic volatility models, since the volatility is a

process rather than a constant parameter. Besides the obvious - and common

- way of ignoring Vega hedging altogether, one way the market deals with the

problem of sensitivity with respect to volatility is to use the initial value v0

as a proxy for volatility, and use the first partial derivative of option price

relative to this parameter as a proxy for Vega. Unfortunately, this presents

very significant model risk and a small perturbation in parameters often leads

to very different Vega values. This is a known fact in the market and was

confirmed in the numerical experiments as well. As Vega values are extremely

sensitive to model error and, in addition, vary wildly from model to model for

the same option parameters (strike and expiration). Hence, the comparison

would have been uninformative in the sense of a contribution to this research.

The next subsection and the accompanying tables and figures in section

4.5 provide representative results to support the arguments discussed in this

chapter.

4.3.3 Results

The application of the new model to the real market data is now discussed. As

mentioned above, three different sets of results were considered: the accuracy

in matching the traded option prices, a comparison of illiquid option prices

via simulation and a comparison of the sensitivity parameters via numerical

approximation.

• The in-sample and the out-of-sample errors (as measured by MRAE and

RMSE in both the cases) of all the data-sets are presented in the section

4.5. The in-sample errors are denoted by MRAE-I, RMSE-I and the out-

of-sample errors are denoted by MRAE-O, RMSE-O. Sample parameters

presented for MSV, SV and SVJ models for one data set are presented in
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tables 4.9 and 4.8. Tables 4.1-4.5 provide the achieved errors for data on

five different days, with each table reporting in-sample as well as out-of-

sample error metrics for the three indices for that day. Boldface numbers

in each column indicate the worst value for the error metric obtained for

that data subset (in-sample or out-of-sample subset, for each data-set).

With three indices, five days, two data subsets for each index on each day

and two error metrics, we have a total of 60 error columns to compare

the three models (Heston, Bates and MSV) with. From tables 4.1-4.5,

the MSV model has the worst performance (out of the three models)

only 9 out of 60 times, with one of the two benchmark models being

the worst performer in all of the remaining 51 cases. This supports the

modest claim of this chapter that the new model is very competitive in

terms of accuracy with the benchmark models. The other important set

of numbers is the calibration times. Tables 4.1-4.5 show that the MSV

model can be calibrated within 1.25 seconds in all the fifteen cases, while

the lowest calibration time for the other two models is 41.32 seconds. In

summary, tables 4.1-4.5 indicate that one can obtain a very good fit to

option prices with the MSV model at a fraction of the calibration cost,

as compared to some of the existing popular models.

• Next, the three models were compared for prices of illiquid options, when

calibrated from the same data set. Table 4.6 outlines the prices obtained

for down and out barrier call options, priced using each of three models

calibrated from the 1st November 2012 FTSE options data-set. It may be

recalled that down-and-out call barrier option with strike K and barrier

B has a payoff max(ST − K, 0) at expiration time T unless St < B at

any point between t = 0 and t = T , in which case the option ceases to

exist.

The option prices were simulated using Euler discretisation for all the

models with 10000 steps for each sample path and with 10000 sample

paths. The obtained prices and confidence intervals (denoted as CI) for

various values of expiration times T , interest rates r, barriers and strike

prices are reported in table 4.6. As can be seen, the prices given by the

new model are within 10% (in the worst case) of either Heston price or

SVJ price. As there is no unique option price in this case, the aim of

this chapter is simply to establish that the MSV model gives believable
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prices, which are not too far from those given by benchmark models.

Moreover, the prices by Heston and SVJ models can themselves differ

by 10% or more. It should also be noted that simulation using the new

model is computationally somewhat cheaper than that with either of the

other two models.

Floating strike, arithmetic average Asian call options were also priced

with the three models, calibrated from the 1st November 2012 data-sets

(for all the three indices). This generally illiquid option has a payoff

max(0, ST −Sav) at expiration, where Sav represents the time average of

the underlying price between t = 0 and t = T , T being the expiration.

In this case as well, we simulated the option prices using Euler discreti-

sation, 10000 steps for each sample path and 10000 sample paths. The

results are reported in table 4.7, along with 95% confidence intervals.

As can be seen, the prices obtained by the new model are close to those

obtained by SVJ model.

Similar experiments were performed with other data-sets with the same

qualitative conclusions; hence the results are omitted for brevity.

• As a final measure of performance, the three models were compared in

terms of the sensitivity parameters delta and gamma for the options.

These parameters were compared over all the fifteen data-sets. For all

the models, approximate values of these parameters are obtained using

a central difference approximation scheme as follows:

∆ ≈ C(S + δ)− C(S − δ)

2δ
and

Γ ≈ C(S + δ)− 2C(S) + 2C(S − δ)

δ2
,

where C(x) indicates option price evaluated at the price of underlying

equal to x, S is the price of the underlying and δ is a small increment.

While more sophisticated methods to calculate these parameters exist

(and it is trivial to find these analytically for the MSV model by dif-

ferentiation), the purpose of this experiment is to compare whether the

values given by the new method are in the same range as the values given

by the other two methods. A selection of results is presented in figures

4.1-4.3. The remaining results are qualitatively similar, and are omitted
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for brevity. Note that the apparent periodicity is simply a result of the

same set of strikes being repeated for different expirations. For FTSE

and S & P data-sets, the sensitivity parameter estimates from MSV tends

to be close to one of the other two models, except at short maturities.

The deviation of MSV delta and gamma from those given by the other

two models is the highest for 25 July 2013 DAX data set. This is also

the only data-set when the RMSE and MRAE errors for MSV model are

the worst among the three models; please see table 4.3. Gamma values

of all the three models at short maturities vary quite significantly and

it is not immediately obvious which values should serve as benchmark

values.

It is worth mentioning that no evidence was found whether the MSV model

works consistently better/worse at short or long maturities, or for in-the-money

or out-of-the-money options.

4.4 Summary

The contribution of this chapter is threefold. First and the main contribu-

tion is that the new random volatility model was proposed, called high or-

der moments-based stochastic volatility model (or MSV model), in which the

volatility is a function of time with its level being modulated by a random vari-

able. By using a Taylor series expansion of the option price, it was shown that

the model yields an easy formula for approximate option prices and hence can

be calibrated extremely fast. The proposed model can even be implemented

on a spreadsheet2.

Secondly, it was demonstrated through comprehensive numerical experi-

ments that MSV model is very competitive in terms of accuracy with the

Heston model and the SVJ model, while being computationally significantly

cheaper to calibrate. Lastly, the claims for the usefulness of the new model have

been backed up with simulation experiments for comparison of exotic option

prices as well as comparison of numerically evaluated option price sensitivity

parameters. The MSV model thus provides a competitive alternative to the

existing option pricing models; it is particularly suitable for high frequency

financial trading due to its speed of calibration.

2An Excel spreadsheet implementation can be found on the CD.

70



Note that it is conceptually straightforward to use a semi-parametric model,

by using a piecewise linear γt in (4.5) which is non-zero for t > t0, to match the

observed option prices even more accurately. The use of such semi-parametric

models with piecewise constant volatility parameters is quite common in fi-

nancial modelling, e.g. it is used in calibrating a LIBOR forward model to

observed caplet prices (see [15] and references therein, for example).
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4.5 Tables and graphs

Table 4.1: 01 November 2012

MRAE-I RMSE-I Time (sec.) MRAE-O RMSE-O

FTSE
Heston 4.79 10.43 148 4.97 14.85
SVJ 3.33 11.29 407.70 3.53 3.38
MSV 3.30 9.62 1.24 2.08 5.77

S&P500
Heston 8.20 5.99 605.72 7.13 6.9
SVJ 1.23 1.38 1419 1.28 0.54
MSV 4.75 3.30 0.44 4.73 3.27

DAX
Heston 2.45 9.74 77.35 3.72 9.51
SVJ 4.75 35.38 771.17 4.38 2.80
MSV 4.37 20.51 0.24 5.60 23.42

Table 4.2: 26 November 2012

MRAE-I RMSE-I Time (sec) MRAE-O RMSE-O

FTSE 100

Heston 6.36 12.04 109 6.21 10.45
SVJ 3.09 12.97 378.7 2.98 1.73
MSV 3.33 7.82 0.76 4.32 8.63

S&P 500
Heston 4.68 4.42 193 4.83 5.46
SVJ 3.31 3.13 1115.62 3.2 0.65
MSV 3.81 2.32 0.36 3.84 3.15

DAX
Heston 6.32 55.19 95.87 5.78 46.05
SVJ 7.25 61.94 910.39 6.78 45.85
MSV 4.79 42.80 0.28 4.42 40.38
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Table 4.3: 25 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100
Heston 7.34 22.26 1332.88 6.20 14.31
SVJ 4.50 10.87 671.12 5.15 5.23
MSV 4.15 9.80 0.81 5.27 11.11

S&P 500
Heston 4.78 3.26 252.93 6.28 3.45
SVJ 3.59 2.63 1156.91 3.80 1.79
MSV 3.97 3.11 1.01 4.30 2.34

DAX
Heston 10.32 88.39 145.26 12.56 102.16
SVJ 8.20 89.12 600.71 11.89 34.93
MSV 13.81 110.51 0.71 17.18 114.35

Table 4.4: 26 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100
Heston 8.32 23.82 1146.46 7.07 14.75
SVJ 4.50 10.87 671.12 5.15 5.23
MSV 4.45 9.37 0.62 5.83 10.80

S&P 500
Heston 5.00 3.34 257.44 6.30 3.43
SVJ 3.01 2.65 1337.72 3.06 1.79
MSV 3.86 3.06 1.09 1.00 2.43

DAX
Heston 4.33 34.34 286.69 4.19 22.75
SVJ 2.70 26.32 418.64 2.99 4.59
MSV 4.24 17.55 0.65 8.01 18.17

Table 4.5: 29 July 2013

MRAE-I RMSE-I Time MRAE-O RMSE-O

FTSE 100
Heston 8.66 23.58 667.25 7.70 14.53
SVJ 4.78 12.38 590.72 4.40 4.65
MSV 4.52 9.35 0.85 5.74 10.73

S&P 500
Heston 5.78 3.50 41.32 6.01 3.20
SVJ 2.57 19.43 291.20 3.81 5.87
MSV 4.71 2.99 1.00 5.29 2.30

DAX
Heston 4.26 28.49 134.29 4.47 19.44
SVJ 2.70 26.32 418.64 2.99 4.59
MSV 4.34 18.35 0.64 8.03 18.75
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Table 4.6: Down-and-out Call Barrier option prices (models calibrated from
1st November 2012 FTSE data)

DAX S 7281.18 Barrier 7100.00 Strike 7250.00
SVJ Heston MSV

T r Price CI Price CI Price CI
0.10 0.0051 92.93 90.18 95.67 83.13 80.03 86.24 94.66 91.59 97.72
0.21 0.0049 132.92 122.56 143.27 117.24 112.83 121.65 135.96 130.93 140.99
0.32 0.0052 137.97 132.14 143.80 131.89 126.48 137.30 143.25 137.10 149.41
0.43 0.0056 144.88 138.38 151.39 141.61 135.36 147.86 153.09 145.96 160.23

Barrier 7200.00 Strike 7300.00
SVJ Heston MSV

T r Price CI Price CI Price CI
0.10 0.0051 55.16 52.92 57.41 53.24 50.75 55.73 60.75 58.00 63.50
0.21 0.0049 63.16 60.17 66.16 60.67 57.36 63.98 68.46 64.58 72.35
0.32 0.0052 69.14 65.52 72.76 67.40 63.43 71.37 73.65 68.99 78.32
0.43 0.0056 77.26 60.28 94.24 73.40 68.67 78.14 78.96 73.48 84.45

FTSE S 5812.06 Barrier 5750.00 Strike 5820.00
SVJ Heston MSV

T r Price CI Price CI Price CI
0.06 0.0051 61.63 55.40 67.86 40.07 38.56 41.58 54.88 51.50 58.25
0.20 0.0049 61.26 53.02 69.49 53.11 50.57 55.66 58.66 53.77 63.54
0.31 0.0052 65.69 55.56 75.82 55.68 52.72 58.65 64.78 58.73 70.83
0.42 0.0056 59.17 49.33 69.01 57.67 54.35 60.98 66.69 60.03 73.35

Table 4.7: Arithmetic average Asian option with floating strike (1st November
2012, all indices)

SVJ Heston MSV
Index S0 T r Price CI Price CI Price CI

FTSE 5812.06 0.42 0.0056 89.31 86.02 92.59 84.94 82.49 87.38 88.41 85.82 91.00

SNP 1412.16 0.31 0.003 21.56 21.04 22.08 14.88 13.84 15.91 20.44 19.84 21.04

DAX 7281.18 0.10 0.001 60.88 59.18 62.58 56.04 53.93 58.15 61.73 59.91 63.55

Table 4.8: Heston and SVJ Parameters on 1 November 2012

κ θ ρ v0 σv µj σj λp

Heston 4.75 0.0085 -0.99 0.0096 0.0118
SVJ 100 0.0065 -0.99 0.0151 0.99 0.191 0.00001 6.6132

Table 4.9: MSV parameters on 1 November 2012

k2 σ0 σ1 σ2 λ

MSV 0.0004 0.1082 0.0027 0.2937 1.3414
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Figure 4.1: FTSE100: Delta and Gamma on 25.07.2013
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Figure 4.2: S&P 500:Delta and Gamma on 25.07.2013
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Figure 4.3: DAX:Delta and Gamma on 25.07.2013
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Chapter 5

Electricity futures price models:

calibration and forecasting

5.1 Introduction

Due to its specific structure, the modelling of security prices in the electricity

market remains a big challenge for economists and risk managers. As a non-

storable commodity, electricity is traded one day ahead and the contract sizes

are measured in MWh. Spike structure is usually observed in the electricity

spot price time series. Various modern approaches to model this behaviour

have been suggested. [26], [32], [78] and [18] use a compound Poisson process

coupled with Ornstein-Ulenbeck process for the spot price. Weron et al [79]

introduced two different jump processes to account for different jump sizes

in positive and negative directions. A jump regime switching model was de-

veloped in [48]. Geman and Roncoroni in [37] and [38] use jump direction

threshold to force negative jumps if the price exceeds the threshold value. A

numerical algorithm based on a continuous time Markov chain was studied by

[4]. Different approaches for modelling the electricity prices were surveyed re-

cently in [64]. A drawback of the class of jump-diffusion models used to model

electricity prices discussed in most of these papers is a significant complexity

of estimating a large number of model parameters from data.

When it comes to a jump risk premium, two ideas exist in the literature.

An earlier approach formulated by Merton [60] and followed by [53], [9] and [11]

ignores the jump risk premium in general, i.e., treats the jump risk as purely

idiosyncratic and assumes that it can be diversified away. The risk premium is
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applied only to jump size components of a compound Poisson process. More

recently, [66] provides evidence on an implicit jump risk premium. Finally, [16]

formulates a general framework for non-Gaussian processes, introduces a risk

aversion in non-Gaussian processes and gives an explicit expression for the risk

premium in jump processes.

As futures contracts in energy markets are far more liquid than the spot

security, it is common to estimate the implied spot price from futures prices.

Estimation of the spot commodity price using the Kalman filter was performed

by [71], [56] and [54]. However, the classical Kalman filter can be applied only

to a linear state space model. [2] used a particle filter to estimate the dynamics

of state variables in a two-factor model with jumps and used the maximum

likelihood method to obtain the model parameters. [1] used a particle filter to

estimate parameters for a two-factor model with jumps.

In this chapter, a new random volatility model is introduced for electricity

price modelling. Volatility in this model is taken to be a random variable

to explain the non-Gaussian log-spot price behaviour. An approximation to

the futures price for this model is derived using the moments of the random

volatility, and it is shown that the model performs at least as well as multi-

factor models, which are much harder to calibrate and to simulate than the

new model.

Further, two methodological contributions are made to the existing liter-

ature on two-factor models of commodity prices. Firstly, a simple extension

to the two-factor model with jumps is proposed, which was discussed in [78].

This includes adding a sinusoid (rather than a Fourier series based periodic

function) to model the seasonality and empirically investigating whether an

explicit evaluation of jump risk premium makes a difference to accuracy of pric-

ing. Secondly, we propose a new multi-step calibration procedure to estimate

the model parameters, which is computationally simpler than the commonly

employed simulation-based estimation in similar problems.

The modified two-factor model (with a seasonality factor and jump risk

premium) is calibrated using this simplified calibration procedure and com-

pared with the new model on real electricity futures price data, in terms of

accuracy in one step ahead prediction.

The rest of this chapter is structured as follows. Section 5.2 presents the

new random volatility model, with a derivation of approximate futures price

under this model, while section 2.4 outlines the existing two-factor jump-
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diffusion model. Section 5.3 contains the methodology and discussion about

the data used for numerical experiments. Section 5.4 includes the results on

the comparison of different models. Finally, Section 5.5 provides the summary

of this research.

5.2 A new commodity price model

Empirical studies of log spot price of electricity show a significant deviation

from normality, principally due to price spikes over time. A simple new model

is proposed here which takes into account the resulting fat tailed nature of

the log spot distribution. As mentioned before, the traditional approach for

modelling price spikes is using a compound Poisson process in addition to

a mean-reversion process. However, the resulting two-factor jump-diffusion

model has a fairly large number of parameters, which makes it difficult and

fairly time-consuming to calibrate. This problem is avoided in the new random

volatility model, which is discussed below.

A commonly used generic form of the model of energy commodity price

behaviour is:

St = f(t)ext , (5.1)

where St is a commodity price at time t, f(t) is function of time which rep-

resents a seasonality pattern and xt is a stochastic process. Our aim is to

construct a stochastic process which can account for all of the properties of

electricity price distribution, but preserves a level of complexity which is com-

parable with a one-factor model.

In the filtered probability space (Ω, Q, Ft) with Q being the risk-neutral

measure and Ft being the natural filtration, the evolution of de-seasonalised

log commodity price is modelled by:

dxt = (α− κxt)dt+ σtdW
Q
1,t, (5.2)

dσt = f̂1(t, σt)dt+ f̂2(t, σt)dW
Q
2,t, (5.3)

where α and κ > 0 are scalar constants, σt is a positive process on the real

line, Wi,t (i = 1, 2, t > 0) are Wiener processes such that < W1,t,W2,t >= 0

and f̂1, f̂2 are real valued smooth functions.

Recall that the arbitrage-free futures price F (t, T ) at time t with maturity
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time T is given by:

F (t, T ) = f(T )EQ(exT |Ft) (5.4)

where T > t is the maturity time. Assume that xt is a right continuous process

generated by Q-Wiener process and all the central moments mi (i = 1..∞) of

xt exist ∀t ∈ [0, T ].

The expected value of the process ex can be written in terms of an infinite

series as follows, with x = xT for brevity:

E
Q(ex|Ft) = em1E

Q(ex−m1 |Ft) = em1

∞∑

i=0

E
Q(x−m1|Ft)

i

i!

= em1

((
m2

2
+

3m2
2

24
+ . . .

)

+
m3

8
+
m4 − 3m2

2

24
+
m5

120
+ . . .

)

.

(5.5)

Now, one can collect together terms which lead to a Taylor expansion of

e
1
2
m2 , noting that odd moments of the Gaussian distribution are zero:

E
Q(ex|Ft) ≈ em1

(

e
1
2
m2 +

m4 − 3m2
2

24
+
m6 − 15m3

2

720

)

. (5.6)

In the subsequent discussion, σt is assumed to be a log-normally distributed

random variable for all t > 0, with a constant mean µ and a constant variance

η2. This stationary probability distribution can be obtained at each time t by

assuming the following simple stochastic process for log σt:

log σt = µ+
ηWQ

2,t√
t
, t > 0, log(σ0) = µ,

with < WQ
1,t,W

Q
2,t >= 0. This provides a theoretical justification for the choice

of log-normal distribution for σt, although other distributions may be chosen

in practice. Since we are interested in pricing futures contracts which are

path-independent securities, σt can be treated as a time-independent random

variable and henceforth the time index is omitted from the notation for σt.

Under the real world (or physical) measure P, let the log spot price process
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be given by

dxt = (ᾱ− κxt)dt+ σdWP
1,t, (5.7)

σ ∼ LN(µ, η2),

where WP
1,t is a Wiener process under a physical measure.

Then, assuming the absence of arbitrage, there exists a price of risk process

hx such that α− ᾱ = hx, which is assumed to be constant. For de-seasonalised

data, the mean reversion level ᾱ in the real world measure is set to 0, which is

in keeping with the convention (see [56], for example). The random variable σ

under risk-neutral measure has a log normal distribution as described above.

The fact (5.6) can be used to build an approximation of futures price for-

mula (5.1) which is accurate enough for most purposes. Taking the logarithm

it can be easily shown that the log futures price is approximately given by:

logF (t, T ) ≈ log(f(T )) + xte
−κ(T−t) +

hx
κ
(1− e−κ(T−t)) +

1

2
m2+

log

(

1 + e−
m2
2

(
m4 − 3m2

2

24
+
m6 − 15m3

2

720

))

, (5.8)

where mi is the ith central moment of xT conditional on xt and the Taylor

series approximation of F (t, T ) is truncated after 7 terms (note that all the

odd central moments of xT are 0 for the model defined above). Equation (5.8)

defines the log futures price in terms of the new random volatility model. The

equations for the moments mi = E
Q(xT −E

Q(xT |xt))i in the random volatility

model are as follows:

m1 = xte
−κ∆ +

hx
κ
(1− e−κ∆),

m2 =
e2µ+2η2

2κ
(1− e−2κ∆),

m4 − 3m2
2 =

3(e4η
2 − 1)e4(µ+η2)

4κ2
(1− e−2κ∆)2,

m6 − 15m3
2 =

15(e12η
2 − 1)e6(µ+η2)

8κ3
(1− e−2κ∆)3,

where ∆ = T − t.

We use the fact that the following identity holds for a Gaussian random
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variable x:

logE(ex) = E(x) +
1

2
Var(x)

holds for a Gaussian random variable x. Note that, if η = 0 (i.e., if the volatil-

ity σ is a deterministic constant), it can be easily shown that equation (5.8)

reduces to the corresponding formula for the linear Gaussian model. During

calibration, the futures price data is assumed to be observed in noise. This

measurement noise can be looked upon as a proxy for the approximation error

introduced due to truncation of the Taylor series. Specifically, the measure-

ment equation at each time step tk is written as

vec{z(tk, Ti)} = vec{logF (tk, Ti)}+ vtk , (5.9)

where logF (tk, Ti) is the log futures price for maturity Ti at time tk, as given

by (5.8), and vtk ∼ N(0,Σ) is a measurement noise vector with zero mean and

a covariance matrix Σ. vec operator is as defined in chapter 3:

vec(xi) =
[

x1 x2 · · · xN

]⊤
.

Having defined the new model, the models are outlined against which the

new model will be benchmarked, viz the two-factor jump-diffusion model as

well as its jump-free special case. The actual numerical experiments performed

with the new model and two-factor jump-diffusion models (see Section 2.4) are

described next.

5.3 Numerical Experiments

5.3.1 Methodology

Empirical study of the models has the following steps:

• De-seasonalisation: a parametrised seasonality function (2.37) is used to

de-seasonalise the data.

• A new multi-step heuristic for parameter estimation in two-factor mod-

els: two-factor models (with and without jumps) described in section 2.4

are highly nonlinear and contain a large number of parameters. To alle-

viate the difficulty of parameter estimation, a new systematic multi-step

calibration algorithm is introduced for two-factor models.
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– Starting from the characteristic function of the process, the first 9

moments of the log spot price are evaluated analytically at each

time t and then the method of moments is used to estimate the

parameters of the model in historical measure, from time series

data.

– With the acquired parameters, the covariance matrix is estimated

for the moments.

– Using the inverse of the covariance matrix as the weight, the pa-

rameters are re-estimated.

– Given the parameters of the spot price process in historical measure

obtained offline as above, the risk premium parameters (assumed

to be constant) is estimated along with the observation noise covari-

ance matrix Σ using the least squares method online, every ten steps

(this number of steps is arbitrary and depends on factors such as

the hardware specification). One step ahead prediction of the spot

price is achieved through a particle filter. Note that Σ is needed

for updating the probability weights in the particle filter at each

time-step; please refer to equation (2.74).

More details on this procedure are provided in section 5.3.3.

• Testing for in-sample and out-of-sample prediction ability for all the

models (two-factor models with and without jumps as well as the new

random volatility model): a particle filter is used to track the latent state

process and get one step ahead forecasts for the futures prices. The tran-

sition density is set equal to the proposal density in these experiments.

Particles for the particle filter were sampled using the transition equation

for the relevant process in the following experiments.

5.3.2 Characteristic function and the moments for two-

factor models

To derive the characteristic function for the jump-diffusion two-factor model

defined in (2.34)-(2.36), a de-seasonalised log price process S∗
t = log St−f(t) is

considered. Assume that the jump process is uncorrelated with the Brownian
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motion. First, a characteristic function is taken in the following form:

f(x, ζ, t) = E{eiu(xT+ζT )|Xt = x, ζt = ζ}.

Applying Ito’s formula to the Mt = f(x, ζ, t), and assuming that dMt is a

martingale, a characteristic function of the following form ( see, e.g. [76]) is

given as follows:

φS∗
t
(u) = φxT+ζT (u)φJ(u), (5.10)

φxC
T
+ζT

(u) = exp{(−u2(ρσ1σ2
κ

(1− e−κT ) +
σ2
1

4κ
(1− e−2κT ) +

1

2
σ2
2)+

iu(x0e
−κT + ζ0 + µT )}, (5.11)

φJ(u) = exp{λJt(eiuµJe
−κt− 1

2
σ2
Je

−2κtu2 − 1)}. (5.12)

From the definition of the characteristic function, one can evaluate moments

of the desired process using the following formula:

mn =
1

in
∂n

∂un
φS∗

t
(u). (5.13)

These moments can be calculated analytically using any symbolic computation

software such as Mathematica, Mathcad, Matlab, etc. The exact (and lengthy)

expressions for moments can be found in Appendix A. The method of moments

is used to estimate the parameters of the model (2.34) from sample moments

based on data. However, this will not allow us to find the parameters for

the risk premium. As mentioned in the previous subsection, a simple multi-

step heuristic is used, where most of the parameters are estimated offline in

the historical measure using the method of moments and then the risk premia

(which are assumed to be constant) are estimated online by least squares. This

is explained in more details in the next section.

5.3.3 Parameter estimation for two-factor models

For parameter estimation, the analytically derived first n moments were used

from (5.13), where n is equal to the number of unknown parameters after de-

seasonalisation. Let Θ be a vector of unknown parameters. Let mn(Θ) be

the parameterised nth central moment of the commodity price data set and

let mo
n be the sample nth central moment computed from the observed data

84



(analytical expressions for the moments can be found in Appendix A). Then

the following cost function is minimised:

min
Θ

(mo
n −mn(Θ))TΛ−1(mo

n −mn(Θ)), (5.14)

where Λ is a weighting matrix. The optimisation is done in three steps:

• Firstly, Λ is assumed to be the identity matrix and the cost function is

minimised over the parameter vector Θ. Let Θ = Θ⋆ be the parameter

vector which achieves this optimum.

• Next, the diagonal entries of Λ are set as free variables, with a condition

that |Λ| ≥ 0 and minimize the cost function with fixed Θ = Θ⋆. Let Λ⋆

be the matrix which achieves this optimum.

• Finally, (5.14) is solved over Θ again, with the weighting matrix set to

Λ⋆.

The vector of optimal parameters is obtained offline using the above pro-

cedure, the particle filter can be set up. At each time (or each day) ti, The

one day ahead prediction of the price of each futures contract is based on the

arithmetical average of the the predicted prices of the corresponding contract

over all the particles generated. The risk aversion parameters viz. {hx, hζ , β}
as well as the noise covariance matrix Σ can be updated online, along with the

price predictions made by the particle filter. See section 5.3.5 for more details

on this filtering and online calibration stage.

5.3.4 Parameter estimation for the random volatility

model

The random volatility model described in section 2 has far fewer parameters

in comparison to two-factor models and a simpler (approximate) measurement

equation. This allows us to use the maximum likelihood method directly.

The parameter vector Θ̂ = {κ, µ, η, hx} is estimated along with a diagonal

covariance matrix Σ of the measurement noise. From the assumption that log

futures price observations available under additive Gaussian noise, a likelihood
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function of the observation is constructed, which has the following form:

L(Θ) =
N∏

i=0

p(Θ|ζ)q(ζ), (5.15)

where p(·) and q(·) are normal and lognormal density functions respectively

and N is the total number of observations. Taking a logarithm of both sides

and substituting p and q with their exact forms gives:

logL(Θ) =− N

2

(

log η +
µ2

η2

)

−N log |Σ|−

1

2

N∑

i=0

(yi − vec(logF (ti, Tk)))
⊤ Σ−1 (yi − vec(logF (ti, Tk))),

(5.16)

where yi are observed futures price vectors at time ti, and vec operator is with

respect to the futures maturities Tk, k = 1, 2, . . . , n. Once the parameters are

obtained, a particle filter can be used for prediction of futures prices, as it is

done for the two-factor models.

The next section describes an online calibration procedure for risk premium

parameters and the measurement noise covariance matrix. This procedure is

common for the new random volatility model as well as for the two-factor

models with and without jumps.

5.3.5 Online calibration stage

Two different quantities are estimated online: the covariance matrix of mea-

surement noise and the parameters reflecting the risk premia.

To estimate the covariance matrix of measurement noise, Σ0 is initialised

as an identity matrix and use the following update for each time step k:

Σk
i,i = (v̂ki )

2, k = 1, . . . , N,

where

v̂ki = (logF (market)(Tk, ti)− log F̂ (theoretical)(Tk, ti)), k = 1, . . . , n (5.17)

and F̂ (theoretical)(Tk, ti)) represents the average theoretical price using the the
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particle filter iteration.

To estimate the risk premia, a vector ri is defined, whose entries are the

risk premia for the relevant model (e.g. ri =
[

hx hζ β
]⊤

for the two-factor

model with jumps).

At the first step, let r0 = 0 (here 0 is a zero vector with dim(r) rows).

After obtaining Σi at step i, a nonlinear least squares problem can be solved:

min
ri

(logF (market)(Tk, ti)− log F̂ (theoretical)(Tk, ti))
2.

As mentioned in section 5.1, this problem is solved after each ten time-steps

to update the risk premia.

This section and the preceding three sections summarised the calibration

procedures for the models used in the numerical experiments. The next section

discusses the data used for the numerical experiments.

5.3.6 Data

For the empirical study, the European electricity market was considered as

the data source for the experiments, since Nord Pool is the largest market for

electrical energy in the world, covering most of the Europe and is traded at

NASDAQ OMX Commodities Europe. Over 1500 trading days data were used

of spot price and futures contracts (22d, 44d, 66d, 88d, 110d, 132d) : starting

from 19/11/2007 to 17/12/2013.

The data was split into 3 data sets of 300 trading days each, with 200 days

delay between each data set. Each data set has two equal parts:

• In-sample: 150 observations of futures and commodity prices. This data

set is used to estimate the offline model parameters.

• Out-of-sample: 150 observations of futures prices to test the behaviour of

the models out-of-sample and to estimate (and update) the online model

parameters (risk premia and the measurement noise covariance).

The statistics about the data is shown in table 5.1. One can observe that

the log-spot price data has different properties when compared to the futures

price distribution:

• The standard deviation of the spot price is higher than the average stan-

dard deviation of the futures prices by 40%.
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Table 5.1: Log futures price statistics

T (days) Mean Variance(daily) Skewness ExKurtosis
(spot) 3.6962 0.3384 -1.1072 4.5390
22 3.7263 0.2632 -0.0327 0.3396
44 3.7447 0.2393 0.1654 -0.2761
66 3.7562 0.2240 0.3144 -0.4218
88 3.7633 0.2186 0.4328 -0.1573
110 3.7681 0.2087 0.5545 0.0090
132 3.7698 0.2046 0.5813 0.0311

• The log spot price is more skewed and has a higher excess Kurtosis than

log futures prices. This high kurtosis is a result of price spikes, which are

commonly modelled using a jump-diffusion process as mentioned earlier.

5.3.7 Choice of measures for comparison

For comparison of the performance of models in terms of forecasting, the sam-

ple mean of the relative absolute error (MRAE) and root mean square error

(RMSE) are considered as the measures of prediction error for the futures price

data.

MRAET =
1

N

N∑

i=1

|Fi,T − F̂i,T |
Fi,T

,

RMSET =

√
√
√
√

N∑

i=1

(Fi,T − F̂i,T )2

N
,

where F̂i,T are the average values of one step ahead predicted futures prices

evaluated for each particle drawn on the ith time step of a particle filter with a

corresponding maturity T , and Fi,T are the observed futures prices at maturity

T . These measures are evaluated for each of the six futures contracts, for each

of the three data sets and for both in-sample and out-of-sample data.

5.4 Results and discussion

The two-factor model (TF), the two-factor model with jumps (TFJ) and the

new random volatility model (RVM) are compared. The results for in-sample

and out-of-sample performance are presented for each model using MRAE and

RMSE measurements.
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Since two different error metrics were used over six data-sets (three in-

sample and three out-of-sample), and since each data set has six futures con-

tracts, a total of 72 columns of errors were obtained to compare the three

models with. The bold font indicates the worst (or the highest) error metric

in each column (i.e. for each data-set + futures contract + error metric).

Tables 5.2 and 5.3 present the in-sample errors (MRAE and RMSE) for

all the three models. As one can see, RVM has the worst performance (i.e.,

yields the worst value for an error metric) among the three models 2 out of

18 times according to MRAE and 4 out of 18 times according to RMSE, while

TFJ has the worst performance 12 out of 18 times for both the error metrics.

TF has the worst error 4 out of 18 times according to MRAE and 2 out of 18

according to RMSE. Tables 5.4 and 5.5 present out-of-sample error metrics.

When it comes to MRAE, RVM has the worst performance error only 2 out

of 18 times, while TFJ and TF have the worst errors 9 times and 7 times

respectively. For RMSE, RVM is the worst model out-of-sample only once,

while TFJ gives the worst RMSE error 8 times and TF gives the worst error 4

times. The out-of-sample RMSE errors given by at least two of three models

are almost indistinguishable in five cases.

In summary, out of a total of 72 error comparisons, RVM is the worst

model only in 9 cases, with ‘ties’ declared in five cases and one of the other

two models being the worst model in the remaining 58 cases.

These results support the modest claim of this chapter that the newly

proposed RVM (with a single, scalar stochastic process and one random vari-

able) performs at least equally well as more involved models discussed in the

literature (with two or more scalar stochastic processes), when the compar-

ison involves predictive ability in terms of one step ahead prediction of the

prices of futures contracts. The advantage of RVM over the other two mod-

els is its simplicity of calibration and parsimony in terms of parameters. To

be more specific, TFJ model has 7 parameters to be calibrated offline and 3

risk premium parameters which are calibrated online. RVM has only 3 offline

parameters and a single risk premium parameter which is calibrated online.

These numbers exclude 4 seasonality parameters and the measurement noise

variances, which have to be calibrated for both the types of models.

When it comes to pricing European style securities, RVM contains a single

random variable σ and one stochastic process. Hence it is far easier to simu-

late from, than the two other models considered here (TF has two correlated
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random processes, while TFJ has two correlated random processes and one

compound Poisson process). This indicates that pricing of any exotic, Euro-

pean style options via Monte Carlo simulation is computationally far cheaper

with RVM, when compared to TF or TFJ.

In addition, an empirical analysis was carried out for two cases for two-

factor model with jumps: when the jump risk premium is set to zero and when

the jump risk premium is given with formula (2.44). Tables 5.6-5.7 show this

comparison for out-of-sample data sets for MRAE and RMSE errors. A com-

parison was provided only for out-of-sample data since the risk premium was

updated online using particle filter in the numerical experiments, as outlined

earlier. It can be seen that using explicitly parametrised jump risk premium

does not improve the predictive ability, at least for the data sets used, with

an improvement in one of the error metrics observed only 17 out of 36 times.

This modest set of numerical experiments does not provide any evidence of

practical utility of assuming the jump risk to be non-idiosyncratic in electric-

ity markets. However, it is quite conceivable that contrary empirical evidence

may be found with pricing other securities with jump diffusion models.

Figures 5.7-5.15 in Appendix A show the evolution of the measurement

covariance terms. One can see that, large values appear in two scenarios,

either at the end of in-sample data (150 days) or closer to the end of out-of-

sample data. This shows, that the electricity price spot price models perform

well in-sample. However, the model should be re-calibrated more frequently

for a good out-of-sample performance.

Figures 5.16-5.21 in Appendix A show the evolution of the risk premium

parameters hx, hζ and β over time. One can see that the price of risk of the

mean-reversion process (i.e hx) is dominating on the plots. At the same time,

the GBM risks are low in comparison to the former. The jump risk parameters

β are not high in any of the plots for the two-factor model with jumps, again

indicating that the use of jump risk premium may not be practically important.

Figures 5.22-5.24 in Appendix A show risk premium evolution for the RVM

model. One can see that level of risk premium for this model is much lower in

comparison to the previously discussed models.

All the plots supporting the experiments can be found in the Appendix A.
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Table 5.2: In-Sample MRAE results

T(days) 22 44 66 88 110 132
Experiment 1

TFJ 3.90 2.05 2.29 2.60 1.65 3.14
TF 3.74 1.99 2.39 2.78 1.75 2.92
RVM 2.22 1.99 2.34 2.65 3.29 3.97

Experiment 2
TFJ 6.12 3.56 5.48 7.05 5.89 5.44
TF 5.97 4.53 5.01 5.21 4.00 4.28
RVM 1.39 1.33 1.28 1.24 1.57 2.13

Experiment 3
TFJ 5.54 5.95 9.77 11.74 12.68 14.40
TF 5.70 4.57 3.42 2.86 3.11 3.37
RVM 1.93 1.76 1.65 1.53 1.60 2.38

Table 5.3: In-Sample RMSE results

T(days) 22 44 66 88 110 132

Experiment 1
TFJ 0.17 0.10 0.11 0.12 0.08 0.14
TF 0.16 0.09 0.11 0.12 0.09 0.13
RVM 0.11 0.09 0.12 0.14 0.17 0.20

Experiment 2
TFJ 0.25 0.15 0.26 0.35 0.34 0.32
TF 0.23 0.18 0.20 0.21 0.17 0.18
RVM 0.06 0.06 0.06 0.06 0.08 0.10

Experiment 3
TFJ 0.26 0.42 0.75 1.01 1.21 1.37
TF 0.28 0.21 0.15 0.14 0.14 0.15
RVM 0.09 0.10 0.11 0.10 0.12 0.15

Table 5.4: Out-of-Sample MRAE results

T(days) 22 44 66 88 110 132

Experiment 1
TFJ 2.93 2.51 1.89 1.92 2.87 4.28
TF 2.89 2.63 1.98 2.03 2.63 3.88
RVM 2.32 1.25 1.22 2.26 2.92 3.39

Experiment 2
TFJ 6.08 4.13 3.41 4.64 3.91 4.35
TF 7.65 5.74 4.51 4.46 4.08 3.94
RVM 2.09 1.72 1.17 1.15 1.32 1.98

Experiment 3
TFJ 4.60 4.38 3.67 4.77 4.09 4.88
TF 5.61 3.13 2.76 3.34 2.99 3.06
RVM 1.87 1.56 1.03 1.19 1.35 2.21
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Table 5.5: Out-of-Sample RMSE results

T(days) 22 44 66 88 110 132

Experiment 1
TFJ 0.16 0.12 0.09 0.10 0.14 0.20
TF 0.15 0.12 0.09 0.10 0.12 0.18
RVM 0.10 0.06 0.06 0.11 0.14 0.16

Experiment 2
TFJ 0.31 0.21 0.15 0.19 0.17 0.19
TF 0.39 0.29 0.20 0.19 0.17 0.17
RVM 0.11 0.09 0.06 0.06 0.06 0.09

Experiment 3
TFJ 0.23 0.21 0.17 0.19 0.18 0.21
TF 0.29 0.15 0.13 0.17 0.14 0.14
RVM 0.09 0.07 0.06 0.08 0.08 0.11

Table 5.6: Out-Of-Sample MRAE results - with and without jump risk pre-
mium

T(days) 22 44 66 88 110 132
Experiment 1

TFJ (R(λ, σJ , β) = 0) 3.06 2.27 1.71 2.07 2.67 3.84
TFJ 2.93 2.51 1.89 1.92 2.87 4.28

Experiment 2
TFJ (R(λ, σJ , β) = 0) 6.14 4.09 3.66 4.84 4.00 4.37
TFJ 6.08 4.13 3.41 4.64 3.91 4.35

Experiment 3
TFJ (R(λ, σJ , β) = 0) 4.56 4.40 4.11 5.03 4.36 4.59
TFJ 4.60 4.38 3.67 4.77 4.09 4.88

Table 5.7: Out-Of-Sample RMSE results - with and without jump risk pre-
mium

T(days) 22 44 66 88 110 132
Experiment 1

TFJ(R(λ, σJ , β) = 0) 0.15 0.11 0.08 0.10 0.13 0.18
TFJ 0.16 0.12 0.09 0.10 0.14 0.20

Experiment 2
TFJ(R(λ, σJ , β) = 0) 0.32 0.22 0.16 0.20 0.17 0.19
TFJ 0.31 0.21 0.15 0.19 0.17 0.19

Experiment 3
TFJ(R(λ, σJ , β) = 0) 0.23 0.22 0.19 0.21 0.19 0.19
TFJ 0.23 0.21 0.17 0.19 0.18 0.21
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Table 5.8: Parameters for a random volatility model

N κ µ η
1 2.6448 0.8800 0.3897
2 0.8556 2.4659 -0.0122
3 2.5268 0.5902 0.5982

Table 5.9: Parameters for a two-factor model without jumps

N κ µ σ1 σ2 ρ
1 0.4200 0.0010 0.1613 0.2015 -0.1019
2 0.4151 0.0498 0.1006 0.1480 -0.0557
3 0.4940 0.0010 0.1839 0.1576 -0.5371

Table 5.10: Parameters for a two-factor model with jumps

N κ µ σ1 σ2 ρ λJ µJ

1 0.7117 1.2316 0.1315 0.1092 -0.2839 0.2852 0.4843
2 0.7275 0.3259 0.1829 0.1215 -0.3210 2.6123 0.0305
3 0.6928 1.2927 0.2145 0.1217 -0.6338 10.7524 0.0303

Table 5.11: Seasonality parameters

N c1 ς c2 c3
1 3.8167 0.2778 6.1375 8.7799
2 3.7073 -0.2773 4.5499 12.4057
3 4.0060 0.2798 5.9689 9.9754
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5.5 Summary

To summarise, the research presented in this chapter makes three main con-

tributions:

• A new random volatility model was proposed for log spot price in the

electricity market, which might be useful in modelling other commodities

as well. The model is significantly easier to calibrate and to simulate

from, as compared to two-factor models with and without jumps and

performs at least as well as these models in the comprehensive numerical

experiments from the real electricity market data. This model has the

potential to be practically very useful in pricing applications for the

electricity market.

• A new systematic multi-step procedure was proposed for calibrating two-

factor models with or without jumps, which alleviates some of the diffi-

culty in calibrating models with a large number of parameters. The use of

this new procedure has also been tested through numerical experiments.

• The empirical evidence on the use of jump models in electricity markets

was added. The empirical results, using three data sets and two error

metrics, provide no conclusive evidence that the use of jumps in mod-

elling adds value in terms of prediction, especially out-of-sample. Fur-

ther, the evidence does not suggest that modelling explicitly parametrised

jump risk premium adds value in terms of out-of-sample prediction.
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Chapter 6

Conclusion

6.1 Contributions

This section summarises the contributions of this thesis. The major achieve-

ment of this thesis was to show that models with random parameters have a

useful role to play in financial applications. One of the advantages of these

models is that they can be implemented in the variety of applications, but with

less computational effort as compared to the existing models with the same

number of sources of uncertainty. New models have less parameters, which

reduces the risk of over-fitting the data. Specific contributions of different

chapters are summarised below.

• In Chapter 3, a one factor model with a random long-run mean was pro-

posed for commodity price modelling. The implementation of this model

is based on the extension of the existing two factor model. The new ap-

proach is focused on substitution of one factor from two-factor model by

a random variable. In addition, we treat a seasonality factor as a simple

sinusoid. The proposed simplification allows to reduce a total number of

parameters in the model. Hence, reduce the probability of over-fitting

and increase the calibration quality. Comprehensive numerical experi-

ments for three different energy commodities and five different models

were performed. It was shown that the new model yields a similar level

of accuracy as a two-factor model in most cases.

• In Chapter 4, a new random volatility model has been proposed, which

is composed of a deterministic volatility term structure modulated by a
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log-normal random variable. It is shown that this model can be derived

rigorously as a special case of Hull White stochastic volatility framework.

Extensive numerical experiments illustrate that the new model is far

simpler to calibrate. Moreover, the comparison with existing stochastic

volatility models shows at least 99% improvement in terms of required

time for calibration. The proposed model is also implemented in Excel

spreadsheet. The performance of the new model is at least as good as

existing stochastic volatility models in terms of pricing accuracy. In

addition, the new model yields similar results in pricing OTC options.

Finally, the new model can be used for calculation of option’s Delta and

Gamma. The numerical results showed that the results are similar to

the existing stochastic volatility models.

• In Chapter 5 the new futures pricing formulae were developed using a

random volatility parameter for the spot price process. Empirical results

show that the new one factor model with random volatility performs as

good as existing two-factor models for electricity commodity.

In addition, a new two stage calibration procedure was proposed. The

offline stage of the calibration procedure allows to calibrate model pa-

rameters using moments of the data distribution. The online stage of

the calibration procedure allowed to update risk parameters and covari-

ance noise matrix during online stage of particle filter. implemented and

tested for for the new models in this chapter.

Finally, the empirical evidence on the use of compound Poisson process

for electricity futures models was added. The extensive numerical ex-

periments showed that there is no complete evidence in increasing of

prediction accuracy by adding a jump term to the model. Authors also

showed that there is no evidence in that the use of the parametrised

jump-risk premium adds any value to the prediction accuracy.
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6.2 Future research

It is important to outline the possible applications of the developed models

and algorithms.

• The new stochastic volatility model introduced in chapter 4 can be used

in pricing of currency options. To achieve this one can use a mean-

reversion definition for a drift term in the definition of the SDE. In ad-

dition, different distributions for a random volatility term can be used.

However, it is not necessary to use a parametric distribution for defi-

nition of the random term in the model. One can directly define the

moments of the volatility term as parameters. A model parametrized di-

rectly in terms of moments will require semidefinite programming, since

the moment parameters have to form a Hankel matrix which is positive

semidefinite.

• The new option pricing model can be used in the high-frequency frame-

work due to its fast calibration capabilities, which allows to recalibrate

the model in seconds even while using less sophisticated computer soft-

ware and hardware. However, it might work faster while used on ad-

vanced computing systems such as GPU clusters. Realisation of this

model for the parallel computing can be twofold. Firstly, the calibration

procedure for the new model should be chosen carefully. For example,

the realisation of the weighted least-squares method can be challenging

in the parallel framework. Secondly, the realisation of OTC pricing can

be performed as well using multi-core systems, in case to speed-up the

simulation routine.

• The new futures pricing model in chapter 5 can also be used to price

futures on assets other than electricity, which also demonstrate price

jumps over time (e.g. currency futures).

• The new random volatility model discussed in chapter 5 can be possibly

used for pricing derivatives other than vanilla futures contracts. More-

over, options on futures is a possible topic for a new research. One can

also try our approach for pricing interest rate derivatives, such as swaps,

caplets and etc.
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• The new two-step algorithm for calibration can be used in systems where

one can’t construct a likelihood function of a desired stochastic process

in closed-form.
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Appendix A

Expressions for the moments for two-factor process with jumps in chapter 5

are given here. For simplicity of writing, assume following quantities:

M1 = ζ0 + x0e
−κ∆ + µ∆,

M2 =
σ2
1

2κ
(1− e−2κ∆) +

ρσ1σ2
κ

(
1− e−κ∆

)
+ σ2

2∆,

L1 = e−2κ∆∆λσ2
J ,

L2 = e−4κ∆∆λσ4
J ,

L3 = 15e−6κ∆∆λσ6
J ,

L4 = 105e−8κ∆∆λσ8
J + 315e−8κ∆(∆λ)2σ8

J .

Now, using above equations, first nine moments of the two-factor process with

jumps have the following view:

m1 =M1,

m2 =M2
1 +M2 + L1,

m3 =M1(3L1 +M2
1 + 3M2),

m4 = 3L2
1 + 3L2 +M4

1 + 6M2
1M2 + 3M2

2 + 6L1(M
2
1 +M2),

m5 =M1(15L
2
1 + 15L2 +M4

1 + 10M2
1M2 + 15M2

2 + 10L1(M
2
1 + 3M2)),

m6 = L2 + 45L2M
2
1 +M6

1 + 45L2(L1 +M2) + 15M4
1 (L1 +M2) + 45M2

1 (L1 +M2)
2+

15(L1 +M2)
3,

m7 =M1(21L3 + 105L2M
2
1 +M6

1 + 315L2(L1 +M2) + 21M4
1 (L1 +M2)

+ 105M2
1 (L1 +M2)

2 + 105(L1 +M2)
3),
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m8 = L4 + 28L3M
2
1 + 210L2M

4
1 +M8

1 + 28L3(L1 +M2) + 1260L2M
2
1 (L1 +M2)+

28M6
1 (L1 +M2) + 630L2(L1 +M2)

2 + 210M4
1 (L1 +M2)

2 + 420M2
1 (L1 +M2)

3+

105(L1 +M2)
4,

m9 =M1(9L4 + 84L3M
2
1 + 378L2M

4
1 +M8

1 + 252L3(L1 +M2) + 3780L2M
2
1 (L1 +M2)+

36M6
1 (L1 +M2) + 5670L2(L1 +M2)

2 + 378M4
1 (L1 +M2)

2 + 1260M2
1 (L1 +M2)

3

+ 945(L1 +M2)
4).

Note, that the expressions for the moments for the two-factor model with-

out jumps can be obtained by setting jump parameters (λ and σJ) to zero.
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Figures for the electricity commodity experiments in chapter 5 are pre-

sented here. Here EDBM is error distribution between models.

Figure 5.1: In-Sample EDBM across contracts (experiment 1)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.2: In-Sample EDBM across contracts (experiment 2)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.3: In-Sample EDBM across contracts (experiment 3)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.4: Out-of-Sample EDBM across contracts (experiment 1)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.5: Out-of-Sample EDBM across contracts (experiment 2)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.6: Out-of-Sample EDBM across contracts (experiment 3)
Bar chart represents the difference in the error metrics across the models.
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Figure 5.7: Two-factor model with jumps: Noise variance evolution (experi-
ment 1)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.8: Two-factor model with jumps: Noise variance evolution (experi-
ment 2)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.9: Two-factor model with jumps: Noise variance evolution (experi-
ment 3)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.10: Two-factor model without jumps: Noise variance evolution (ex-
periment 1)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.11: Two-factor model without jumps: Noise variance evolution (ex-
periment 2)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.12: Two-factor model without jumps: Noise variance evolution (ex-
periment 3)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.13: RVM model: Noise variance evolution (experiment 1)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.14: RVM model: Noise variance evolution (experiment 2)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.15: RVM model: Noise variance evolution (experiment 3)
The graph shows the evolution of measurement noise variance over time for
different futures contracts.
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Figure 5.16: Two-factor model with jumps: Risk premium evolution (experi-
ment 1)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.17: Two-factor model with jumps: Risk premium evolution (experi-
ment 2)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.18: Two-factor model with jumps: Risk premium evolution (experi-
ment 3)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.19: Two-factor model without jumps: Risk premium evolution (ex-
periment 1)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.20: Two-factor model without jumps: Risk premium evolution (ex-
periment 2)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.

0 50 100 150 200 250 300
−100

−80

−60

−40

−20

0

20

40

60

80

100

Day

R
is

k 
Le

ve
l

 

 
h

x

hζ

110



Figure 5.21: Two-factor model without jumps: Risk premium evolution (ex-
periment 3)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.22: RVM model: Risk premium evolution (experiment 1)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.23: RVM model: Risk premium evolution (experiment 2)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.
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Figure 5.24: RVM model: Risk premium evolution (experiment 3)
The graph shows the evolution of risk premium parameters over time, recali-
bration time is set to 10 days.

0 50 100 150 200 250 300
−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Day

R
is

k 
Le

ve
l

 

 
h

x

112



Appendix B

Technical documentation to the developed software is provided here. The CD

has following file structure:

• Folder ElectricityCommodity contains Matlab files for the experi-

ments discussed in Chapter 5

• Folder EnergyCommodity contains Matlab files for the experiments

discussed in Chapter 3

• Folder OptionPricing contains Matlab files for the experiments dis-

cussed in Chapter 4

Technical documentation for storable commodi-

ties experiment

Kalman Filter Matlab Experiment has the following structure: Scripts Run1.m

and Run2.m access the data from attached .mat files and call function main.m.

The two script files refer to two data panels mentioned in the paper. Function

main.m performs two step procedure: for transferred function pointer perform

calibration of parameters and one step ahead error estimation.

Functions: One-state models:

• onestatefilter.m - one state model without price of risk - used as a first

step of optimisation for the nested algorithm

• onestatefilter rf.m - one state models with price of risk (OF)

• seasonalityfilter.m - one state model with seasonality (OFS)

Two-state models:
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• twostatefilter.m - two-state model without seasonality (TF)

• twostatefilterseasonality.m - two-state model with seasonality (TFS)

All the Functions have 2 types of output depending on tag value passed to the

function.

All the computation was performed in Matlab R2011b, using optimization

toolbox. The exact dates for Bloomberg data are given in table 3.1, section

3.4.1 (day closing prices considered in all cases).

Technical documentation for option pricing ex-

periments

OptionPricing folder has following sub folders:

• Bates - contains files regarding Bates model:

– BatesFFT.m: function to calculate European Call using Bates

model, through Fast Fourier Transform. Input parameters are:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,

∗ LAMBDA - λp,

∗ MUJ - µj,

∗ SIGMAS - sigmaJ ,

∗ r - risk-free rate,

∗ q - dividend yield,

∗ T - time to expiry,

∗ S0 - Spot price,

∗ K - strike price;

– BCCDeltafft.m: function to calculate the objective function for

the weighted least squares method. Input parameters:

∗ c - vector of parameters for the model,
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∗ C - vector of European Call prices,

∗ S - Spot price,

∗ K - vector of Strike prices,

∗ T - vector of option maturities,

∗ r - vector of risk-free rates,

∗ w - vector of weights;

– sample run script Bates.m - script launching the experiment for

the Bates model

– rffix.m: function is to calibrate the vector of from the data risk-free

rates. Input:

∗ Data - Matrix, containing data abour options, with the fol-

lowing entries: Column 1: Strike Price, Column 2: Time to

maturity, Column 3: Bid value of the option, Column 4: Ask

value of the option

∗ S - Spot price

– rmin.m function to calculate the objective function value for risk

calibration. Input:

∗ C - vector of European Call prices,

∗ S - Spot price,

∗ K - vector of Strike prices,

∗ T - vector of option maturities,

∗ r - vector of risk-free rates,

∗ sigma - vector of Implied Volatilities from market

• Heston - contains files regarding to the Heston model experiments:

– HestonCallFft.m: unction to calculate European Call using Bates

model, through Fast Fourier Transform. Input parameters are:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,
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∗ r - risk-free rate,

∗ q - dividend yield,

∗ T - time to expiry,

∗ S0 - Spot price,

∗ K - strike price;

– rffix.m: function is to calibrate the vector of from the data risk-free

rates. Input:

∗ Data - Matrix, containing data abour options, with the fol-

lowing entries: Column 1: Strike Price, Column 2: Time to

maturity, Column 3: Bid value of the option, Column 4: Ask

value of the option

∗ S - Spot price

– rmin.m function to calculate the objective function value for risk

calibration. Input:

∗ C - vector of European Call prices,

∗ S - Spot price,

∗ K - vector of Strike prices,

∗ T - vector of option maturities,

∗ r - vector of risk-free rates,

∗ sigma - vector of Implied Volatilities from market

• MSV - contains files regarding to the MSV model experiments:

– sample run script.m script designed to run experiments. Addi-

tional guidance is inside the script.

– MSV.m is the option pricing function for the MSV model. Input:

∗ c - vector of the parameters for MSV model

∗ K - strike price vector

∗ T - maturity times vector

∗ S - the spot price

∗ r - risk-free rate vector

– The rest files are the same as in previous folders

• Hedging - folder contains files for hedging experiments.
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– Hedging.m function has two outputs: Delta and Gamma values.

This function is calculating numerical derivative for the given func-

tion with respect to Spot price. Inputs:

∗ funchandle - function name to use,

∗ S - current spot price,

∗ n - change in the derivative

– sample run script hedging.m sample script to run hedging ex-

periment

• Simulation folder has two sub folders one for ‘Asian’ option pricing and

one for ’Barrier’ option pricing.

Barrier folder:

– batesmontecarlo.m : function to calculate ‘Barrier’ option price

using Bates model.

Input:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,

∗ LAMBDA - λp,

∗ MUJ - µj,

∗ SIGMAS - sigmaJ ,

∗ r - risk-free rate,

∗ T - time to expiry,

∗ S - Spot price,

∗ K - strike price;

∗ PATHS - number of price paths;

∗ n - number of simulations;

∗ barrier - barrier value;

Output:

∗ Price - Option price value
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∗ conf - confidence interval

∗ Time - time taken

– MSVmontecarlo.m : function to calculate ‘Barrier’ option price

using MSV model.

Input:

∗ s0 - σ0,

∗ s1 - σ1,

∗ s2 - σ2,

∗ lambda - λ,

∗ k,

∗ K - strike price;

∗ T - time to expiry,

∗ S - Spot price,

∗ r - risk-free rate,

∗ PATHS - number of price paths;

∗ n - number of simulations;

∗ barrier - barrier value;

Output:

∗ Price - Option price value,

∗ conf - confidence interval,

∗ Time - time taken,

– hestonmontecarlo.m : function to calculate ‘Barrier’ option price

using Heston model.

Input:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,

∗ r - risk-free rate,

∗ T - time to expiry,
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∗ S - Spot price,

∗ K - strike price;

∗ PATHS - number of price paths;

∗ n - number of simulations;

∗ barrier - barrier value;

Output:

∗ Price - Option price value,

∗ conf - confidence interval,

∗ Time - time taken,

– sample simulation script.m: script to run the experiment with

above functions.

Asian folder:

– batesmontecarlo asian.m : function to calculate ‘Asian’ option

price using Bates model.

Input:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,

∗ LAMBDA - λp,

∗ MUJ - µj,

∗ SIGMAS - sigmaJ ,

∗ r - risk-free rate,

∗ T - time to expiry,

∗ S - Spot price,

∗ K - strike price;

∗ PATHS - number of price paths;

∗ n - number of simulations;

Output:

∗ Price - Option price value
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∗ conf - confidence interval

∗ Time - time taken

– MSV asian.m: function to calculate ‘Asian’ option price using

MSV model.

Input:

∗ s0 - σ0,

∗ s1 - σ1,

∗ s2 - σ2,

∗ lambda - λ,

∗ k,

∗ K - strike price;

∗ T - time to expiry,

∗ S - Spot price,

∗ r - risk-free rate,

∗ PATHS - number of price paths;

∗ n - number of simulations;

Output:

∗ Price - Option price value,

∗ conf - confidence interval,

∗ Time - time taken,

– hestonmontecarlo asian.m : function to calculate ‘Asian’ option

price using Heston model.

Input:

∗ KAPPA - κ,

∗ THETA - θ,

∗ SIGMAv - σv,

∗ RHO - ρ,

∗ V0 - v0,

∗ r - risk-free rate,

∗ T - time to expiry,

∗ S - Spot price,
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∗ K - strike price;

∗ PATHS - number of price paths;

∗ n - number of simulations;

Output:

∗ Price - Option price value,

∗ conf - confidence interval,

∗ Time - time taken,

– sample simulation script.m

Technical documentation for electricity commod-

ity experiment

ElectricityCommodity folder has two sub folders:

• RVM folder:

– minimizeSeasonality.m : Objective function for seasonality cal-

ibration. Input:

∗ vec - vector of parameters

∗ X - vector of the data

∗ delta - timestep

Output:

∗ obj - value of the objective function (sum of squared residuals)

– resample.m: This is a resampling function for a particle filter:

Input:

∗ particle - vector of particles

∗ W - vector of corresponding particle weights

Output:

∗ particle - vector of updated particles

∗ W - vector of updated corresponding particle weights

– futprice.m: Function to calculate futures prices for the RVMmodel

Input:
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∗ delta - time step,

∗ t - current time step,

∗ T - vector of futures maturities,

∗ vec - vector of the model parameters,

∗ vecSeas - vector of seasonality parameters,

∗ xt - of value of underlying stochastic process,

∗ risk - risk parameters vector.

Output:

∗ F - vector of futures prices.

– MLEndim.m: Objective function for minimising RVM parame-

ters. Input:

∗ nVec - initial parameters

∗ observationsY - observed futures prices

∗ observationsX - observed spot prices

∗ func - futures pricing function

∗ delta - timestep

∗ t - current time

∗ T - maturities vector

∗ vecSeas - seasonality parameters vector

∗ B - value of the jump integral

∗ observation - vector of current futures prices

Output:

∗ obj - value of the objective function

– sample experiment RVM.m: This script is designed to run an

experiment with particle filter using the RVM model.

– generatorR.m: This is particle generator function: Input:

∗ vec - vector of parameters for thr model

∗ xt - value of the latent variable from the previous step

∗ delta - time step

∗ N - number of particles to generate

Output:
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∗ X - vector of particles

– seasonality.m: Seasonality function. Input:

∗ c1, c2, c3, c4 - seasonality function parameters as in thesis

∗ t - time

Output:

∗ seas - value of the seasonality function

– minimize risk.m: Objective function for minimising risk param-

eters. Input:

∗ fFut - futures price function,

∗ delta - time step,

∗ t - current time,

∗ T - maturity vector,

∗ vec - vector of parameters of the model,

∗ vecSeas - vector of seasonality parameters,

∗ xt - spot price value,

∗ risk - vector of risk parameters,

∗ observation - vector of current futures prices.

Output:

∗ obj - value of the objective function.

– particle filter.m: This is particle filter algorithm for RVM model:

Input:

∗ func - futures price function for the filtration

∗ vec - vector of parameters for the model

∗ vecSeas - vector for seasonality components

∗ observation - vector of observations

∗ CM - Noise Matrix

∗ delta - time step

∗ t - current time

∗ T - maturity times vector

∗ S - the spot price

∗ r - risk-free rate
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∗ W - particle weight vector

∗ xt - value of the latent variable from the previous step

∗ risk - vector of old risk parameters

∗ st - step number

Output:

∗ risk - vector of updated risk parameters

∗ Noise - noise matrix

∗ X filtered - value of the latent variable

∗ particle - particle vector

∗ W - particle weight vector

∗ RMSE - root mean square prediction error on this step

∗ MRAEi - mean absolute prediction error

• Two factor models folder:

– A term.m : Function to calculate the A term from the futures

pricing formula. Input:

∗ vec - vector of parameters for the model

∗ risk - vector of risk parameters

∗ tau - maturity time

Output:

∗ A - value of the A term

– minimize risk.m : Objective function for minimising risk param-

eters. Input:

∗ fFut - futures price function,

∗ delta - time step,

∗ t - current time,

∗ T - maturity vector,

∗ vec - vector of parameters of the model,

∗ vecSeas - vector of seasonality parameters,

∗ xt - spot price value,

∗ risk - vector of risk parameters,

∗ observation - vector of current futures prices.
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Output:

∗ obj - value of the objective function.

– excrisk.m : Function to calculate risk parameters Input:

∗ h - volatility risk

∗ sigma - σ1

∗ beta - jump risk value

∗ sj - jump size volatility (σJ )

∗ lambda - jump frequency (λ)

Output:

∗ R - vector or risk parameters

– minimizeSeasonality.m Objective function for seasonality cali-

bration. Input:

∗ vec - vector of parameters

∗ X - vector of the data

∗ delta - timestep

Output:

∗ obj - value of the objective function (sum of squared residuals)

– particle filter.m: This is particle filter algorithm for RVM model:

Input:

∗ func - futures price function for the filtration

∗ vec - vector of parameters for the model

∗ vecSeas - vector for seasonality components

∗ observation - vector of observations

∗ CM - Noise Matrix

∗ delta - time step

∗ t - current time

∗ T - maturity times vector

∗ S - the spot price

∗ r - risk-free rate

∗ W - particle weight vector

∗ xt - value of the latent variable from the previous step
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∗ risk - vector of old risk parameters

∗ st - step number

Output:

∗ risk - vector of updated risk parameters

∗ Noise - noise matrix

∗ X filtered - value of the latent variable

∗ particle - particle vector

∗ W - particle weight vector

∗ RMSE - root mean square prediction error on this step

∗ MRAEi - mean absolute prediction error

– integral jump.m

– MLEndim.m

– resample.m This is a re sampling function for a particle filter:

Input:

∗ particle - vector of particles

∗ W - vector of corresponding particle weights

Output:

∗ particle - vector of updated particles

∗ W - vector of updated corresponding particle weights

– match moments.m Function for calibrating model parameters

from the moments of data. Input:

∗ func - function to calculate moments

∗ Nmoments - number of moments used

∗ data - vector of spot prices

∗ delta - time step

∗ theta - vector of initial values of parameters

∗ Lambda - covariance matrix for the moments

∗ options - options for calibration

∗ calibration - method ‘fmin’ for fminsearch, ‘lsq’ for lsqnonlin

Output:

∗ theta - vector of moments
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∗ fval - value of the objective function after calibration

– moments of data.m Function for calculating moments from the

data Input:

∗ data

∗ Nmoments - number of the moments to calculate

Output:

∗ M - vector of moments

– sample script tf with jumps.m This script is designed to run an

experiment with particle filter using two-factor model with jumps.

– momentsofOU2Fv2.m Objective function for calculating ana-

lytical moments from the model. Input:

∗ vec - vector of parameters for the model

∗ delta - time step

∗ L - number of the moments to calculate

Output:

∗ M - vector of the moments from the function

– sample script tf without jumps.m This script is designed to

run an experiment with particle filter using Two-factor model with-

out jumps.

– minimizeMoments lsq.m Objective function for finding model

parameters from the moments of data. Input:

∗ M - vector of the moments from data

∗ func - function that defines moments for given process

∗ vec - vector of parameters for the model

∗ xt - initial spot price

∗ delta - time step

Output:

∗ M - vector of residuals

– OUfutprice2F.m Function to calculate futures prices for two-

factor models Input:

∗ t - current time step
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∗ T - vector of futures maturities

∗ vec - vector of the model parameters

∗ vecSeas - vector of seasonality parameters

∗ xt - vector of values of underlying stochastic processes

∗ risk - risk parameters vector

∗ B - value of the jump integral

Output:

∗ F - futures price vector

– seasonality.mSeasonality function. Input:

∗ c1, c2, c3, c4 - seasonality function parameters as in thesis

∗ t - time

Output:

∗ seas - value of the seasonality function

– minimizeMoments.m Objective function for finding parameters

from the moments of data using a covariance matrix. Input:

∗ M - vector of the moments from the data

∗ func - function that defines moments for given process

∗ vec - vector of parameters for the model

∗ Lambda - covariance matrix for the moments

∗ xt - initial spot price

∗ delta - time step

∗ L - number of the moments for calibration

Output:

∗ obj - value of the objective function

– OUgenerator2F.m Particle generator function for two-factor mod-

els Input:

∗ vec - vector of parameters for the model

∗ xt - initial spot price vector

∗ delta - timestep

∗ N - number of particles

Output:

∗ X - block matrix of generated particles for 2 factors 2xN
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