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We examine how the most prevalent stochastic properties of key financial time series have been
affected during the recent financial crises. In particular we focus on changes associated with the
remarkable economic events of the last two decades in the volatility dynamics, including the un-
derlying volatility persistence and volatility spillover structure. Using daily data from several key
stock market indices, the results of our bivariate GARCHmodels show the existence of time vary-
ing correlations aswell as time varying shock and volatility spillovers between the returns of FTSE
and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent
financial crisis. Our theoretical considerations on the time varyingmodel which provides the plat-
form upon which we integrate our multifaceted empirical approaches are also of independent in-
terest. In particular, we provide the general solution for time varying asymmetric GARCH
specifications, which is a long standing research topic. This enables us to characterize these
models by deriving, first, their multistep ahead predictors, second, the first two time varying un-
conditional moments, and third, their covariance structure.
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1. Introduction

In this paper we focus on the recent financial crises and examine how the volatility dynamics, including the underlying volatility
persistence and volatility spillover structure, have been affected by these crises. With this aimwemake use of several modern econo-
metric approaches for univariate and multivariate time series modelling, which we also condition on the possibility of breaks in the
volatility and/or the mean dynamics taking place. Moreover, we unify these approaches by introducing a set of theoretical consider-
ations for time varying (TV) AR-GARCHmodels, which are also of independent interest. In particular, wemake three broad contribu-
tions to the existing literature.

First, we present and utilize somenew theoretical results on time varying AR asymmetric GARCH (AGARCH)models.We show the
applicability of these general results to one important case: that of abrupt breaks, which we make particular use of in our empirical
investigation. Our models produce time varying unconditional variances in the spirit of Engle and Rangel (2008) and Baillie and
Morana (2009). TV-GARCH specifications have recently gained popularity for modelling structural breaks in the volatility process
(see, for example, Bauwens et al., 2014; Frijns et al., 2011). Despite nearly half a century of research work and the widely recog-
nized importance of time varying models, until recently there was a lack of a general theory that can be employed to explore
their time series properties systematically. Granger in some of his last contributions highlighted the importance of the topic
(see, Granger, 2007, 2008). For the TV-AGARCHmodel we simultaneously compute not only the general solution but also its ho-
mogeneous and particular parts as well. The coefficients in these solutions are expressed as determinants of tridiagonal matri-
ces. This allows us to provide a thorough description of time varying models by deriving, first, multistep ahead forecasts, the
associated forecast error and the mean square error, and second, the first two time varying unconditional moments of the pro-
cess and its covariance structure.

Second, we use a battery of tests to identify the number and estimate the timing of breaks both in the mean and volatility dynam-
ics. Following our theoretical results and prompted byMorana and Beltratti (2004) amongst otherswho acknowledge thatmisleading
inference on the persistence of the volatility process may be caused by unaccounted structural breaks1, we implement these
break tests in the univariate context in order to determine changes in the persistence of volatility. The special attention we
pay to this issue is well justified, especially within the finance literature given that it is well-established that the proper de-
tection of breaks is pivotal for a variety of financial applications, particularly in risk measurement, asset allocation and option
pricing.

Third, we employ the bivariate unrestricted extended dynamic conditional correlation (UEDCC) AGARCH process to analyze the
volatility transmission structure, applied to stock market returns. The model is based on the dynamic conditional correlation of
Engle (2002) allowing for volatility spillover effects by imposing the unrestricted extended conditional correlation (dynamic or con-
stant) GARCH specification of Conrad and Karanasos (2010). The most recent applications of the model can be found in Conrad et al.
(2010), Rittler (2012), Karanasos and Zeng (2013) and Conrad and Karanasos (2013). However, we extend it by allowing shock and
volatility spillover parameters to shift across abrupt breaks as well as across two regimes of stock returns, positive (increases in the
stock market) and negative (declines in the stock market). Recently, following our work, Caporale et al. (2014) adopted our UEDCC
framework but they do not allow for breaks in the shock and volatility spillovers. The extant literature on modelling returns and vol-
atilities is extensive, and it has evolved in several directions. One line of literature has focused on return correlations and
comovements or what is known as contagion amongst different markets or assets (e.g., Caporale et al., 2005; Rodriguez, 2007,
amongst others), whilst another line of the literature has focused on volatility spillovers amongst the markets (e.g., Asgharian and
Nossman, 2011; Baele, 2005, amongst others). The model adopted in this paper is flexible enough to capture contagion effects as
well as to identify the volatility spillovers associated with the structural changes and exact movements of each market
(e.g., upward or downward) to the other, and vice versa. Knowledge of this mechanism can provide important insights to investors
by focusing their attention on structural changes in the markets as well as their trends and movements (e.g., upward or downward)
in order to set appropriate portfolio management strategies.

Overall, our results suggest that stock market returns exhibit time varying persistence in their corresponding conditional vari-
ances. The results of the bivariate UEDCC-AGARCH (1, 1) model applied to FTSE and DAX returns, and to NIKKEI and Hang Seng
returns, show the existence of dynamic correlations as well as time varying shock and volatility spillovers between the two variables
in each pair. For example, the results of the bivariate FTSE and DAX returns show that the transmission of volatility from DAX to FTSE
exhibited a time varying pattern across the Asian financial crisis and the announcement of the €18bn German tax cuts plan as well as
the global financial crisis. As far as the NIKKEI and Hang Seng pair is concerned, the results provide evidence that these two financial
markets have only been integrated during the different phases of the recent financial crisis.With regard to the regime-dependent vol-
atility spillovers, the results suggest that declines in FTSE and DAX generate shock spillovers to each other, whereas increases in each
of these markets generate negative volatility spillovers to the other. Furthermore, the results show that declines in NIKKEI generate
shock spillovers to Hang Seng, whilst increases in NIKKEI generate negative volatility spillovers to Hang Seng.

The remainder of this paper is as follows. Section 2 considers the AR-AGARCH model with abrupt breaks in the conditional vari-
ance, and the time varying process, which are our two main objects of inquiry. Section 3 introduces the theoretical considerations
on the time varying AR-AGARCH models. In Section 3.1 we represent the former as an infinite linear system and concentrate on
the associated coefficient matrix (this technique has been developed in Paraskevopoulos et al., 2013). This representation enables
us to establish an explicit formula for the general solution in terms of the determinants of tridiagonal matrices. We also obtain the
1 A detailed literature review on this issue is available upon request.
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statistical properties of the aforementioned models, e.g., multi-step-ahead predictors and their forecast error variances. Section 4 de-
scribes our methodology and data. Section 5 presents our empirical univariate results, and the next section discusses the results from
various bivariate models. The final section contains the summary and our concluding remarks.

2. Abrupt breaks

First, we introduce the notation and the AR-AGARCH model with abrupt breaks in the conditional variance. Throughout the paper
wewill adhere to the conventions: (ℤ+)ℤ, and (ℝ+)ℝ stand for the sets of (positive) integers, and (positive) real numbers, respectively.
To simplify our expositionwe also introduce the followingnotation. Let t∈ℤ represent present time, and k∈ℤ+ the prediction horizon.

2.1. The conditional variance

In this paper we will examine the following model:
where

‘innov

¼ eϰE�

2 This
and Kim
yt ¼ E yt F t−1jð Þ þ εt ; ð1Þ
where F t − 1 = σ(yt − 1, yt − 2, …) is the filtration generated by the information available up through time t − 1.
We assume that the noise term is characterized by the relationεt ¼ et

ffiffiffiffiffi
ht

p
, where ht is positivewith probability one and it is amea-

surable function of Ft − 1; et is an i.i.d sequencewith zeromean and finite second and fourthmoments:ϰ ið Þ ¼ E e2it
� �

, i=1, 2. In other
words the conditional (on time t − 1) variance of yt is Var yt F t−1jð Þ ¼ ϰ 1ð Þht . In what follows, without loss of generality, we will
assume that ϰ(1) = 1.

Moreover, we specify the parametric structure of hτ as an AGARCH (2, 2) model withm abrupt breaks, 0≤m≤ k− 1, at times
t− κ1, t − κ2,…, t− κm, where 0= κ0 b κ1 b κ2 b ⋯ b κm b κm + 1= k, κm ∈ ℤ+, and κm is finite. That is, between t− k= t− κm + 1

and the present time t= t− κ0 the AGARCH process contains m structural breaks and the switch from one set of parameters to
another is abrupt:
hτ ¼ ωl þ α�
1;lε

2
τ−1 þ α�

2;lε
2
τ−2 þ β1;lhτ−1 þ β2;lhτ−2; ð2Þ
where for l=1,…,m+1, and τ= t− κl − 1,…, t− κl+1: αi,l
∗ ≜ αi,l+ γi,lSτ − i

− , i=1, 2, with Sτ−i
− =1 if eτ − 1 b 0 and 0 otherwise.2

Wewill assume that outside the prediction horizon there are no breaks. Obviously, the above process nests the simple AGARCH (2, 2)
specification if the seven coefficients are constant.

We will term the AGARCH (2, 2) model with m abrupt breaks: abrupt breaks AGARCH process of order (2, 2; m), AB-AGARCH
(2, 2;m). In what follows we provide a complete characterization of the main time-series properties of this model. Although in this
work we will focus our attention on the AB-AGARCH (2, 2;m) process, our results can easily be extended to models of higher orders.

2.2. Time varying model

In this section we face the non-stationarity of processes with abrupt breaks head on by employing a time varying treatment. In
particular, we put forward a framework for examining the AB-AGARCH (2, 2; m) specification. We begin by expressing the model
as a TV-AGARCH (2, 2) process:
ht ¼ ω tð Þ þ α�
1 tð Þε2t−1 þ α�

2 tð Þε2t−2 þ β1 tð Þht−1 þ β2 tð Þht−2; ð3Þ
where for l=1,…,m+1 and τ= t− κl − 1,…, t− κl+1:ω(τ) ≜ωl, αi
∗(τ) ≜ αi(τ)+ γi(τ)Sτ−i

− ≜ αi,l
∗ , and βi(τ) ≜ βi,l, i=1, 2, are the

time varying parameters of the conditional variance equation.
The TV-AGARCH (2, 2) formulation in Eq. (3) can readily be seen to have the following representation
ht ¼ ω tð Þ þ c1 tð Þht−1 þ c2 tð Þht−2 þ ut−1; ð4Þ
with
ut−1 ¼ α�
1 tð Þvt−1 þ α�

2 tð Þvt−2;

ci(t)≜αi
∗(t)+ βi(t)=αi(t)+ γi(t)St−i

− + βi(t), i=1, 2, and for l=1,…,m+1 and τ= t− κl − 1,…, t− κl+1, ci(τ)≜ ci,l; the

ation’ of the conditional variance vt = εt2− ht is, by construction, an uncorrelated termwith expected value 0 andE v2t
� �

¼ σ2
vt

h2
t

�
(the conditions for the second unconditional moments, E h2t

� �
, to exist for all t are available upon request), with eϰ ¼ Var
type of asymmetry is the so called GJR-GARCHmodel (named for Glosten et al., 1993). The asymmetric power ARCH process (see, amongst others, Karanasos
, 2006) is yet another asymmetric variant. For other asymmetric GARCH models see Francq and Zakoïan (2010, chapter 10) and the references therein.
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ϰ 2ð Þ−1. The above equation has the linear structure of a TV-ARMAmodel allowing for simple computations of the linear pre-

s (see Section 3.1.2 below).3
3. Theoretical considerations

This section presents somenew theoretical findings for time varyingmodelswhich also provide the platformuponwhichwe unify
the results we obtain from the different econometric tools. That is, we put forward a framework for examining AGARCHmodels with
abrupt breaks in the conditional variance, like Eq. (2), based on a workable closed form solution of stochastic time varying difference
equations. In otherwords,we exemplify howour theoreticalmethodology can beused to incorporate structural changes,which in this
paper we view as abrupt breaks.

3.1. The conditional variance

3.1.1. Notation
To simplify the exposition of the analysiswe introduce the followingnotation.Wedefine the fundamental solutionmatrixCt,k
Ct;k ¼

c1 t−kþ 1ð Þ −1
c2 t−kþ 2ð Þ c1 t−kþ 2ð Þ −1

c2 t−kþ 3ð Þ c1 t−kþ 3ð Þ −1
⋱ ⋱ ⋱

c2 t−1ð Þ c1 t−1ð Þ −1
c2 tð Þ c1 tð Þ

0
BBBBBB@

1
CCCCCCA
: ð5Þ
Formally Ct,k is a square k × k tridiagonal matrix whose (i, j) entry is given by
−1 if i ¼ j−1;
c1 t−kþ ið Þ if i ¼ j;
c2 t−kþ ið Þ if i ¼ jþ 1;

and
and
and

2 ≤ j ≤ k;
1 ≤ j ≤ k;
1 ≤ j ≤ k−1;

0 otherwise:

8><
>:
We also define the ς bivariate function: ℤ × ℤ+ ↦ ℝ by
ςt;k ¼ det Ct;k

� �
; ð6Þ
coupled with the initial values ςt,0 = 1 and ςt,−1 = 0. In other words ςt,1 = c1(t), and ςt,k for k≥ 2, is a continuant determinant; each
variable diagonal of this determinant consists of the time varying coefficients cm(⋅), m = 1, 2 range from time t − k + m to time t.

Next, we define
gt;r ¼ ςt;r−1α
�
1 t− r−1ð Þ½ � þ ςt;r−2α

�
2 t− r−2ð Þ½ �; r≥1: ð7Þ
Notice that when r = 1, gt,1 = α1
∗(t), since ςt,0 = 1 and ςt,− 1 = 0.

The general solution of Eq. (4) with free constants (initial condition values) ht − k, ht − k − 1 is given by
hgent;k ¼ hhomt;k þ hpart;k ; ð8Þ
with
hhomt;k ¼ ςt;kht−k þ c2 t−kþ 1ð Þςt;k−1ht−k−1;

hpart;k ¼
Xk−1

r¼0

ςt;r ω t−rð Þ þ ut−1−r½ �;

and

Xk−1

r¼0

ςt;rut−1−r ¼
Xk
r¼1

gt;rvt−r þ ςt;k−1α
�
2 t−kþ 1ð Þvt−k−1;

ςt,r and gt,r have been defined in Eqs. (6) and (7) respectively (for the proof of Eq. (8) see Appendix A). In what followswe drop
perscript: ht,kgen = ht,k.
ointed out, amongst others, by Francq and Zakoïan (2010, p. 20) under additional assumptions (implying the second-order of ht or εt2), which in our case are
e upon request, we can state that if εt follows a TV-AGARCH model then ht or εt2 are TV-ARMA processes as well.
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Notice that the coefficients of Eq. (8) (the ςs and therefore the gs) are expressed as tridiagonal determinants. For ‘k = 0’, since
ςt,0 = 1, and ςt,−1 = 0, Eq. (8) becomes an ‘identity’: ht,0 = ht. Similarly, when k=1, since ςt,0 = 1, and ςt,1 = c1(t), Eq. (8) ‘reduces’
to Eq. (4): ht,1 = c1(t)ht − 1 + c2(t)ht − 2 + ω(t) + ut − 1.

Next consider the case of a symmetric GARCH (1, 1) model with constant coefficients. Since for this model c2(t) = α2
∗(t) = 0,

α1
∗(t) = α1, and c1(t) = c1, for all t, then ςt,k reduces to c1

k and gt,k becomes c1k − 1α1, for k ∈ ℤ+.
In Eq. (8) ht is decomposed in two parts: the ht,khom part, which consists of the 2 free constants (ht − k and ht − k − 1), and the ht,kpar part,

which contains the time varying drift terms (ω(⋅)) from time t− k+1 to t, and the uncorrelated terms (vs) from time t−k−1 to t− 1.
For the TV-AGARCH (1, 1) model we have
4 For
pp. 195

5 For
∏m

l¼0 c
κ
lþ

6 For
α tð Þ þ½
ςt;k ¼ ∏k−1
j¼0 c t− jð Þ; ð9Þ
where c(t) ≜ c1(t). For the AGARCH (1, 1) process with m abrupt breaks in Eq. (2) we have
ςt;k ¼ ∏m
l¼0 c

κ lþ1−κl
lþ1 ; ð10Þ

where cl ≜ c1,l ≜ α1,l
∗ + β1,l.
3.1.2. Time varying unconditional variances
In this section in order to provide a thorough description of the TV-AGARCH (2, 2) process given by Eq. (3) we derive, first itsmul-

tistep ahead predictor, the associated forecast error and the mean square error, and second, the first unconditional moment of this
process (the second unconditional moment and the covariance structure are available upon request).

The k-step-ahead predictor of ht, E ht F t−k−1jð Þ, is readily seen to be4
E ht F t−k−1jð Þ ¼
Xk−1

r¼0

ςt;rω t−rð Þ þ ςt;kht−k þ c2 t−kþ 1ð Þςt;k−1ht−k−1 þ ςt;k−1α
�
2 t−kþ 1ð Þvt−k−1; ð11Þ
whereςt;r≜E ςt;r
� �

(for r≥ 1)withci tð Þ≜E ci tð Þ½ � ¼ αi tð Þ þ βi tð Þandαi tð Þ≜E αi tð Þ½ � ¼ αi tð Þ þ γi tð Þ
2 , i=1, 2.5 In addition, for the symmetric

version of the model, the forecast error for the above k-step-ahead predictor, FE ht F t−k−1jð Þ, is given by
FE ht F t−k−1jð Þ ¼
Xk
r¼1

gt;rvt−r: ð12Þ
Notice that this predictor is expressed in terms of k uncorrelated terms (the vs) from time t−k to time t−1,where the ‘coefficients’
have the form of diagonal determinants (the ςs). The mean square error is given by
Var ht F t−k−1jð Þ ¼ Var FE ht F t−k−1jð Þ½ � ¼ eϰXk
r¼1

g2t;rE h2t−r

� �
: ð13Þ

� �

This is expressed in terms of k second moments, E h2t−r , from time t−k to time t−1, where the coefficients are the squared co-

efficients of the multistep ahead predictor multiplied by eϰ. Moreover, the definition of the uncorrelated term vt implies that E
ε2t F t−k−1j� � ¼ E ht F t−k−1jð Þ , FE ε2t F t−k−1j� � ¼ vt þ FE ht F t−k−1jð Þ: The associated mean squared error is given by Var

FE ε2t F t−k−1j� �� � ¼ eϰE h2t
� �

þ Var FE ht F t−k−1jð Þ½ � ¼ eϰ∑k
r¼0 g

2
t;rE h2t−r

� �
.

Next to obtain the first unconditionalmoment of ht, for all t, we impose (for the asymmetric version) the conditions that:∑ r=0
k ςt,

rω(t − r) as k → ∞ is positive and converges a.s, and
eϰX∞
r¼1

supt g2t;rE h2t−r

� �h i
bM b ∞; M ∈ ℤþ

; ð14Þ
whereg2t;r≜E g2t;r
� �

for r≥ 16,which guarantees that, for all t, themodel in Eq. (4) admits the second-orderMA (∞) representation:
hgent;∞ ¼ lim
k→∞

hpart;k L2¼
X∞
r¼0

ςt;rω t−rð Þ þ
X∞
r¼1

gt;rvt−r; ð15Þ
the issue of temporal aggregation and a discussion of thewider class ofweakGARCHprocesses see Bollerslev andGhysels (1996) andGhysels andOsborn (2001,
–197).
the TV-AGARCH (1, 1) model: E ςt;r

� � ¼ E ∏r−1
j¼0 c t− jð Þ

h i
¼ ∏r−1

j¼0 c t− jð Þ with c tð Þ≜E c tð Þ½ � ¼ α tð Þ þ β tð Þ þ γ tð Þ
2 . For the AB-AGARCH (1, 1;m) process: E ςt;r

� � ¼
lþ1−κl

1 .
the TV-AGARCH (1, 1) model: E g2t;rþ1

� �
¼ E ς2

t;r

� �
α2 t−rð Þ þ γ2 t−rð Þ=2þ α t−rð Þγ t−rð Þ� �

and, for r ≥ 1, E ς2
t;r

� �
¼ ∏r−1

j¼0 E c2 t− jð Þ� �
, with E c2 tð Þ� � ¼

β tð Þ�2 þ γ2 tð Þ=2þ α tð Þ þ β tð Þ½ �γ tð Þ.
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is a unique solution of the TV-AGARCH (2, 2) model in Eq. (3). The above result states that {ht,kpar, t∈ ℤ+} (defined in Eq. (8)) L2
rges as k → ∞ if and only if ∑r=0

k ςt,rω(t − r) and ∑r=1
k gt,rvt − r as k → ∞ converge a.s., and thus under the aforementioned
which
conve
conditions hgen

t;∞ L2 limk→∞h
par
t;k satisfies Eq. (8).

Moreover, the first time varying unconditional moment of ht, E htð Þ ¼ σ2
t , is the limit of the (k + 1)-step-ahead predictor of ht, E

ht F t−k−1jð Þ, as k → ∞:
E htð Þ ¼ lim
k→∞

E ht F t−k−1jð Þ ¼
X∞
r¼0

ςt;rω t−rð Þ ð16Þ
(if and only if limk→∞ςt;k ¼ 0).
Notice that the first moment is time varying. The expected value of the conditional variance, that is the unconditional variance of

the error, is an infinite sum of the time varying drifts where the coefficients (the ςs) are expressed as expectations of tridiagonal
determinants.

Finally, for the AGARCH (1, 1) process withm abrupt breaks in Eq. (2) (with α2,l
∗ = β2,l = 0), for i ≤ κ1 we have (if and only if

cmþ1b1):
E ht−ið Þ ¼ 1−cκ1−i
1

1−c1
ω1 þ

Xm
ℓ¼2

ecℓ 1−cκℓ
−κ

ℓ−1

ℓ

1−c
ℓ

ω
ℓ
þ ecmþ1

1
1−c

mþ1

ω
mþ1

; ð17Þ
with
ecℓ ¼ cκ1−i
1 ∏ℓ−1

j¼2 c
κ j−κ j−1

j

� �
;

we use the convention∏ r = i
j (⋅) = 1 for j b i, and theωs and the cs are defined in Eqs. (3) and (4) respectively. Notice that if

ly if c1b1 the above expression as i → − ∞ becomes: E ht−ið Þ ¼ ω1

1−c1
since ecℓ ¼ cκ1−i

1 ¼ 0 for all ℓ. Finally, when i N κm, that is

we are before all the breaks, then if and only if cmþ1b1: E ht−ið Þ ¼ ωmþ1

1−cmþ1
.

4. Methodology and data

This section outlines the methodology we have employed to study the different properties of the stochastic processes during the
variousfinancial crises and offers an overview of the data employed. First, we describe the univariatemodelswe have estimated. Then
we mention the break identification method which we have adopted.

4.1. Univariate modelling

Let stock returns bedenoted by rt=(logpt− logpt− 1)×100,where pt is the stockprice index, anddefine itsmean equation as:
rt ¼ μ þ ϕ1rt−1 þ ϕ2rt−2 þ ϕ3rt−3 þ εt ; ð18Þ
where εt|Ft − 1 ∼N(0, ht), that is the innovation is conditionally normal with zeromean and variance ht.7 Next, the dynamic structure
of the conditional variance is specified as anAGARCH (1, 1) process of Glosten et al. (1993) (the asymmetric power ARCH could also be
employed, as in Karanasos and Kim, 2006). In order to examine the impact of the breaks on the persistence of the conditional vari-
ances, the following equation is specified as follows:
ht ¼ ω þ
X7
i¼1

ωiDi þ αε2t−1 þ
X7
i¼1

αiDiε
2
t−1 þ γS−t−1ε

2
t−1 þ

X7
i¼1

γiDiS
−
t−1ε

2
t−1

þ βht−1 þ
X7
i¼1

βiDiht−1;

ð19Þ

St−1
− =1 if et − 1 b 0, and 0 otherwise. Note that failure to reject H0: γ=0 and γi =0, i=1,…, 7, implies that the conditional

ce follows a symmetric GARCH (1, 1) process. Furthermore, the second order conditions require that cþ∑
7

i¼1
cib1.

8 The

ates i = 1, …, 7 are given in Table 1, and Di are dummy variables defined as 0 in the period before each break and one after
emainly structural breaks in the variance are found statistically significant (see Section 5.1 below)we do not include any dummies in themean.Moreover, low
R specifications capture the serial correlation in stock returns.
þ β þ γ

2 and ci≜αi þ βi þ γi=2.
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eak.9 We also consider a simple GARCH (1, 1) model which allows the dynamics of the conditional variances to switch across
e and negative stock returns. This is given by

þω−D−
t−1 þ αε2t−1 þ α−D−

t−1ε
2
t−1 þ βht−1 þ β−D−

t−1ht−1: ð20Þ

Dt−1
− = 1 if rt − 1 b 0 and 0 otherwise.10 This is an example of a TV-AGARCH model with stochastic coefficients.
where

We use the quasi-maximum likelihood method of Bollerslev and Wooldridge (1992) in the estimation of these univariate speci-
fications as the corresponding computed standard errors are robust to non-normality in the residuals.11 Moreover, we employ the
Ljung and Box (1978) test for the standardized residuals and their squares to check respectively the adequacy of the conditional
means and the conditional variances in the corresponding specifications to capture their associated dynamics.

4.2. Data and breaks overview

We use daily data that span the period 1-1-1988 to 30-6-2010 for the stock market indices, obtained from Thomson DataStream.
To account for the possibility of breaks in themean and/or volatility dynamicswe use a set of non-parametric data-drivenmethods to
identify the number and timing of the potential structural breaks. In particular, we adopt the two-stage Nominating-Awarding pro-
cedure of Karoglou (2010) (see also Karanasos et al., forthcoming) to identify breaks that might be associated either to structural
changes in the mean and/or volatility dynamics or to latent non-linearities that may manifest themselves as dramatic changes in
the mean and/or volatility dynamics and might bias our analysis.12

This procedure involves two stages: the “Nominating breakdates” stage and the “Awarding breakdates” stage. The “Nominating
breakdates” stage involves the use of one ormore statistical tests to identify some dates as possible breakdates. In recent years, a num-
ber of statistical tests have been developed for that reason (for details, see Karanasos et al., forthcoming).

The “Awarding breakdates” stage is a procedure which in essence is about uniting contiguous nominated segments (i.e. segments
that are defined by the nominated breakdates) unless one of the following two conditions is satisfied:

(I) the means of the contiguous segments are statistically different (as suggested by the t-test) and
(II) the variances of the contiguous segments are statistically different (as suggested by the battery of tests which is described in

Karanasos et al., forthcoming).

Alternatively, we could choose the break points by employing the methodologies in Bai and Perron (2003) and Lavielle and
Moulines (2000) (see, for example, Campos et al., 2012).

5. Empirical analysis

This section presents the empirical results we obtain from the different econometric tools. First, we present the breaks that we
have identified and discuss the possible economic events that may be associated with them. Then we focus on the stock market
returns and condition our analysis based on these breaks to discuss first the findings from the univariate modelling and then from
the bivariate one (presented in Section 6).

5.1. Estimated breaks

After applying the Nominating-Awarding procedure on stock market returns we find that the stochastic behaviour of all indices
yields about three to seven breaks during the sample period, roughly one every two to four years on average. The predominant feature
of the underlying segments is that mainly changes in variance are found statistically significant. Finally, there are several breakdates
that are either identical in all series or very close to one another, which apparently signify economic events with a global impact.

It appears that dates for the extraordinary events of the Asian financial crisis of 1997, the global financial crisis of 2007–08 and the
European sovereign-debt crisis that followed are clearly identified in all stock return series with very little or no variability (see
Table 1). Other less spectacular events, such as the Russian financial crisis of 1998, the Japanese asset price bubble of 1986–1991
and the UK's withdrawal from the European Exchange Rate Mechanism (ERM), can also be associated with the breakdates that
have been identified in some series.13
relation between the parameters in Eq. (19) and the ones in Eq. (2) (with α2,l
∗ = β2,l = 0) is given by, i.e., for the ωs: ω þ∑mþ1−l

i¼1 ωi ¼ ωl , l= 1, …, m+ 1,
he ωs in the right hand side are the ones in Eq. (2).
estimate another specification with α+Dt−1

+ , β+Dt−1
+ , and ω+Dt−1

+ , instead of α−Dt−1
− , β−Dt−1

− , and ω−Dt−1
− , where Dt−1

+ = 1 if rt−1 N 0 and 0 otherwise. The
not reported) are very similar.
estimation of these univariate models (and also the bivariate models in Section 6) was implemented in RATS 8.1 with a convergence criterion of 0.00001.
details of the two stages in the Nominating-Awarding procedure and a summary of the statistical properties of stockmarket returns are available upon request.
tailed account of the possible associations that can be drawnbetween each breakdate for stock returns and amajor economic event that took place at or around
kdate period either in the world or in each respective economy is available upon request, as is a summary of the descriptive statistics of each segment.



Table 2
The estimated univariate AGARCH (1,1) models allowing for breaks in the variance.

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

μ 0.012a

(0.004)
0.011a

(0.003)
0.010c

(0.006)
0.019a

(0.005)
0.009b

(0.004)
0.019a

(0.005)
0.006
(0.005)

0.010b

(0.005)
ϕ1 0.129a

(0.013)
0.079a

(0.014)
0.124a

(0.016)
ω 0.001c

(0.0002)
0.003a

(0.0007)
0.005a

(0.0004)
0.011a

(0.0003)
0.002a

(0.0003)
0.015a

(0.003)
0.007a

(0.001)
0.018a

(0.004)
α 0.018a

(0.006)
0.012c

(0.007)
0.006b

(0.003)
0.031a

(0.006)
0.013a

(0.004)
0.039a

(0.007)
0.019a

(0.005)
0.018c

(0.010)
α1 − 0.039a

(0.008)
− 0.050a

(0.011)
0.059a

(0.013)
α2 0.011c

(0.006)
0.068a

(0.014)
α3 − 0.044a

(0.016)
− 0.050a

(0.011)
β 0.954a

(0.002)
0.906a

(0.016)
0.936a

(0.003)
0.861a

(0.002)
0.952a

(0.001)
0.866a

(0.013)
0.820a

(0.026)
0.854a

(0.011)
β1 − 0.019a

(0.002)
0.081a

(0.021)
− 0.112a

(0.029)
β2 − 0.048a

(0.009)
− 0.031a

(0.003)
0.029a

(0.007)
− 0.019a

(0.006)
0.115a

(0.029)
β3 0.039a

(0.015)
0.017c

(0.009)
− 0.029b

(0.012)
− 0.076a

(0.018)
β4 − 0.025c

(0.013)
0.038a

(0.006)
0.137a

(0.029)
γ 0.023c

(0.012)
0.028a

(0.009)
0.056a

(0.004)
0.117a

(0.023)
0.029a

(0.006)
0.130a

(0.021)
0.117a

(0.013)
0.105a

(0.017)
γ1 0.092a

(0.014)
0.097a

(0.023)
0.035a

(0.007)
0.028a

(0.005)
γ2 0.113a

(0.027)
0.019b

(0.009)
0.055a

(0.016)
γ3 − 0.094a

(0.029)
0.117a

(0.038)
0.075c

(0.043)
0.026b

(0.012)
LogL − 2921.3 − 1837.5 − 4374.3 − 4469.8 − 2904.1 − 5231.4 − 4764.1 − 3957.7
LB(5) 8.343

[0.138]
2.316
[0.128]

10.870
[0.054]

5.170
[0.395]

9.745
[0.082]

2.928
[0.231]

2.555
[0.768]

3.303
[0.069]

LB2(5) 1.947
[0.856]

0.759
[0.979]

3.953
[0.556]

5.524
[0.354]

4.192
[0.522]

4.105
[0.534]

8.992
[0.108]

1.635
[0.897]

Notes: Robust-standard errors are used in parentheses. LB(5) and LB2(5) are Ljung–Box tests for serial correlations of five lags on the standardized and squared stan-
dardized residuals, respectively (p-values reported in brackets). Insignificant parameters are excluded. a, b, and c indicate significance at the 1%, 5%, and 10% levels, re-
spectively. For the Hang Seng index ϕ3 and γ4 are significant, and for the STRAITS index α4, α6, β6, γ5 and γ6 are also significant.

Table 1
The break points (stock returns).

Break S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

1 27/03/97 05/11/96 17/03/97 27/08/91 22/10/92 24/10/01 21/02/90 26/08/91
2 04/09/08 15/01/08 31/07/98 21/07/97 13/07/98 27/07/07 04/01/08 28/08/97
3 31/03/09 02/04/09 15/01/08 17/06/03 24/07/07 05/05/09 03/04/09 06/06/00
4 16/07/09 19/08/09 03/04/09 15/01/08 06/04/09 01/12/09 26/07/07
5 27/04/10 27/04/10 03/04/09 27/04/10 28/05/09
6 25/08/09
7 28/04/10

Notes: The dates in bold indicate breakdates forwhich, in the univariate estimation (see Table 2), at least one dummyvariable is significant, i.e., for the S&P index for the
04/09/08 breakdate β2 and γ2 are significant. The underlined dates indicate breakdates for which, in the bivariate estimation (see Tables 6 and 8), at least one dummy
variable is significant, i.e., for the NIKKEI–Hang Seng bivariate model, for the 01/12/09 breakdate α12

4 is significant.
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5.2. Univariate results

The quasi-maximum likelihood estimates of the AGARCH (1, 1) model allowing the drifts (theωs) as well as the ‘dynamics of the
conditional variance’ (theαs,βs andγs) to switch across the considered breaks, as in Eq. (19), are reported in Table 2. 14 The estimated
models are shown to bewell-specified: there is no linear or nonlinear dependence in the residuals in all cases, at the 5% level. Note that
the insignificant parameters are excluded. The impact of the breaks on theω is insignificant in all eight cases. However, there exists a
14 The quasi-maximum likelihood estimates of the standard AGARCH (1, 1) model are available upon request.



Table 3
The estimated univariate GARCH (1,1) models allowing for different persistence across positive and negative returns: ht = ω + ω−Dt − 1

− + αεt − 1
2 + α−Dt−1

−εt − 1
2 + βht − 1 + β−Dt−1

− ht − 1.

S&P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

μ 0.036a

(0.005)
0.023a

(0.004)
0.044a

(0.007)
0.054a

(0.008)
0.032a

(0.004)
0.051a

(0.007)
0.034a

(0.007)
0.027a

(0.004)
ϕ1 0.114a

(0.012)
0.069a

(0.013)
0.112a

(0.011)
ω 0.002a

(0.0008)
0.002a

(0.0006)
0.007a

(0.001)
0.008a

(0.002)
0.002a

(0.0005)
0.009a

(0.002)
0.004a

(0.0008)
0.006a

(0.002)
α 0.054a

(0.005)
0.062a

(0.012)
0.070a

(0.008)
0.091a

(0.018)
0.066a

(0.006)
0.088a

(0.011)
0.065a

(0.008)
0.051a

(0.015)
α− 0.033c

(0.017)
0.033c

(0.020)
0.025c

(0.015)
0.104a

(0.021)
β 0.837a

(0.023)
0.861a

(0.027)
0.822a

(0.023)
0.779a

(0.039)
0.832a

(0.014)
0.815a

(0.025)
0.842a

(0.016)
0.883a

(0.023)
β− 0.208a

(0.034)
0.106a

(0.024)
0.181a

(0.029)
0.233a

(0.043)
0.187a

(0.023)
0.141a

(0.037)
0.157a

(0.027)
LogL − 2941.2 − 1865.7 − 4388.4 − 4478.8 − 2903.4 − 5260.7 − 4799.1 − 4048.6
LB(5) 9.526

[0.089]
1.674
[0.195]

3.256
[0.071]

4.464
[0.484]

8.031
[0.154]

4.521
[0.104]

2.180
[0.823]

3.650
[0.056]

LB2(5) 2.398
[0.791]

0.573
[0.989]

4.237
[0.515]

5.340
[0.375]

5.428
[0.365]

4.998
[0.416]

8.430
[0.134]

2.385
[0.793]

Notes: See notes of Table 2. The ϕ3 coefficient was significant for the CAC and Hang Seng indices.
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significant impact of the breaks on the ‘dynamic structure of the conditional variance’ for all stock returns (irrespective of whether a
symmetric GARCH (1, 1) or an AGARCH (1, 1)model is considered). More specifically, whilst the ARCHparameter shows time varying
features across a single break in the cases of S&P and DAX, for CAC and Hang Seng it is shifted across two breaks and for STRAITS it is
shifted across three breaks (see the αi coefficients). With regard to the GARCH parameter, CAC and NIKKEI show time varying param-
eters for only one break, but S&P, TSE, and FTSE across two breaks. Furthermore, the GARCH parameter shows a time varying pattern
across three breaks in the case of DAX and across five breaks in the case of STRAITS.

Interestingly, the asymmetry parameter also displays significant time variation over the considered breaks. Specifically, the TSE,
DAX, and Hang Seng cases are significantly shifted for one break, whereas S&P, CAC, and FTSE show a time varying pattern across
three breaks, and STRAITS for two breaks (see the γi coefficients in Table 2). Furthermore, the results are shown to be robust by con-
sidering the dynamics of a GARCH (1, 1) process to switch across positive and negative stock returns (see Table 3). Clearly, the ARCH
and GARCH parameters show time dependence across positive and negative returns in all cases (see the α−, and β− coefficients).

Overall, Table 4 shows that the persistence of the conditional variances of stock returns varies over the considered breaks in all
cases by considering the AGARCH (1, 1) models. The persistence is measured by cℓ ¼ αℓ þ βℓ þ γℓ=2, ℓ = 1, …, m + 1 (these are

the c s used in Eq. (17) as well), and, for example, βℓ ¼ β þ∑mþ1−ℓ
i¼1 βi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eq: 19ð Þ

.15

The caseswhich are shown to have been impacted strongly by the breaks are those of TSE, DAX, Hang Seng, NIKKEI and STRAITS. In
particular, the persistence of the conditional variance of DAX appears to be unaffected by German reunification, its highest value is
0.98 during the Asian financial crisis, its lowest value is 0.94 after the break associated with the announcement of the €18bn tax
cuts plan in Germany (17/06/03), it increases to 0.97 on the onset of the recent financial crisis and remains there during the
sovereign-debt crisis. Furthermore, the corresponding persistence of STRAITS increases from 0.87 to near unity (0.99) after the
Asianfinancial crisis. However, such persistencedeclines after the break in June 2000 to 0.91, remains the same through the unexpect-
ed economic recession in Singapore in 2001 before bounding back to 0.97 at the onset of the global financial crisis, and then exhibits a
sharp decline to 0.88 during the European sovereign-debt crisis. Surprisingly, the persistence of the conditional variance of NIKKEI in-
creases from 0.90 to approximately 0.98 during the asset price bubble in Japan over the period 1986–1991 and remains unaffected
afterwards. For example, the impact of the Asian financial crisis as well as that of the recent financial crisis is shown to be limited,
which may be due to the fact that Japan has been immune to such crises.

The persistence of the conditional variances by allowing the GARCH (1, 1) process to switch across positive and negative returns
also shows a time varying pattern (see Table 5). In particular, it is shown that the persistence of the conditional variances stemming
from positive returns is lower than those of the negative counterparts. More specifically, positive returns are shown to lower the per-
sistence of the conditional variances in most of the cases to around 0.90 whereas the persistence of the negative returns is close to
unity (0.99).

Fig. 1 shows the estimated time varying unconditional variances for two out of the eight stock index returns. For the S&P the
first part of the graph shows the unconditional variances when i b k1, that is, when ht − i is after all three breaks (t − k3 (=03/97),
15 The plot of the time varying-piecewise persistence of the conditional variances of stock returns against the persistence generated from the standard AGARCH (1, 1)
models is available upon request.



Table 4
The persistence of the AGARCH (1,1) models.

The persistence of the standard AGARCH (1,1) models

S & P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990

The persistence of the AGARCH (1,1) models allowing for breaks in the variance

Break S & P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

0 c4 ¼ð Þ0:983 0.932 0.970 c4 ¼ð Þ0:950 0.979 0.970 0.897 0.924
1 c3 ¼ð Þ0:990 0.980 0.987 0.974 0.920 0.978 0.871
2 c2 ¼ð Þ0:998 0.976 c3 ¼ð Þ0:979 0.982 0.988 0.986
3 c1 ¼ð Þ0:990 0.997 0.990 c2 ¼ð Þ0:937 0.995 0.910
4 0.972 c1 ¼ð Þ0:976 0.945 0.974
5 0.948
6 0.884

Notes: Break 0 covers the period preceding all breaks, whilst break 1 covers the period between breaks 1 and 2, and break 2 covers the period between breaks 2 and 3,
and so on (see Table 1 for the dates of thebreaks).When thevalue of the persistence is left blank for a break, it indicates that suchpersistence has not changedduring the

period covered by such a break. The persistence is measured by cl ¼ αl þ βl þ γl=2, l = 1, …, m + 1, and, for example,βl ¼ β þ∑mþ1−l
i¼1 βi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eq: 19ð Þ

. That is cmþ1 is the per-

sistence before all breaks, and c1 is the persistence after all the breaks.
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t− k2 (=09/08) and t− k1 (=03/09)) (we construct the time varying unconditional variances using the formula in Eq. (17)).When
i→−∞, the unconditional variances converge toω= 1−c1ð Þ ¼ 0:001= 1−0:990ð Þ ¼ 0:100. As i increases, that is, as we are going back
in time, the unconditional variances increase at an increasing rate. The second part of the graph shows the unconditional variances
when k1 ≤ i ≤ k2 − 1, that is, when ht − i is between the first and the second break. Higher values of i are associated with lower un-

conditional variances. When i = k1, the unconditional variance is 1−ck2−k1
2

� �
= 1−c2ð Þþ

h
ck2−k1
2 1−ck3−k2

3

� �
= 1−c3ð Þ þ ck2−k1

2 ck3−k2
3 =

1−c4ð Þ�ω ¼ 0:228 (see Eq. (17) and the cs in the first column of Table 4). The third part of the graph shows the unconditional vari-

ances when k2≤ i≤ k3− 1.When i= k2, the unconditional variance is 1−ck3−k2
3

� �
= 1−c3ð Þ þ ck3−k2

3 = 1−c4ð Þ
h i

ω ¼ 0:105. Finally, for

i ≥ k3, the unconditional variances are not affected by the three breaks and therefore are equal to ω= 1−c4ð Þ ¼ 0:061.
Finally, STRAITS exhibits the highest number of breaks, that is six. The first part of the graph shows the unconditional vari-

ances when i b k1, that is, when ht − i is after all six breaks (t − k6 (=08/91), t − k5 (=08/97), t − k4 (=06/00), t − k3
(=07/07), t − k2 (=05/09), t − k1 (=08/09)). As i increases, that is, as we are going back in time, the unconditional variances in-
crease at an increasing rate. When i→−∞, the unconditional variances converge toω= 1−c1ð Þ ¼ 0:157. The second part of the graph
shows the unconditional variances when k1 ≤ i ≤ k2 − 1. Higher values of i are associated with higher unconditional variances. The
third part of the graph shows the unconditional variances when k2 ≤ i ≤ k3 − 1. They are decreasing with i. For the fourth and sixth
part the unconditional variances increase with i whereas for the fifth part they decrease with i. Finally, for i ≥ k6, the unconditional
variances are not affected by the six breaks and therefore are equal to ω= 1−c7ð Þ ¼ 0:238.

6. Bivariate models

In this section we use a bivariate extension of the univariate formulation of Section 4. In particular, we use a bivariate model to
simultaneously estimate the conditional means, variances, and covariances of stock returns. Let yt = (y1,t, y2,t)′ represent the 2 × 1
vector with the two returns. F t − 1 = σ(yt − 1, yt − 2, …) is the filtration generated by the information available up through time t
− 1. We estimate the following bivariate AR(2)-AGARCH (1, 1) model
Table 5
The per

Break

r
r+

r−

Notes: r
(negativ
yt ¼ μ þΦ1yt−1 þΦ2yt−2 þ εt ; ð21Þ
where μ=[μi]i = 1,2 is a 2 × 1 vector of drifts andΦl=[ϕij
(l)]i,j = 1,2, l=1, 2, is a 2 × 2matrix of autoregressive parameters.We assume

that the roots of |I − ∑ l = 1
2 ΦlL

l| (where I is the 2 × 2 identity matrix) lie outside the unit circle.
sistence of the GARCH (1,1) models allowing for different persistence across positive and negative returns.

S & P TSE CAC DAX FTSE Hang Seng NIKKEI STRAITS

0.986 0.986 0.978 0.979 0.985 0.976 0.990 0.990
0.891 0.923 0.892 0.870 0.898 0.903 0.907 0.934
0.995 0.992 0.982 0.986 0.991 0.990 0.998 0.986

denotes the persistence generated from returns, that is from the standardAGARCHmodelwhilst r+(r−) corresponds to the persistence generated frompositive
e) returns.



Fig. 1. Unconditional variances of S&P and STRAITS stock market returns.
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Let ht = (h1,t, h2,t)′ denote the 2 × 1 vector of F t − 1 measurable conditional variances. The residual vector is defined as εt =
(ε1,t, ε2,t)′= [et ⊙ qt

∧ − 1/2]⊙ ht
∧1/2, where the symbols⊙ and ∧ denote the Hadamard product and the elementwise exponentiation

respectively. The stochastic vector et =(e1,t, e2,t)′ is assumed to be independently and identically distributed (i. i. d.) withmean zero,
conditional variance vector qt=(q11,t, q22,t)′, and 2 × 2 conditional correlationmatrixRt= diag{Q t}−1/2Q tdiag{Q t}−1/2 with diagonal
elements equal to one and off-diagonal elements absolutely less than one. A typical element of Rt takes the form ρij;t ¼ qij;t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qii;tqjj;t

p
for i, j = 1, 2. The conditional covariance matrix Q t = [qij,t]i,j = 1,2 is specified as in Engle (2002)
Q t ¼ 1−αD−βDð ÞQ þ αDet−1e
0
t−1 þ βDQ t−1; ð22Þ
where Q is the unconditional covariance matrix of et, and αD and βD are non-negative scalars fulfilling αD + βD b 1.
FollowingConrad andKaranasos (2010) andRittler (2012),we impose theUEDCC-AGARCH (1, 1) structure on the conditional var-

iances (multivariate fractionally integrated APARCH models could also be used, as in Conrad et al., 2011; Karanasos et al.,
forthcoming), and we also amend it by allowing the shock and volatility spillover parameters to be time varying:
ht ¼ ω þ A�ε∧2t−1 þ
Xn
l¼1

AlDlε
∧2
t−1 þ Bht−1 þ

Xn
l¼1

BlDlht−1; ð23Þ
whereω= [ωi]i = 1,2, A= [αij]i,j = 1,2 and B= [βij]i,j = 1,2; Al, l=1,…, n (and n=0, 1,…, 7), is a cross diagonal matrix with nonzero
elementsαij

l , i, j=1, 2, i≠ j, andBl is a cross diagonalmatrixwith nonzero elements βij
l , i, j=1, 2, i≠ j;A∗=A+ ΓSt − 1, Γ is a diagonal

matrix with elements γii, i = 1, 2, and St − 1 is a diagonal matrix with elements Si,t−1
− = 1 if ei,t − 1 b 0 and 0 otherwise. The model

without the breaks for the shock and volatility spillovers, that is ht = ω + A∗εt−1
∧2 + Bht − 1, is minimal in the sense of Jeantheau

(1998, Definition 3.3) and invertible (see Assumption 2 in Conrad and Karanasos, 2010). The invertibility condition implies that the
inverse roots of |I − BL|, denoted by φ1 and φ2, lie inside the unit circle. Following Conrad and Karanasos (2010) we also impose
the four conditions which are necessary and sufficient for ht ≻ 0 for all t: (i) (1 − b22)ω1 + b12ω2 N 0 and (1 − b11)ω2 +
b21ω1 N 0, (ii) φ1 is real and φ1 N |φ2|, (iii) A∗ v 0 and (iv) [B − max(φ2, 0)I]A∗ ≻ 0, where the symbol ≻ denotes the elementwise
inequality operator. Note that these constraints do not place any a priori restrictions on the signs of the coefficients in the B matrix.
In particular, these constraints imply that negative volatility spillovers are possible. When the conditional correlations are constant,
the model reduces to the UECCC-GARCH (1, 1) specification of Conrad and Karanasos (2010).

Finally,we also amend theUEDCC-AGARCH(1, 1)model by allowing shock and volatility spillovers to vary across positive andneg-
ative returns:
ht ¼ ω þ A�ε∧2t−1 þ B�ht−1; ð24Þ
whereA∗=A+ ΓSt− 1+A−Dt−1
− andB*=B+B+Dt−1

+ ;A−(B+) is a cross diagonalmatrixwith nonzero elementsαij
−(βij

+), i, j=1, 2,
i≠ j;Dt

−(Dt
+) are 2 × 2 diagonalmatriceswith elements dit−(dit+), i=1, 2,where dit−(dit+) is one if rit b 0(rit N 0) and zero otherwise, j=

1, 2, j ≠ i.
The quasi-maximum likelihoodmethod of Bollerslev andWooldridge (1992) is also used in the estimation of these bivariate spec-

ifications. Nonetheless, we employ themultivariate Q-statistic (Hosking, 1981) for the standardized residuals and their squares to de-
termine respectively the adequacy of the conditional means and the conditional variances in these specifications to capture their
associated dynamics.



Table 6
Coefficient estimates of bivariate UEDCC-AGARCH models allowing for shifts in shock and volatility spillovers between FTSE and DAX.

Conditional variance equation

ω1 0.003a

(0.0006)
γ11 0.078a

(0.016)
β12
3 − 0.007a

(0.002)
ω2 0.004a

(0.001)
γ22 0.082a

(0.022)
αD 0.044a

(0.010)
α11 0.016b

(0.007)
α12 0.010a

(0.003)
βD 0.952a

(0.011)
α22 0.033a

(0.009)
α12
4 0.011a

(0.004)
β11 0.921a

(0.014)
β12 − 0.007c

(0.003)
β22 0.912a

(0.015)
β12
2 0.003a

(0.001)
LogL − 5427.03
Q(5) 27.970

[0.110]
Q2(5) 9.427

[0.977]

Notes: Robust-standard errors are used in parentheses, 1 = FTSE, 2 = DAX. Q(5) and Q2(5) are the multivariate Hosking (1981) tests for serial correlation of five lags
on the standardized and squared standardized residuals, respectively (p-values are reported in brackets). α12(β12) indicates shock (volatility) spillovers from
DAX to FTSE, whilst α12

l (β12
l ) indicates the shift in shock (volatility) spillovers for the break l (see Table 1) from DAX to FTSE. Insignificant parameters are excluded.

a, b and c indicate significance at the 1%, 5%, and 10% levels, respectively. Tse's (2000) test for constant conditional correlation: 20.41.
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6.1. Bivariate results

6.1.1. Example 1: FTSE–DAX
Table 6 reports the results of the UEDCC-AGARCH (1, 1)model between the returns on FTSE andDAX allowing shock and volatility

spillover parameters to shift across the breaks in order to analyze the time varying volatility transmission structure between the two
variables. As is evident fromTable 6, the results suggest the existence of strong conditional heteroscedasticity in the two variables. The
ARCH as well as the asymmetry parameters of the two variables are positive and significant, indicating the existence of asymmetric
responses in the two variables. In addition, rejection of the model with constant conditional correlation, using Tse's (2000) test, indi-
cates the time varying conditional correlation between the two financialmarkets. Fig. 2 displays the evolution of the time varying con-
ditional correlation between the two variables over the sample period.

Furthermore, the results suggest that there is evidence of shock spillovers aswell as negative volatility spillovers fromDAX to FTSE
(theα12 and β12 coefficients are significant at the 1% and 10% levels, respectively).16 A negative volatility spillover from theDAX to the
FTSE implies that volatility innovations in the DAX affect the FTSE but they have a less persistent effect than the volatility innovations
from the FTSE itself (see Conrad andWeber, 2013). With regard to the impact of the breaks on the volatility transmission structure, it
is shown that both shock and volatility spillovers between the two variables change over time. The most significant changes include
the impact of the fourth break in DAX (15/01/2008), which corresponds to the global financial crisis, in which it shifts the shock spill-
overs parameter from DAX to FTSE (the α12

4 coefficient is significant at the 1% level). Also, volatility spillovers from DAX to FTSE are
shown to be shifted after the second (21/07/1997) and the third break (17/06/2003), corresponding to the Asian financial crisis
and the announcement of the €18bn German tax cuts plan, respectively (see the β12

2 and β12
3 coefficients in Table 6).

These results are consistent with the time varying conditional correlations. The average time varying conditional correlation for
the period before the break 15/01/2008 is 0.58 compared to the period after the break of 0.89. This also applies for the break
21/07/1997 (17/06/2003) with an average time varying correlation of 0.43 (0.52) for the period before the break and 0.75 (0.82)
for the period after the break. Overall these findings are indicative of the existence of contagion between DAX and FTSE during the
turbulent periods of the two financial crises.

Another way to look at the structure of the volatility spillovers between DAX and FTSE is to allow volatility (and shock) spillover
parameters to shift across two regimes of stock returns: positive (increases in the stock market) and negative (declines in the stock
market) returns. The results, displayed in Table 7, suggest that declines in eachmarket generate shock spillovers to the other (the co-
efficients α12

− and α21
− are positive and significant), whilst increases in eachmarket generate negative volatility spillovers to the other

(the coefficients β12
+ and β21

+ are negative and significant).

6.1.2. Example 2: NIKKEI–Hang Seng
Next, we consider the structure of the volatility spillovers between the returns on NIKKEI and Hang Seng to provide an ex-

ample about the dynamic linkages between the Asian financial markets. The estimated bivariate model, reported in Table 8, sug-
gests the existence of strong conditional heteroscedasticity. There is evidence of asymmetric effects of the two variables as
the ARCH and asymmetry parameters (the α and the γ coefficients) are positive and significant. Furthermore, the model with
constant conditional correlation is rejected according to Tse's (2000) test, hence the correlation between the two variables is
16 The results for the conventional UEDCC-GARCH (1, 1) process are available upon request. For this model the stationarity condition of Engle (2002) is satisfied over
time.



Fig. 2. Evolution of the dynamic conditional correlation between FTSE and DAX returns.

Fig. 3. Evolution of the dynamic conditional correlation between NIKKEI and Hang Seng (HS) returns.
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time varying. This is also confirmed by Fig. 3, which shows the evolution of the time varying correlation between the two
variables.

With regard to the linkages between the two variables, the results show the existence of shock spillovers from Hang Seng to
NIKKEI after the third (05/05/2009) and the fourth break (01/12/2009), which correspond to the different phases of the European
sovereign-debt crisis. Also, whilst Hang Seng generates negative volatility spillovers to NIKKEI after the third break in the former
(05/05/2009), there are positive volatility spillovers from NIKKEI to Hang Seng after the second break (04/01/2008) in the former,
which corresponds to the global financial crisis. These positive spillovers imply that – during this period – NIKKEI volatility innova-
tions had a more persistent effect on Hang Seng volatility than the own innovations of the Hang Seng (see Conrad and Weber,
2013). These findings indicate the superiority of the time varying spillover model over the conventional one. In contrast to the con-
ventional model, allowing for breaks shows that the two financial markets have been integrated during the global financial crisis.17

With regard to the time varying conditional correlations, the average time varying conditional correlation for the period before the
breaks 04/01/2008, 05/05/2009, and 01/12/2009 are respectively 0.40, 0.41, and 0.415 compared to the period after the breaks of 0.60,
0.58, and 0.585, respectively. These results are consistent with those of volatility spillovers in which these two markets have become
more dependent during the recent financial crisis.

Finally, allowing the volatility spillover structure to shift across two different regimes, that is, positive and negative returns, also
shows the existence of time varying volatility spillovers between the two variables. Specifically, the results, displayed in Table 9, sug-
gest that declines in NIKKEI generate shock spillovers to Hang Seng (the estimated α21

− coefficient is positive and significant), whilst
increases in NIKKEI generate negative volatility spillovers to Hang Seng (the estimated β21

+ coefficient is negative and significant).

7. Summary and conclusions

In this paper, we have introduced a platform to examine empirically the link between financial crises and the principal time series
properties of the underlying series. We have also adopted several models, both univariate and bivariate, to examine how the mean
and volatility dynamics including the volatility persistence and volatility spillover structure of stock market returns have changed
due to the recent financial crises and conditioned our analysis on non-parametrically identified breaks. Overall, our findings are con-
sistentwith the intuitively familiar albeit empirically hard-to-prove time varying nature of assetmarket linkages induced by econom-
ic events and suggest the existence of limited diversification opportunities for investors, especially during turbulent periods.

In particular, with respect to themean and volatility dynamics our findings suggest that in general the financial crises clearly affect
more the (un)conditional variances. Also, the results of the volatility persistence are clear-cut and suggest that they exhibit substantial
17 The results from the conventional bivariate UEDCC-AGARCH (1, 1) process indicate that there is no evidence of volatility spillovers between the two financial mar-
kets (they are available upon request). For this model the stationarity condition of Engle (2002) is fulfilled.
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Table 7
Coefficient estimates of bivariate UEDCC-AGARCH models allowing for different spillovers across positive and negative returns (FTSE–DAX).

Conditional variance equation

ω1 0.002a

(0.0005)
γ11 0.058a

(0.012)
αD 0.043a

(0.010)
ω2 0.004a

(0.001)
γ22 0.060a

(0.016)
βD 0.954a

(0.011)
α11 0.030a

(0.008)
α12
− 0.019a

(0.005)
α22 0.027a

(0.008)
β12
+ −0.014a

(0.004)
β11 0.926a

(0.012)
α21
− 0.042a

(0.015)
β22 0.928a

(0.012)
β21
+ −0.036a

(0.016)
LogL −5430.26
Q(5) 26.965

[0.136]
Q2(5) 9.533

(0.975)

Notes: Robust-standard errors are used in parentheses, 1 = FTSE, 2 = DAX. Q(5) and Q2(5) are the multivariate Hosking (1981) tests for serial correlation of five lags
on the standardized and squared standardized residuals, respectively (p-values reported in brackets). α12

−(β12
+) indicates the shock (volatility) spillovers from DAX to

FTSE generated by negative (positive) returns in DAX. α21
−(β21

+) reports shock (volatility) spillovers from FTSE to DAX generated by negative (positive) returns in
FTSE. Insignificant parameters are excluded.

a Indicates significance at the 1% level.

Table 8
Coefficient estimates of bivariate UEDCC-AGARCH models allowing for shifts in shock and volatility spillovers between NIKKEI and Hang Seng.

Conditional variance equation

ω1 0.003a

(0.0008)
γ11 0.094a

(0.012)
αD 0.015a

(0.005)
ω2 0.009a

(0.002)
γ22 0.081a

(0.021)
βD 0.982a

(0.006)
α11 0.024a

(0.004)
α12
3 0.050a

(0.017)
α22 0.050a

(0.007)
α12
4 0.025b

(0.011)
β11 0.920a

(0.007)
β12
3 − 0.046a

(0.015)
β22 0.885a

(0.015)
β21
2 0.016c

(0.009)
LogL − 9413.42 Tse's test: 10.10
Q(5) 22.122

[0.333]
Q2(5) 13.594

[0.850]

Notes: Robust-standard errors are used in parentheses, 1 = NIKKEI, 2 = Hang Seng. Q(5) and Q2(5) are the multivariate Hosking (1981) tests for serial correlation of
five lags on the standardized and squared standardized residuals, respectively (p-values are reported in brackets). α12

l (β12
l ) indicates shift in shock (volatility) spillovers

for the break l (see Table 1) fromHang Seng to NIKKEI, whilst β21
l reports the shift in volatility spillovers for the break l in the reverse direction. Insignificant parameters

are excluded. a, b and c indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 9
Coefficient estimates of bivariate UEDCC-AGARCH models allowing for different spillovers across positive and negative returns (NIKKEI–Hang Seng).

Conditional variance equation

ω1 0.003a

(0.0009)
β11 0.917a

(0.007)
α21
− 0.017a

(0.009)
ω2 0.008a

(0.002)
β22 0.897a

(0.013)
β21
+ −0.018a

(0.008)
α11 0.027a

(0.005)
γ11 0.099a

(0.015)
αD 0.016a

(0.007)
α22 0.052a

(0.005)
γ22 0.065a

(0.019)
βD 0.980a

(0.010)
LogL −9414.61
Q(5) 22.918

[0.292]
Q2(5) 9.534

[0.975]

Notes: Robust-standard errors are used in parentheses, 1 = NIKKEI, 2 = Hang Seng. Q(5) and Q2(5) are the multivariate Hosking (1981) tests for serial correlation of
five lags on the standardized and squared standardized residuals, respectively (p-values are reported in brackets). α21

−(β21
+) reports shock (volatility) spillovers from

NIKKEI to Hang Seng generated by negative (positive) returns in NIKKEI. Insignificant parameters are excluded.
a Indicates significance at the 1% level.
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time variation. This time variation applies to all stock market returns irrespective of whether we allow for structural changes or pos-
itive and negative changes in the underlying market. As far as the direction of this time variation during financial crises is concerned
the jury is still out, but there is little doubt that the financial crises are the primary driving force behind the profound changes in the
unconditional variances.

Finally, with respect to the existence of dynamic correlations aswell as time varying shock and volatility spillovers ourfindings are
also conclusive. Specifically, they suggest that in the cases we examine there is an increase in conditional correlations, occurring at
different phases of the various financial crises, hence providing evidence as to the existence of contagion during these periods.
Such afinding is comparable to those of other studies using only conditional correlation analysis to examine the existence of contagion
during the various financial crises. The results also suggest the existence of regime dependent volatility spillovers in all cases we ex-
amine by using two regimes of returns, positive andnegative. Given that this is to our knowledge the first attempt to take into account
the joint effect of dynamic correlations, volatility spillovers and structural breaks in the mean and/or volatility dynamics, these find-
ings are of particular interest to those seeking refuge from financial crises.

Appendix A

In this Appendixwewill prove Eq. (8) bymathematical induction. For k=1 the result is trivial since Eq. (8) reduces to Eq. (4). Ifwe
assume that Eq. (8) holds for k then it will be sufficient to prove that it holds for k+1aswell. Combining Eqs. (8) and (4, at time t− k)
yields
hgent;k ¼ ςt;kht−k þ c2 t−kþ 1ð Þςt;k−1ht−k−1 þ
Xk−1

r¼0

ςt;rω t−rð Þ þ
Xk−1

r¼0

ςt;rut−1−r⇒

hgent;kþ1 ¼ ςt;k ω t−kð Þ þ c1 t−kð Þht−k−1 þ c2 t−kð Þht−k−2 þ ut−1−k½ � þ c2 t−kþ 1ð Þςt;k−1ht−k−1

þ
Xk−1

r¼0

ςt;rω t−rð Þ þ
Xk−1

r¼0

ςt;rut−1−r

¼ c1 t−kð Þςt;k þ c2 t−kþ 1ð Þςt;k−1

h i
ht−k−1 þ c2 t−kð Þςt;kht−k−2

þ
Xk−1

r¼0

ςt;rω t−rð Þ þ ςt;kω t−kð Þ þ
Xk−1

r¼0

ςt;rut−1−r þ ςt;kut−1−k:

ðA:1Þ
Expanding the determinant ςt,k + 1 in Eq. (6) along the first column we have: ςt,k + 1 = c1(t − k)ςt,k + c2(t − k + 1)ςt,k − 1.
Substituting this expression into Eq. (A.1) gives
hgent;kþ1 ¼ ςt;kþ1ht−k−1 þ c2 t−kð Þςt;kht−k−2 þ
Xk
r¼0

ςt;rω t−rð Þ þ
Xk
r¼0

ςt;rut−1−r;
which is Eq. (8), at time t, when the prediction horizon is k + 1.■
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