
UNIQUE NETWORKS: A METHOD TO IDENTIFY

DISEASE-SPECIFIC REGULATORY NETWORKS FROM

MICROARRAY DATA

A thesis submitted for the degree of Doctor of Philosophy

by

Valeria Bo

Department of Computer Science

December 2014



Abstract

The survival of any organism is determined by the mechanisms triggered in response to the inputs

received. Underlying mechanisms are described by graphical networks that can be inferred from

different types of data such as microarrays. Deriving robust and reliable networks can be

complicated due to the microarray structure of the data characterized by a discrepancy between

the number of genes and samples of several orders of magnitude, bias and noise. Researchers

overcome this problem by integrating independent data together and deriving the common

mechanisms through consensus network analysis.

Different conditions generate different inputs to the organism which reacts triggering different

mechanisms with similarities and differences. A lot of effort has been spent into identifying

the commonalities under different conditions. Highlighting similarities may overshadow the

differences which often identify the main characteristics of the triggered mechanisms. In this

thesis we introduce the concept of study-specific mechanism. We develop a pipeline to semi-

automatically identify study-specific networks called unique-networks through a combination of

consensus approach, graphical similarities and network analysis.

The main pipeline called UNIP (Unique Networks Identification Pipeline) takes a set of

independent studies, builds gene regulatory networks for each of them, calculates an adapta-

tion of the sensitivity measure based on the networks graphical similarities, applies clustering

to group the studies who generate the most similar networks into study-clusters and derives

the consensus networks. Once each study-cluster is associated with a consensus-network, we

identify the links that appear only in the consensus network under consideration but not in

the others (unique-connections). Considering the genes involved in the unique-connections we

build Bayesian networks to derive the unique-networks. Finally, we exploit the inference tool to

calculate each gene prediction-accuracy across all studies to further refine the unique-networks.

Biological validation through different software and the literature are explored to validate our

method.

UNIP is first applied to a set of synthetic data perturbed with different levels of noise to study
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the performance and verify its reliability. Then, wheat under stress conditions and different

types of cancer are explored. Finally, we develop a user-friendly interface to combine the set of

studies by using AND and NOT logic operators.

Based on the findings, UNIP is a robust and reliable method to analyse large sets of transcrip-

tomic data. It easily detects the main complex relationships between transcriptional expression

of genes specific for different conditions and also highlights structures and nodes that could be

potential targets for further research.
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Glossary

� Consensus-study network or Consensus network: is the consensus network built

for a study-cluster.

� Sample: indicates the measurements of all the genes when the organism is subjected to

an experimental condition.

� Study: is the collection of samples measured under the same experimental conditions.

� Study-cluster: is the group of studies that present a similar network structure and

therefore are cluster together by k-means algorithm.

� Unique-connections: list of edges that exist in the consensus-study network in consid-

eration, but not in the other consensus-study networks.

� Unique-genes: list of genes involved in one unique-network but not in the others.

� Unique-network: given the consensus networks for all study-clusters, we first identify

the unique-connections and considering only the genes involved in the unique-connections

we build the Bayesian networks for each study-cluster. It represents the sub-network(s)

that is specific for that study-cluster and does not appear in any of the others.
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Chapter 1

Introduction

1.1 Motivation

Organisms of any level of complexity (from bacteria to mammalian) developed during evolution,

a large set of internal mechanisms either for the normal functioning or in response to external

or internal stimuli that differ from the normal activity. While many mechanisms, necessary for

survival, carry on mostly unchanged under all conditions the organism is subjected to (e.g. cell

metabolism), others are triggered or modified only when some event external or internal to the

organism (environmental changes, stress, cancer, etc.) happens. Organisms’ mechanisms, in

general, involve large numbers of interactions between thousands of genes resulting in highly

complex networks.

For the past decade bioinformaticians have focused their attention to discover the regulatory

mechanisms that govern organisms. Despite the giant steps in the area still a lot of knowledge

is hidden in the data waiting to be revealed.

Thanks to the constant improving of techniques, machine procedures and data storage more and

more data are now publicly available either as microarray or as Next Generation Sequencing

(NGS).

While next generation sequencing seems likely to completely replace microarrays in the near

future, the large amount of these data available and its precious source of information is not to

be wasted.

Along with the large increase of data, new computational tools have been developed to decrypt

the information hidden in them. At present, a popular area of research is the understanding of

the mechanisms underlying an organism generally achieved by the modelling of Gene Regulatory

Networks (GRNs).
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GRNs represent the underlying mechanisms of gene regulation in various cellular processes and

describe how genes influence the activity of other genes. This is necessary to comprehend cells

activity and furthermore to explore the functioning of diseases. An altered condition, in fact, can

be detected from a change in the ordinary mechanism pattern. Building GRNs helps biologists

in better understanding genetic conditions and identifying genes of particular interest for further

experiments.

A simple example of a generic GRN is shown in Figure 1.1 (Steele 2010). The network clearly

shows that the expression of Gene1 infuences the expression of both Gene2 and Gene3 by

producing the transcription factor proteins that activate their expression. Then, the expression

of Gene2 and Gene3 infuence the expression of Gene4 in the same way.

Figure 1.1: A simple gene regulatory network model (Steele 2010)

Publicly available databases contain an enormous amount of gene expression data for numer-

ous organisms and across various experimental conditions waiting to be explored (Rustici et al.

2013, Geer et al. 2009). Genes expression measurements across one or a set of independent stud-

ies provide information about the underlying regulatory relationships between genes. Several

methods have been developed over the years to infer GRNs from microarray data. Clustering

techniques allows to group co-regulated genes to use as a basis for learning GRNs models. How-

ever, simple clusters are not able to reveal the more complex structure of the gene regulation

process. Therefore, a group of more complex analysis techniques for reverse-engineering GRN

models (build the model from the data) have been implemented for the task. This thesis focuses

on two technique in particular, Glasso (Friedman et al. 2008) and Bayesian networks (Nielsen

& Jensen 2009, Friedman et al. 2000).

Glasso goes beyond the simple pairwise correlations between genes. It estimates sparse graphs

by deriving the inverse covariance matrix using the lasso penalty to make it as sparse as possi-

ble.
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Bayesian networks are a popular and successful method, able to represent the network both

qualitatively (with a network graph) and quantitatively (probability distributions that quantify

the strength of influences and dependencies between nodes/variables in the network graph) and

thus are relatively easy to interpret by non-technical people.

In the past decade, researchers have been focusing on what regulatory mechanisms different

experimental conditions have in common i.e. given a set of different type of tumours and their

GRN models researchers identify what are the gene regulatory mechanisms that the set of tu-

mours have in common. This represents a valuable information when it comes to understanding

tumours or other diseases. In fact, tumours affect different organs and have different levels of

aggressiveness, but they still belong to the same generic class and therefore must have some

commonalities that show in the GRNs. On the other hand highlighting the commonalities often

overshadows the differences, what makes each disease unique and easier to detect and therefore

to cure it. Hence, in this research we aim to discover the differences between set of studies. We

develop a pipeline called UNIP (Unique Network Identification Pipeline) to semi-automatically

identify mechanisms that are specific/unique for one or a set of studies.

The main aim of the research presented in here is to identify the study-specific mechanisms

and the genes involved in them for a given set of conditions.

Previous researches in the literature focus on integrating data from a set of independent studies

to infer more robust models and detect mechanisms that are common to multiple experimental

conditions. In this work instead, we recognize the importance of shared mechanisms but we

realise that identify what is specific of each experimental condition leads to a better a quicker

diagnostic as well as to a cure. Hence, we introduce and develop the concept of unique-network

through the implementation of a pipeline to semi-automatically identify study specific networks

and genes.

The aim of the research presented in this thesis is the integration of a set of independent

studies on the same organism to discover study-specific gene regulatory networks. Using a com-

bination of cluster analysis, graphical similarities and prediction accuracy our method identifies

reliable and robust (sub)networks unique for one or a set of conditions.

In this introductory chapter we fully explain the motivations, aims, and contributions of this

thesis.
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1.2 Thesis contributions

The main contributions of this thesis are:

� A full formal definition of unique-networks. First, the generic concept of uniqueness

and its importance are explained, then a formal mathematical definition is derived in terms

of graphical structure.

� Development of an algorithm to generate unique-networks. A set of algorithms

are combined in a specific and justified sequence to read multiple microarray files and

identify the related unique-networks.

� Implementation of a pipeline for the discovery of study-specific gene regula-

tory networks. We implement a sequence of steps involving gene selection, clustering

technique and graph similarity measure.

� Exploration of the performances of the pipeline on a synthetic dataset. In or-

der to analyse the robustness and reliability of the unique network identification pipeline

developed in this work it has been considered necessary to first evaluate the pipeline per-

formance using a dataset originated from a well-defined and synthetically created network.

� Validation of the pipeline on multiple real datasets. Application of the pipeline to

a combination of wheat and cancer studies.

� Identification of unique-genes. Following the same line of thought that brought us

to explore unique-networks we further develop a method to detect those genes involved

uniquely in the condition under study.

� Unique-genes validation using statistical score. Measurement of the unique-genes

significance trough the use of a statistical score.

� Creation of a Graphical User Interface to perform different combination of

studies using AND and NOT logic operators. Finally, a basic application has been

developed to ease the use of part of the process described by non-technical users.
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1.3 Thesis outline

This thesis is organized as follows.

Chapter 2 explores the state of the literature and the gaps to fill. It first defines the concept of

gene expression, then it explains the different microarray technologies used to record these data

and the techniques to analyse it. It moves then to a comprehensive analysis of the algorithms

developed in the literature to correctly process these data and reveal the information hidden in

it.

Chapter 3 explores the state-of-the-art concepts used for this work. It focuses on standard tech-

niques such as co-expression and clustering and later moves to investigate the most reliable and

robust methods to build Gene Regulatory Networks (GRNs), some of which are later employed

in this thesis.

Chapter 4 introduces the concept of unique-networks and describes, in details, the pipeline which

is the primary focus of this thesis and then studies its performances when applied to a set of

synthetic independent datasets perturbed with different levels of noise.

Chapter 5 illustrates the changes implemented to adapt the main pipeline to real world problems

and explores the results using real datasets obtained under different conditions in wheat and

Fusarium.

Chapter 6 describes how we apply the pipeline to another set of real data focusing on four dif-

ferent studies of cancer and develop a user-friendly interface to combine the studies using AND

and NOT logic operators. Also, it explores the new concept of unique-genes and a method to

integrate historical knowledge to detect the most informative uniquely-involved genes.

Finally, Chapter 7 summarizes our findings, identifies advantages and disadvantages and explores

future improvements and developments.
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Chapter 2

Background

This chapter reports the state of the literature regarding gene expression analysis. The first

part, describes the different microarray techniques employed to collect gene expression data

and explores the state-of-the-art algorithms used to read it. This is to gain an insight into the

advantages and disadvantages of these techniques.

The second part of this chapter highlights the problems related to the analysis of gene expression

and explores past and present studies that use data mining and machine learning techniques to

get a better understanding of the gene regulatory mechanism. The main focus remains on the

analysis using Gene Regulatory Networks (GRNs).

This chapter identifies gaps in the literature that we fill with this work.

2.1 Gene Expression Analysis

In 1958 F. Crick enunciated what is now called the ‘central dogma’ of gene expression. This

theorem explains how the information included in the nucleotide sequence of DNA (genes)

inside a cell are translated into polypeptide chains (proteins). It determines the structure

and capabilities of cells and organisms (Hartl & Jones 2009) and it is vital for their survival.

The ‘central dogma’ is an extremely sophisticated mechanism involving several intricate steps.

Although, for this thesis purposes, a simple and schematic view of the entire process is explained

and shown in Figure 2.1.

The first step is called transcription and includes two phases, both happening inside the nu-

cleus of the cell. To start with, the RNA-polymerase uses the nucleotide sequence of a segment

of a single strand DNA as a template to create a complementary RNA strand. Immediately

afterwards the RNA strand goes through some chemical modifications that return the messenger
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RNA (mRNA). The next phase, called translation resides within a specialized organelle - the

ribosome. In eukaryotes, mRNA molecules leave the nucleus and travel to the cytoplasm, where

the ribosomes are, while in prokaryotic organisms this is not necessary. Through the ribosome,

the nucleotide sequence of the mRNA is translated into a specific sequence of amino acids which

generates a polypetide chain (protein).

Figure 2.1: The ‘central dogma’ of gene expression, enunciated by F. Crick in 1958, summarized

in its essential steps. The process involves a transcription phase, which transcribe one single

DNA strand into messanger RNA, and a translation phase, which translate the mRNA strand

into a polypeptide chain. This image was taken from Steiner (2014).

This whole process is the phenotypic manifestation of one single or multiple genes and is

also called gene expression.

Regulation of gene expression proved to be an essential process for the development of cells and

organisms, therefore, it remains a central topic of research.

Gene expression activity, measured in terms of gene expression level (how much a gene is ex-

pressed), is regulated at the transcription step through either signals internal to the cell, ac-

cording to cell type or stage in the cell cycle, or in response to external stimuli (Hartl & Jones

7



Chapter 2. Background

2009). To explore gene expression activity, the cell or organism needs to be first subjected to

the experimental condition of interest and only then gene’s expression level is measured. Each

experimental condition is repeated multiple times to generate a collection of multiple samples

related to each gene called gene expression profile. Two techniques known asMicroarray (DeRisi

et al. 1997) and Next Generation Sequencing (Shendure & Ji 2008) can be used to measure gene

expression activity. Next Generation Sequencing is newer (introduced in the early/mid-2000s by

the 454 Corporation) and, in certain cases, more appropriate (Morozova & Marra 2008). On the

other hand, Microarray is less expensive and easier to analyse, it requires less laboratory anal-

ysis and it produces less data to process. Furthermore, researchers still feel more comfortable

using microarray given the familiarity they have with it. Last but not least, while next genera-

tion sequencing will likely soon replace microarrays for expression analysis, the large amount of

unexplored microarray data produced in the last two decades will be useful to researchers for

many years to come. Considering all these factors, in this work we focus on using data obtained

from microarray techniques. However the method proposed in here can be adapted, with some

preprocessing steps, to the use of Next Generation Sequencing data.

2.2 Microarrays

Microarray analysis is a practical and time-saving laboratory tool that allows biologists to collect

thousands of individual gene sequences in parallel to study gene expression and gene variation

in any given cell type, time, set of conditions or treatments (Scitable 2014).

It was used for the first time to study the yeast genome in DeRisi et al. (1997), for two purposes:

1. investigate the temporal program of gene expression accompanying the metabolic shift

from fermentation to respiration;

2. identify genes whose expression was affected by deletion of the transcriptional co-repressor

TUP1 or over-expression of the transcriptional activator YAP1.

The statement ‘Gene A is expressed’ indicates that the segment of DNA encoding gene A is

identified by a specific protein, called a transcription factor (TF) which triggers the transcription

process (see Figure 2.1) and transcribe gene A into the corresponding mRNA strand, called

transcript. The array of mRNA transcripts produced in a particular cell is called transcriptome.

While the genome (the array of DNAs) is stable, the transcriptome is more sensitive and actively

changes depending on many factors including cell’s cycle stage and environmental conditions.

Microarray, then, analyses changes in the transcriptome by measuring the abundance of mRNA

molecules (expression level) present in the cells sample taken at that time. To do this, it
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hybridises known DNA molecules (genes) with the complementary mRNA sequence extracted

from the cell.

There are different types of microarrays that measure the gene expression levels in different

ways, which we refer to as different platforms. The most common is the two-channel hybridised

array which compares the gene expression levels in the same cell but in two different samples

collected under different conditions. Usually one is the control and the other is the sample under

specific conditions, but it can also represent the comparison of two different samples (sample A

and sample B).

Figure 2.2: The figure shows a graphical representation of the steps required for the microarray

technique. Image taken from Grigoryev (2011).

As shown in Figure 2.2, DNA molecules are printed in a glass or polymer microscope slide

called DNA array, DNA chip or gene chip. Each attached molecule, referred to as spot or

feature, encodes one single gene. A single DNA array may contain spots in the order of tens of

thousands.

mRNA (transcriptome) is extracted from both samples, converted into cDNA and labelled with

a different fluorescent dye based on which sample it comes from, on the same DNA array.

Usually it is used red for one sample and green for the other. mRNA sample will hybridize to

the complementary DNA segment (cDNA) previously attached to the spots on the array. Then,

samples are washed away to allow only those mRNA segments that strongly paired strands will

have enough hybridization strength to remain attached to the DNA array. After the washing-off

a laser is used to determine the amount of fluorescence emitted by the dye-labelled mRNA at

each spot. The total strength of the signal depends on the number of sample sequences bound
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to the sequences in the spot. In the case of the two-channels hybridised array the fluorescence is

measured twice (one for each sample). The emitted colour will be green if sample A is present,

red if sample B is, yellow if both are, and black (no fluorescence) if neither of them are present.

The identity of the gene is known by its position on the array.

Different microarray platforms use the same principle of complementary DNA / mRNA but the

techniques to reveal the expression level may vary.

In single-channel arrays (van Bakel & Holstege 2007) (e.g. Affymetrix ‘GeneChip’ and Illu-

mina ‘Bead Chip’) each sample is collected and labelled with only one colour on separate DNA

arrays, consequently the value measured is the absolute expression value. Comparisons between

different experimental conditions are done similarly as in the two-channel by comparing the

signals obtained from each microarray. Clearly then, it is necessary to collect multiple samples

from different experiments to compare the expression levels under different conditions. The

single channel array, obviously, requires as many hybridizations as many samples we need to

compare, but an anomalous sample does not affect the other samples. Also, it allows an easier

comparison of DNA arrays from different studies as long as the batch effect (technical variation)

is well handled. Therefore, when, as in our case, different experimental studies are compared,

the single-channel array is preferred.

Whatever technique is used (two or one -channel), the following steps are carried out in the

image processing: the result of hybridization is a DNA array (or multiple DNA arrays) that

needs to be read. Most microarray scanners provide a software which will scan the array and

extract the fluorescence intensities for each spot in it (Causton et al. 2009). First, to identify

the spots on the array, avoiding artefacts or contaminants on the slides (e.g. scratches or dust),

the software applies a process called gridding. The gridding requires the user to identify the

approximate locations of subgrids which are used as reference points to place the grid. Then, to

improve the grid placement, the centre-of-mass for each spot is calculated and the grid position

arranged.

After the spot locations have been identified, the expression levels need to be inferred based

on the spot fuorescence intensities (Quackenbush 2001). The built-in software usually returns

a set of statistics that represent the spot such as mean, median and intensity of the spot. In

the case of one-channel array, a common measure, called background-subtracted median, that

consists of subtracting the median of the spot intensity with the median of the background is

returned.

In the two-channel array, instead, we want to capture the relative change in a gene between

two conditions. Therefore, the ratio of the intensity in the first sample over the intensity in the

second sample is calculated. The ratio is a straightforward way to measure changes in expression,
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as those genes that do not have a change in their expression between the two conditions will

have a ratio of 1. However, if a gene has a two-fold increase in expression in the query sample

compared to the reference sample, the expression ratio will be 2. But, if a gene has a two-fold

decrease in expression, the expression ratio will be 0.5. Then a logarithmic transformation at

base 2 is applied to reflect the right scale. These measurements are called intensity log ratios or

expression levels.

Finally, microarray data needs to be adjusted for systematic variation (variation in the

technology) so that measurements from different samples can be directly compared. The most

common and simple method is to apply the scale normalisation, where the data range is adjusted

by a constant factor across all spots. This is a simple scaling procedure that consists of subtract

a normalization factor L from all the log ratio data

M ′
i = Mi − L

where Mi is the log ratio of the ith gene, and M ′
i is the normalised log ratio. Other more com-

plex methods for normalisation can be applied such as linear regression, lowess normalization

(logically weighted linear regression) (Cleveland 1979), loess normalization (a generalization of

lowess), and so on.

In the work presented in this thesis, microarray datasets from different studies are collected

from online databases (e.g. Affymetrix). These datasets have been applied a preprocessing

step consisting of Robust Multichip Average method (Irizarry et al. 2003) followed by redun-

dancy adjusted Pearson correlation coefficient calculated according to the method described in

Obayashi et al. (2011).

Apart from the many qualities, microarrays also have some important limitations.

� Microarray expression datasets often come from different microarray platforms which mea-

surement units may vary inducing bias (Shi et al. 2006, Tan et al. 2003);

� Studies may come from different laboratories where data are collected with different mea-

surement biases based on the different experimental conditions. Thus, variations across

samples and different experiments induce biological and experimental noise respectively.

The lack of reproducibility leads to a lack of reliability;

� Microarray datasets are composed of a very large amount of genes (in the order of thou-

sands) and very few samples (in the order of tens or hundreds). This is usually refered to

as curse of dimensionality (Bellman et al. 1961, Somorjai et al. 2003) which makes it very

difficult to identify reliable regulatory interactions.
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In 2005 a new group of techniques have been developed (Margulies et al. 2005, Shendure et al.

2005) called Next Generation Sequencing (NGS) which proved to be more accurate. Although,

microarrays still remain, in most cases, researchers’ preference due to a less complicated sample

preparation, minor costs especially for large number of samples and greater ease of use and

analysis. For these reasons in this work we focus on using datasets derived from microarray

platforms.

2.3 Analysis of microarray data

Once the microarray experiments have been collected and the results have been normalized, the

next step is to explore the expression data to discover interesting patterns and relationships

amongst genes and between experimental conditions (studies). For example, genes with similar

behaviour or genes with interesting expression patterns (e.g. they are active in certain studies

but not in others). The Microarray process is generally repeated several times, under the same

experimental condition, to keep experimental bias under control. Each repetition is called sam-

ple and all the samples obtained under the same condition constitute a study. The microarray

results are easily represented by a matrix containing the list of genes as rows and the samples

as columns.

To perform useful and robust analysis it is often necessary to integrate several experimental con-

ditions (study) to build the gene expression matrix, where each entry Mij is the expression level

(intensity log ratio), for gene i in the jth array (sample). The columns of the matrix represent

different samples and different groups of samples represent distinct experimental conditions.

Rows of the matrix represent genes expression profiles which show how the gene’s expression

changes across the studies. In some cases, if the samples are measured over time this shows how

a gene’s expression changes over time under a particular environmental condition. Otherwise,

samples are simply split into different classes (e.g. healthy and diseased) and show the difference

between the gene expression profiles across the different classes.

As explained in Section 2.2, microarrays are the major source of data for collecting gene

expression levels in an organism, in certain conditions and at a specific time. The popularity

of this technique is due to its ability to describe the expression of thousands of genes measured

simultaneously under the experimental condition under analysis. The number of genes is ex-

ceptionally high (in the order of thousands) but the number of samples is very low with tens or

at best hundreds of them. Depending on the complexity of the query mechanism the amount

of samples are, very often, not enough to robustly learn a network model of the underlying

behaviour. This computational issue is well known as the curse of dimensionality. Merging
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together a broader collection of data has the potential to reduce the dimensionality gap between

samples and variables and to produce gene regulatory models that are more robust and have

greater confidence. Therefore, researchers increase the number of samples by bringing multiple

studies together. However, in such situations bias and inter-platforms variabilities are likely to

lead to spurious dependencies, resulting in models that significantly overfit the data.

Extensive effort has been directed toward assessing the combination of differential expres-

sion measurements across different platforms. Steele & Tucker (2008) bring together multiple

datasets from different platforms to learn from and implement different methods to aggregate

the knowledge between the datasets. Specifically, the authors developed two main approaches

based on at which stage of the modelling process the aggregation is applied. In Pre-learning

aggregation, first, data is scale normalized to allow combination and then a model is learnt

from the combined dataset. The other method, instead, is called Post-learning and it splits in

two different algorithms. Meta-Analysis learns a model from each dataset and then combines

the models through statistical confidences attached to networks edges. Consensus Bayesian

Networks identify consensus network features across all datasets. Despite the computational

simplicity of the pre-learning aggregation method, simple normalization is not suitable for mi-

croarray because of the typical high level of noise caused by the use of different platforms. On

the other hand, while Meta-analysis generalizes very well, Consensus Bayesian Network is too

sensitive to poorly performing input networks.

In general two main techniques exist: meta-analysis and cross-platform. While cross-platform

involves a direct comparison between expression measurements obtained from different plat-

forms, meta-analysis combines the results of intra-platform comparisons at a higher level. Meta-

analysis techniques are useful tools, but they can only combine the results of studies that have

tested the same hypothesis or undergone the same experimental condition, and cannot easily be

applied to investigate new hypotheses from existing data. An extensive and detailed comparison

of the main available techniques can be found in Rudy & Valafar (2011). The authors compare

cross-platform normalization methods based on inter-platform concordance and on the consis-

tency of gene lists obtained with transformed data. To measure the effectiveness of each method,

they use adapted statistics based on scatter and ROC (Fawcett 2006) -like plots. Given the com-

plexity of the problem, in this research only microarray data produced by the same platform

are integrated.
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2.4 Gene selection

Returning to the microarray dataset typical structure, the large number of features/genes ex-

pressed (in the order of thousands) combined with only few samples (in the order of tens)

makes the analysis and comprehension of each gene’s function(s) and mechanism(s) difficult

and confusing. Furthermore, eliminating irrelevant or redundant genes will certainly improve

the accuracy of classification or prediction (Tabus & Astola 2005). This forces researchers to

reduce the number of variables in consideration using dimensionality reduction techniques. The

overall goals of variable/gene selection (Saeys et al. 2007) are to:

� avoid overfitting (poor predictive performance due to overly complex model of the data),

� render following processing faster and computationally easier,

� help in understanding the mechanisms underlying the data.

Dimensionality reduction is a broad area of research with many applications. It is possible to

distinguish two main categories:

� Feature extraction

� Feature selection

In feature extraction the data represented in a high dimensional space is transformed into a

space of fewer dimensions that reproduce most of the variability of the original data set. One

famous example of this technique is Principal Component Analysis (PCA)(Pearson 1901) which

uses an orthogonal transformation to convert a set of correlated variables into a set of values of

linearly uncorrelated variables called principal components.

Feature selection, instead, aims to select a subset of variables from the original dataset to

investigate further. This category allows the reduction of the dimensionality without corrupting

the original representation of the variables. It preserves the original structure of the data

and simplifies the interpretability. Various approaches have also been developed according to

unsupervised and supervised learning within the classification context. The methods can be

organized in three categories:

� Filter techniques : look at the intrinsic properties of the data, calculates a feature relevance

score and discard the features with a low score. Each variable is considered separately;

� Wrapper methods : include the model hypothesis search within the feature search. Several

subsets of features are generated and each evaluated by training and testing a specific

classification model;
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� Embedded techniques : the search method is built into the classifier and can be seen as a

search in the combined space of feature subsets and hypotheses.

A very large number of all these techniques have been developed in the last few decades re-

turning a large pool of choices (Saeys et al. 2007, Moreau & Tranchevent 2012). The simplest

techniques, to discover differentially expressed genes, are parametric methods based on ANOVA,

a modification of the t-test (Fox & Dimmic 2006) and Bayesian frameworks (Baldi & Long 2001)

or non-parametric methods (model free) such as Wilcoxon rank-sum test (Thomas et al. 2001)

and between-within classes sum of squares (Dudoit et al. 2002).

Data analysis, especially in the case of big data, incurs two types of error: type I and type

II. Type I error commonly associated with the number of false positives indicates that a given

condition is present when it is not (a gene is found relevant but it is not). Type II error, on the

other hand, is associated with false negatives and indicates that a given condition is not present

when instead, it is (a discarded gene that is actually relevant). These two errors are extremely

dangerous and can lead to erroneous results and discoveries. Gene selection algorithms want to

minimize the number of false positives (type I error) and of false negatives (type II error). Both

are explored in Dudoit et al. (2003). The chance of committing some Type I errors increases

with the number of hypotheses tested. For example, a p-value of 0.01 for one gene among a list

of several thousands is no longer a significant finding, in fact it is very likely that even such a

small p-value will occur by chance under the null hypothesis when considering such a large set

of genes as in microarray datasets. A popular solution to type I error is to keep under control

the false discovery rate (FDR) (Benjamini & Hochberg 1995). Four FDR controlling procedures

are described in Reiner et al. (2003).

More methods for gene selection and extraction are available on Bioconductor (Gentleman

et al. 2004). Well-known algorithms are MMD (Weiliang et al. 2008) which proposes a Marginal

Mixture Model that directly models the marginal distribution of transformed gene profiles in

the GeneSelectMMD package (Morrow et al. 2012) or in the GeneSelector package (Slawski

& Boulesteix 2009) which generates a list of ranked genes (based on a choice of 14 different

methods) and then derives the final ranking by examining perturbed versions of the original

data set, e.g. by leaving samples, swapping class labels, generating bootstrap replicates or

adding noise. One popular technique is to apply a modification of Principal Component Analysis

(PCA) as in Wang & Gehan (2005), where they explore a method in which they apply the PCA

to determine the essential dimensionality and then returns the genes in the dataset that are

the closest to the essential dimensionalities (principal components). Last but not least another

increasingly popular technique is Gene Set Enrichment Analysis (GSEA) which focuses on gene
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set. That is, groups of genes that share common biological function, chromosomal location or

regulation (Subramanian et al. 2005) followed by Gene Set Variation Analysis a GSE method

that estimates variation of pathway activity over a sample population in an unsupervised manner

(Hänzelmann et al. 2013).

When it comes to selecting genes something that we want to do is avoid repetition, meaning

selecting genes with the same or similar functions. Genes with similar functions still can behave

and respond differently based on the experimental condition they are subjected to but they

confound when it is necessary to reduce the dimensionality (number of variables). One idea

is to identify groups of genes rather than single genes using clustering techniques and use one

representative of the group as the selected gene. Most of the analyses commonly attempted are

based on clustering algorithms which locate groups of genes with similar expression patterns

over a set of experiments. These approaches are based on the well known concept of guilt-

by-association (GBA) (Altshuler et al. 2000, Oliver 2000) which is a statistical rule of thumb

that states that we can reliably predict the function of a gene or protein if its correlated genes

or other proteins connected through protein-protein interaction share similar functions. Such

analysis has proven to be useful in discovering genes that are co-regulated and/or have similar

functions. Peer et al. (2001) focus on genome-wide expression profile of genetic mutant, provid-

ing a wide variety of measurements of cellular responses to perturbations, and uses clustering to

group genes of similar functions. Furthermore, they discover inter-cluster interactions between

weakly correlated genes and uncover finer intra-cluster structure among correlated genes. This

procedure allows the identification of highly promising general hypothesis useful to biologists

although it cannot recover all interactions. Despite the expectation towards this concept Gillis

& Pavlidis (2012) disapprove the use of GBA for function prediction. The authors specifically

explore the application of the GBA concept on gene networks. Given that networks commonly

include a substantial number of false positive connections, it is a very serious problem to gen-

eralize the use of Gene Ontology (GO) terms (Ashburner et al. 2000) combined with the GBA

principle to predict new genes’ functions.

2.5 Gene Regulatory Networks

Gene expression array data can be used to:

1. Measure if one gene expresses differently under different conditions (control vs. treatment

conditions);

2. Explore common functionalities, interactions, etc. between clusters of genes;
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3. Infer the underlying regulatory regions and gene/protein networks (gene regulatory net-

works) responsible for an observed behaviour (Baldi & Long 2001).

Since the purpose of this thesis is to exploit gene expression data to infer study-specific

regulatory relationships among sets of genes, we focus now on the description of gene regulatory

networks, what is special about them and why they are so difficult to infer.

A Gene Regulatory Network (GRN) represents the collection of DNA segments in the cell and

their interactions, which controls the abundance of gene-product (Karlebach & Shamir 2008).

The outcome of gene expression is the production of proteins which can be categorized into

structural proteins, enzymes and transcription factors (TFs). Structural proteins confer rigidity

and flexibility to the different biological components, enzymes catalyze chemical reactions and

TFs, as the name says, are factors that induce the transcription stage. These proteins are

particularly interesting, in fact, they are produced by the gene expression but they also induce

the process or inhibit it by binding to the promoter region at the start of the DNA sequence

of that gene. Therefore, regulatory interaction framework goes both direction from genes to

proteins and from proteins to genes. This interaction can be even more complex if the TF

activates or represses the expression of the same gene/s from which it is produced.

Since a GRN is the representation of how genes interact together and TFs are regulation

process inductors/inhibitors and genes products, we can represent how genes interact together

through gene expression and the regulation process. For example, if gene B is activated by a

protein (TF) that is produced by the activation of gene A, we can easily say that A influences

B and we can represent it as A → B. Because TFs can regulate the expression of more than one

gene and each gene can be regulated by more than one TF in combination or under different

conditions, we can say that in regulatory networks each gene may interact with both TFs and

produced genes.

Building GRN models to gain insight into gene regulation is an increasingly popular topic of

research. Understanding the mechanism underlying gene expression helps biologists for multiple

reasons:

1. Identify possible disruptions of gene expression in some cell,

2. Investigate gene regulation interactions in a much cheaper and time-saving technique than

wet lab experiments,

3. Identify pathways that can be tested experimentally and which would have not been

considered otherwise.
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Using data to learn a model of a gene regulatory network is called reverse engineering. Sev-

eral techniques have been developed over the years to derive GRNs from data through reverse

engineering. Each resulting model with its pros and cons highlight different aspects of the mech-

anism under study. Among the many developed techniques the most popular are described in

the following section.

2.5.1 Boolean Networks

Kauffman (1969) introduce the concept of Boolean networks. These networks are system of

binary variables, each with two possible states of activity (‘on’ and ‘off’) and with a boolean

function which determines the topology (connectivity) of the set of variables (nodes in the net-

work).

Considering the system as a discrete time series, the state of the network at time t + 1 is de-

termined by each variable state at time t according to the corresponding boolean switching

function. So, boolean networks are a particular kind of sequential dynamical systems, where

time and states are discrete.

These networks are related to cellular automata (Wolfram 1983) which are defined with an ho-

mogenous topology, i.e. a single line of nodes, a square or hexagonal grid of nodes or an even

higher-dimensional structure, with the difference that each variable (node) may have more than

two possible states (and hence not be boolean).

Dynamical systems contain thousands or millions of variables each in a different state. Many

cellular and biochemical process exhibit a sigmoidal (S-shaped) response which are often prop-

erly idealized by ‘on-off’ systems. The simplification to an ‘on-off’ switching system allows

researchers to study such enormously complex systems whose problems are often intractable

using continuous nonlinear differential equations (Kauffman 1993).

2.5.2 Correlation Networks

Correlation networks is a broad category that goes from the simple calculation of the correlation

coefficient between variables to the well known Weighted Gene Co-expression Network Analysis

(WGCNA) (Zhang et al. 2005). This is a data mining method, based on pairwise correlations

between variables. It works very well with high dimensional data and has led to broad appli-

cation of this technique to study biological networks. It allows the identification of modules

(clusters), intramodular hubs and nodes belonging to that module, the relationships between

18



Chapter 2. Background

co-expression modules, and the comparison of the topology of different networks. WGCNA also

works as a data reduction technique, as a clustering method (fuzzy clustering), as a feature

selection method, as a framework for integrating complementary (genomic) data , and as a data

exploratory technique. WGCNA incorporates traditional data exploratory techniques, but its

intuitive language and analysis framework makes it more popular than standard analysis tech-

nique. Since it uses network methodology and can integrate different genomic data sets, it is

used as a systems biology (or genetic) data analysis method. Furthermore, selecting intramod-

ular hubs in consensus modules, makes WGCNA a good meta analysis techniques (a class of

method to contrast and combine results from different studies to identify patterns among study

results, differences, or other interesting relationships that may come to light in the context of

multiple studies). A full description of WGCNA method is given in Chapter 3.

2.5.3 Bayesian Networks

A Bayesian Network (BN) (Nielsen & Jensen 2009, Friedman et al. 2000) is a probabilistic graph-

ical model that represents a set of random variables and their conditional dependencies using a

directed acyclic graph (DAG). It is a representation of a joint probability distribution. Formally,

Bayesian networks consist of G, a DAG, whose nodes represent random variables X1, ..., Xn and

θ, a conditional distribution table for each variable, given its parents in G. Edges represent

conditional dependencies, non-connected nodes represent variables that are conditionally inde-

pendent of each other. These two components combined together specify a unique distribution

on X1, ..., Xn. The graph G, representing conditional independence assumptions, allows to de-

compose the joint distribution reducing the number of parameters. In fact, the graph G encodes

the Markov Assumption:

Each variable Xi is independent of its nondescendants, given its parents in G.

which means that when we apply the chain rule of probabilities and properties of conditional

independencies, the joint distribution that satisfies the Markov Assumption can be decomposed

into the product form:

P (X1, ..., Xn) =

n∏

i=1

P (Xi|Pa
G(Xi))

where PaG(Xi) is the set of parents of Xi in G.

BNs are a popular method for multiple reasons: they enable the combination of highly

dissimilar types of data (i.e., numerical and categorical) into a common probabilistic framework,

without unnecessary simplification; they easily cope with missing data; and they naturally
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weight each information source according to its reliability. Furthermore, in contrast to black-

box predictors BNs are readily interpretable as they represent relationships using conditional

probability distributions (Jansen et al. 2003) and thanks to their structure they are easily

interpretable by biologists.

2.6 Identifying Gene Regulatory Networks structure

The structure of gene regulatory networks captures the relationships between genes, including

correlation. The knowledge of the correct structures of gene networks is very important for

characterizing the complex roles of all individual genes and the relationships between the many

systems in an organism.

Network reconstruction has largely focused on physical protein interactions and so represents

only a subset of biologically important relations. Thus, Lee et al. (2004) construct a more ac-

curate and extensive gene network by considering functional, rather than physical associations.

Gene-gene linkages are probabilistic values representing functional coupling between genes. Only

some of the links represent direct protein - protein interactions, the rest are associations not

mediated by physical contact, such as regulatory, genetic, or metabolic coupling that represent

functional constraints satisfied by the cell during the course of the experiments.

Meinshausen & Bühlmann (2006) and Shojaie & Michailidis (2010), more generically, try to

estimate the skeleton of Direct Acyclic Graphs (DAGs) where the variables exhibit a natural

ordering. They exploit graph theoretic properties of DAGs and reformulate the likelihood as a

function of adjacency matrix of the graph. To estimate the adjacency matrix of high dimensional

DAGs, they use both lasso and adaptive lasso penalties.

Scutari & Nagarajan (2011), instead, propose a statistically-motivated estimator for the confi-

dence threshold minimizing the L1 norm between the cumulative distribution function of the

observed confidence levels and the cumulative distribution function of the confidence levels of

the unknown network structure describing the true dependence structure.

One more approach is described in Zhang X. et al. (2012) where a novel method PCA-CMI

(Path Consistency Algorithm and Conditional Mutual Information) is proposed for inferring

GRNs from gene expression data by taking into account the non-linear dependencies and sparse

structure of GRNs. The algorithm is able to distinguish direct regulatory relationships from

indirect ones.

An important issue is the one of measuring the structural sustainability of the networks. This

is analysed in Mueller et al. (2011) in which the authors develop an R package called QuACN

to infer gene regulatory networks from microarray data and classify them by using topological
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network descriptors provided in the package.

2.7 Module Analysis

No matter what technique is used to build GRNs, the goal for gene expression analysis is to

reveal the structure of the transcriptional regulation process. Friedman et al. (2000) introduce an

approach for analysing gene expression patterns that uncovers properties of the transcriptional

program by examining statistical properties of dependence and conditional independence in the

data. The algorithm is compared to clustering techniques and is able to discover relationships,

interactions between genes other than positive correlation, and finer intra-cluster structure.

Cell’s mechanisms represented through gene regulatory networks are often organized as modules

interacting with each other, where modules are a group (cluster) of genes co-regulated to different

conditions.

Segal et al. (2003) develop an algorithm that, given as input a large pre-compiled set of can-

didate regulatory genes for the corresponding organism and a gene expression dataset, searches

simultaneously for a partition of genes into modules and for a regulation program for each mod-

ule that explains the expression behaviour of genes within. A regulation program specifies the

behaviour of the genes in one module as a function of the expression level of a small set of

the regulators (Transcription Factors and Signal Transduction Molecules) called module’s ‘reg-

ulators’. The procedure gives as output a list of modules of co-regulated genes and associated

regulation programs (regulators and the conditions under which regulation occurs).

From this procedure a new class of model is derived called Module Networks which explicitly

partitions the variables into modules, so that the variables in each module share the same parents

in the network and the same conditional probability distribution. This procedure, significantly

reduces the complexity of the model space as well as the number of the parameters. These

reductions lead to more robust estimation and better generalization on unseen data.

Genes with correlated expression changes, over many conditions, are likely to be involved in

similar functions or cellular processes (derived from Guilt-by-Association); these genes often also

share DNA sequence elements, providing evidence that they are regulated by common transcrip-

tion factors. Ideker et al. (2002) introduce an approach for screening a molecular interaction

network to identify active sub-networks which are connected regions of the network that show

significant changes in expression over particular subsets of conditions. The method they present

combines rigorous statistical measure for scoring subnetworks with a search algorithm for identi-

fying subnetworks with high score. The subnetworks are identified by different conditions, thus
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genes don’t have to be co-regulated over all conditions in order to group together. Because they

consider only the significance of change, the algorithm may cluster together strongly repressed

gene with an induced one and some genes may not belong to any cluster.

Microarrays measure not only expression levels of target genes, but also levels of genes

encoding regulators Transcription Factors (TFs) and Signalling Proteins (SPs). TFs are specific

proteins that bind to regulatory sequences on the DNA of target gene and work together to

ensure the correct amount of gene is being transcribed. The behaviour of TFs is controlled by

the cell’s environment through the action of signalling proteins (SPs). The combined network

of Transcription Factors and Signalling Proteins forms a regulatory program controlling the

expression of individual genes directly (by regulator TFs) and indirectly (by regulator SPs).

Pe’er et al. (2006) exploit this by limiting the search to simple network structures in order to

significantly reduce the space of possible networks, while highlighting the most relevant biological

information. Only a small fraction of all potential regulators may, in fact, be active in a given

data set. Only when a gene consistently scores high as a parent for many genes, we can believe

it indicates a true signal. Since false positives are significantly more costly than false negatives,

finding a robust set of key regulators whom are most strongly supported by the data is a more

important goal then discovering their complete set of targets. Furthermore, simple networks

result in successfully reconstructing biologically correct regulatory relations in more complex

organisms.

Because of the high number of variables and the complexity of some organisms, sometimes

it is important to focus not necessarily on the entire mechanism underlying the gene expression

data, but simply on some subsets and relative subnetworks. Sachs et al. (2009) describe an

approach to scaling up the number of variables that can be considered for structure learning.

The algorithm starts with a set of preliminary experiments to determine which subset may be

useful. This subset is called a Markov Neighbourhood and is detected for each variable. It

consists of a variable’s parents, children, and other co-parents of its children.

2.8 Construction of robust regulatory networks

In cases such as complex diseases the expression of many genes can be significantly altered

resulting in a differentially expressed disease network module. The genes involved can directly

correspond to the disease phenotype (i.e. driver genes) or can be closely related to it (e.g. first

degree neighbours). While the remaining ones are often not directly related to the disease.

Because a disease is a mutation in the normal pattern in a gene expression profile, we expect

the expression changes of the driver genes and their first degree neighbours to be more consistent
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than all the expression of the other genes. Thus, the identification of accurate and reproducible

disease biomarkers is an important challenge for gene expression analysis. One example is given

by Yang et al. (2012) who develop a novel pathway based biomarker identification method that

extracts the essential core module of disease from known biological networks.

All organisms have many mechanisms, necessary for their survival, that carry on mostly

unchanged under any condition the organism is subjected to (e.g. cell metabolism). Other

mechanisms, however, occur only when some event external or internal to the organism (envi-

ronmental changes, stress, cancer, etc.) happens to trigger them. Some conditions might trigger

similar mechanisms (more or less based on how similar the conditions are) that researchers ro-

bustly identify using consensus networks analysis (Taylor et al. 2009).

The use of clustering techniques for microarray analysis can suffer from lack of inter-method

consistency in assigning related gene expression profiles to clusters. In Swift et al. (2004) the

authors create a consensus set of clusters, exploring different methods of clustering in paral-

lel, to improve the confidence in gene expression analysis coupled with statistically based gene

functional analysis to identify novel genes. The partial agreement of the different clustering

algorithms should reflect the clustering of highly similar gene-expression vectors regardless of

the clustering methods used. The weighted kappa metric (Altman 1990) is used to measure

the discordance between clustering algorithms. They apply a minimum agreement: rather than

grouping variables on the basis of full agreement only, consensus clustering maximizes a metric

which rewards variables in the same cluster if they have high cluster method agreement and

penalizes variables in the same cluster if they have low agreement. Robust clustering, which

assumes full agreement, is also useful since it increases the module confidence but also reduces

the dimensionality of large gene expression datasets.

The integration of multiple datasets derived from related biological systems leads to more

robust models. Consequently we expect the use of multiple datasets of increasing biological

complexity to give a deeper insight of the fundamental underlying mechanisms. Anvar et al.

(2010) explore the use of Näıve Bayes Classifiers (NBC) and Bayesian Network Classifiers (BNC)

for predicting expression on independent datasets in order to identify informative genes and

their connections using classifiers of differing complexity. First, genes are ranked based on

their informativeness. After applying the different algorithms, regulatory interactions that are

consistently found across multiple datasets are more likely to be fundamentally involved and are

easier to find in dataset with less biological variation. They find out the regulatory networks

trained on less complex biological systems could thus be used for the modelling of the more

complex biological systems.

Isella et al. (2011) implement an R-Bioconductor package named Mulcom, a derivative of the
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t-test, designed to compare multiple test groups individually against a common reference. The

bottleneck in genomic research has recently moved from the production of high quality data to

interpretation of the data and hypothesis generation. The development of precise hypotheses

from a long list of gene candidates, in fact, can be challenging. One powerful approach that has

been used to aid in the interpretation of candidate genes lists is called integrative analysis with

complementary genome-scale data. The basic approach adopted by these methods is to identify

sub-graphs with conservation at the protein sequence level as well as at the physical or functional

level. This approach has been used to suggest core pathways that are conserved across species

and to build confidence in individual protein - protein interactions based on the co-occurrence in

multiple species. Conserved patterns are not likely to have occurred by chance, and they are en-

riched for known as well as novel stem cell and differentiation-related processes. Deshpande et al.

(2010) describe a scalable approach for discovering conserved active sub-networks across species.

2.9 Incorporating expertise

A vast volume of data is being generated and knowledge (i.e. scientific papers) is accumulating.

However, knowledge is only considered implicitly in the form of assumptions which can be

neither precise nor quantitative. A practical approach to overcome problems derived from low

data quality, noise and measurement errors typical of microarray datasets is to incorporate

existing knowledge into a computational framework. This way statistical inference can increase

the knowledge in the areas that are still lacking evidence and help construct more precise models.

As explained earlier, learning a Bayesian network (BN) structure means finding a DAG that

best matches the data set, maximizing the posterior probability of a DAG given the data. This

allows BNs to deal with inherent stochasticity in gene expression and with the noise brought by

the microarray technology. In addition, BNs are naturally capable of integrating prior knowledge

into the system. So, Gao & Wang (2011) incorporate prior knowledge into BN in a quantitative

way to bias the Markov Chain Monte Carlo (MCMC) simulation of candidate structures and

prove that BN with prior knowledge greatly benefit the performances.

Angelopoulos & Wessels (2011) exploit Logic Programming (LP) which is an attractive for-

malism for representing knowledge. They discuss Distributional Logic Programming (DLP)

which is formalism for combining Logic Programming and probabilistic reasoning. Prior knowl-

edge improves the resulting gene regulatory networks including knowledge that doesn’t appear

in the data. Gene-pair association scores describe the overlap in the contexts in which the genes

are mentioned in a simple and clear format. Steele et al. (2009) transform this literature-based
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gene association scores to network prior probabilities. Prior networks can fill the gap for genes

that are not of particular focus of the expression data set. They explore the effect of varying the

influence of the prior knowledge through different weights. An exceedingly low weight produces

a network that doesn’t learn enough information and the consequent structure is the result of

the only knowledge hidden in the data. An extremely high weight, instead, implies a network

which is the result of only the literature analysis and not of the gene expression data. The size

of the prior weight is a tricky decision since it indicates the influence we want the prior to have

on the final network and it necessarily differs from one study to another.

2.10 Integration of multiple data

Despite the enormous amount of genomic data, most of these data sources are not completely

reliable due to noise and incompleteness. Because modern technologies generate a broad array

of different data types, providing distinct but often complementary information, one way to

overcome the unreliable data issue is to integrate heterogeneous data sources to improve the

results’ trustworthiness. Savage et al. (2010) implement an algorithm to integrate gene expres-

sion and transcription factor binding (ChIP-chip) data. The model uses a hierarchical Dirichlet

process mixture model to allow data fusion on a gene-by-gene basis. This approach although

successful performs integrative modelling of two datasets only. On the other hand Kirk et al.

(2012) develop a method to integrate a significant number of datasets simulataneously and

to captures the underlying structural similarity between the datasets. The authors create a

Bayesian method for the unsupervised integrative modelling of multiple datasets and data types

simultaneously, including time series data. In this approach, each dataset is modelled using a

Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these mod-

els captured through parameters that describe the agreement among the datasets.

Shen et al. (2009) develop a joint latent variable model for integrative clustering called iCluster

which incorporates flexible modelling of the associations between different data types and the

variance-covariance structure within data types in a single framework, while simultaneously re-

ducing the dimensionality of the datasets. A further application of this technique is shown in

Shen et al. (2012).

Another integration example is described by Zhang J. et al. (2012) where two cancer datasets

are compared (case and control). For each dataset gene-pair expression correlation is computed

and then used to build a frequency table whose values are used to build a weighted gene co-

expression frequency network. After this they identify sub-networks with similar members and
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iteratively merge them together to generate the final network for both cancer and healthy tissue.

2.11 Conclusions

In this chapter we explained the main concepts related to gene expression and the different ways

to measure and analyse it. We focus on microarray data due to its popularity among biologists

and the consequent large volume of publicly available data. We tackled the problems related

to the high discrepancy between the size of samples and the number of genes. Therefore we

explore the various gene selection techniques developed over the paste two decades. We moved

then to analyse the importance of building Gene Regulatory Networks (GRNs) from the data.

How to detect similar behaviour within the genes and group them into module and derive genes’

functions based on the ”guilt-by-association” principle when reliable. Given the high level of

noise and bias in microarray data, we explore how to construct robust GRNs using a whole

set of different algorithms and we discuss the improvements that can be made incorporating

expertise or integrating data.

The integration of multiple data is particularly useful when no prior knowledge is available on

the organism under analysis or for that specific experimental condition. Researchers have built

more robust GRNs by collecting multiple datasets from the same organism under several ex-

perimental conditions. But different experimental conditions trigger different mechanism inside

the same organism which are hidden or even completely lost applying this procedure. Hence,

in this research we want to develop a method to robustly identify GRNs that are specific for

the experimental condition under consideration to highlight what makes each condition unique

compared to the others.

In the next chapter we explore in details some of the techniques to build GRNs that will be

used later for our method.
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Key Concepts

Analysis of the literature has shown a great deal of attention to the discovery of common un-

derlying mechanisms between independent studies, especially in the case of similar diseases.

However, biologists are now starting to recognize the importance of highlighting the differences.

In this work we build a pipeline to semi-automatically identify the differences between various

experimental conditions an organism is subjected to. This method takes as input a set of dif-

ferent independent studies to explore and detect the mechanisms (gene paths) that render each

study (or group of similar studies) unique compared to the others. The entire procedure faces

several theoretical and computational challenges explored and resolved in the remainder of this

thesis.

Gene Regulatory Networks (GRNs) are a user-friendly representation of the underlying mecha-

nisms of an organism, easily interpretable by non-technical people. Thanks to the explosion of

publicly available data and the popularity of their use we choose to develop this method focusing

on microarray datasets. However, as described in Chapter 2, the structure and the generation

of microarrays make the creation of reliable and robust GRNs a difficult task.

In this chapter we illustrate the techniques developed over the last two decades to convert gene

expression profiles into GRNs, that we exploit within the pipeline.

3.1 Co-expression

The term co-expression is used to indicate the simultaneous expression of two or multiple genes.

Considering a set of genes and their expression profiles the main objective is to discover the

interactions and relationships between them.

The easiest and most common technique used to determine the existence and quantify any
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kind of relationship between two (or multiple) genes is to calculate the so called Pearson

correlation coefficient (ρ) or simply correlation coefficient. Given two random variables X

and Y , Pearson coefficient is obtained dividing the covariance of the two variables by the product

of their standard deviations:

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY
(3.1)

The value of ρX,Y varies between −1 and +1. If ρX,Y 6= 0 means that X and Y are depen-

dent, ρX,Y > 0 indicates a direct relationship (if X increases Y increases simultaneously) and

ρX,Y < 0 indicates an inverse relationship (if X increases Y decreases and viceversa).

Stuart et al. (2003) analyse DNA microarrays from different organisms and calculate the Pearson

correlation coefficient of the expression profiles between every pair of genes in the microarray

data sets for each organism in order to identify gene interactions that are evolutionarily con-

served.

A more generic class of coefficients called Rank correlation coefficients measure the de-

pendency between variables without requiring a linear relationship between them, unlike the

Pearson’s coefficient. Some examples are Spearman’s ρ (Pirie 1988), Kendall’s τ (Abdi 2007)

and Goodman and Kruskal’s γ (Goodman & Kruskal 1954) coefficients.

Another popular measure of the variables’ mutual dependence is the Mutual Information

coefficient (MI) defined for two discrete random variables, as:

I(x, y) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3.2)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y) are the

marginal probability distribution functions of X and Y respectively. In the case of continuous

random variables, the summation is replaced by the integral sign. MI is always non-negative

and measures the information shared between X and Y . In other words, it measures how much

knowing one variable reduces the uncertainty about the other. If I = 0 then X and Y are

independent which means they do not share any information. On one side the use of mutual

information is better since it doesn’t necessitate of linear relationships between variables, but

its use in continuous data is complicated by the fact that it requires an estimate (explicit or

implicit) of the probability distribution underlying the data (Kinney & Atwal 2014).

An application on real data is shown in Butte & Kohane (2000) who develop a technique that

computes comprehensive pair-wise mutual information for all genes in a dataset and build the

networks by setting a threshold mutual information and using only associations (links) at or

above that threshold.

Although these coefficients measure the degree of statistical dependency between variables, it is
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important to highlight that correlation of two or multiple variables does not implicate a causal

relationship between the variables!

3.2 Clustering

Cluster analysis is intended as the approach of organizing objects into groups whose members

are similar to each others and different (or less similar) to the objects in the other groups.

Each group is called cluster. In data analysis and pattern discovery, clustering is a broad term

that identifies fundamental techniques to extract underlying cluster structures (Baldi & Brunak

2001). The covariance or correlation matrix of the genes are a simple and popular example of

a way to identify clusters of genes that are related to each other. A part from these, several

more detailed algorithms have been developed for the clustering purpose. The choice of one

over another depends on several factors such as the type of data we are dealing with and the

information needed to retrieve.

Clustering algorithms are divided into two big categories: supervised and unsupervised. While

supervised clustering infers the clusters using labelled training data, unsupervised clustering

algorithms use unlabelled data.

K-means together with hierarchical clustering are the oldest and most popular unsupervised

clustering algorithms of which several version have been developed over the decades.

K-means (Hartigan 1975) partitions the n observations in m dimensions (usually a similarity

matrix), into k (variable set manually by the user) clusters in a way that the within-cluster sum

of squares is minimized. This algorithm run iteratively and is a NP-hard problem, therefore it

is necessary to apply heuristic algorithm such as the one developed by Hartigan & Wong (1979).

Hierarchical clustering (Eisen et al. 1998) iteratively creates a dendrogram that assembles all

elements into a tree, starting from the correlation or other similarity-type kind of matrices.

All clustering algorithms necessitate of a similarity-type of matrix. In this work we apply

the sensitivity matrix. Sensitivity and specificity are two statistical measures highly used to

measure the performance of a binary model. The example in Figure 3.1 shows a table, called

contingency table, that summarizes the frequency distribution of the variables of a study that

evaluates a clinical test to diagnose a specific condition.

Figure 3.1: Contingency table
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Given this table, the sensitivity and specificity are defined as:

Sensitivity =
True positives

True positives + False negatives

Specificity =
True positives

True positives + False positives

which in other word is the probability of getting a positive test when the patient has the

condition.

In our work we apply calculate the sensitivity to measure how two GRNs are similar to each

other. Considering two networks N1 and N2, true positive is the number of connections that N1

and N2 have in common, false positive the number of connections that appear in N1 but not

in N2 and false negative the number of connections in N2 but not in N1. A simple example is

shown in Figure 3.2.

Figure 3.2: Example of how to calculate true positives, false positives and false negatives between

two networks.

Doing this we obtain a sensitivity matrix that is then used as input to the k-means clustering

algorithm (details and results are described in Chapters 4 and 5). A clustering algorithm should

identify reliable and robust clusters meaning that they have to be representative of the data

even when the observations are affected by noise or bias (systematic error). A related approach

is called consensus clustering (Swift et al. 2004) which, given a set of clusters, aims to build
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one single cluster to better represent the input ones. This is a technique often used to overcome

bias, noise or even merge similar clusters to reduce the dimensionality. In the specific case of

this thesis we applied consensus clustering in order to build networks that represent a larger

group of experimental conditions.

3.3 Scale free vs Random graphs

A graph G (Nagarajan et al. 2013) is a representation of objects whose relationship between

each other is represented through links. Each object or variable is represented with a node also

called vertex V and the links that connect pair of vertices are called edges E. An edge that

connects vertex A with vertex B is directed when it starts from A and ends in B (A −→ B),

and undirected when the direction of the link is not defined (A — B). Thus, a graph can be

directed, undirected or partially directed. Finally, a graph is called acyclic when there are no

cycles, meaning no edges that connect node A to itself.

A user-friendly representation of gene interactions is through a graph framework G(V,E)

where V are the vertices or nodes and E the edges that connect the vertices to each other. In

the case of gene expression, the vertices are the genes and the edges represent the relationships

between them. When we analyse complex networks we often have no information about their

structure, so several models have been developed over the years. Erdős & Rényi (1959) build

the first model based on a random approach. The model sets an edge between each pair of nodes

(N) with equal probability p and the probability of a vertex to have k edges follows a Poisson

distribution

P (k) = e−λλ
k

k!
, where λ = N

(
N − 1

k

)
pk(1− p)N−1−k

Later on, Watts & Strogatz (1998) describe the small− world problem. Here, N vertices form

a one-dimensional lattice where each vertex is, first, connected to its own nearest and next-

nearest neighbours and then, each edge is reconnected to a random vertex with probability p.

This process generates connections in a way that decrease the distance between the vertices. In

both models, the probability of finding highly connected nodes decreases exponentially with k

(number of edges), meaning that they are practically absent.

Contrary of these models, it has been noticed that real complex networks self-organize into a

scale-free state: the probability P (k) that a vertex in the network interacts with k other vertices

decays as a power law following:

P (k) ∼ k−γ

In Barabási & Albert (1999), the authors notice that two aspects of real networks are ignored
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in random models.

First, the models assume the network starts with a fixed number (N) of vertices that are ran-

domly connected, without modifying N. But real world networks continuously expand adding

new vertices and connecting them to the already existing ones (e.g. publications in research

literature).

Second, random network models assume that the probability that two vertices are connected

is random and uniform, while most real networks show preferential connectivity which means

that the probability that a new vertex connects to a new vertex is not uniform but is higher for

already highly connected nodes (e.g. a highly cited paper have a higher probability, compared

to an unknown one, to be cited by a new paper). A network model based on these two facts

determines the scale-invariant distribution.

The model starts with (m0) vertices, at every time step a new vertex is added with m ≤ m0

edges that link the new vertex to m different vertices already in the network model.

Because of preferential attachment, the probability P that a new vertex is connected to vertex

i depends on the connectivity ki of that vertex, so that P (ki) =
ki∑
j
kj
. After t time steps, the

model leads to a random network with t+m0 vertices and m× t edges. This network becomes

scale-invariant and the probability that a vertex has k edges follows the power law. Further-

more, P (k) is independent of time and of the system size m0 + t, which indicates that despite

its continuous growth, the system self-organizes into a scale-free stationary state. These models

perfectly describe genetic or signalling networks. Although they are now stable, the growth can

be seen as the evolutionary history.

3.4 Weighted Gene Correlation Network Analysis

A Correlation network represents the pairwise relationships between variables/genes. The net-

work framework is so easy to understand, even for non-bioinformaticians that it is now a popular

tool used to analyse complex networks resulting from large and high dimensional data such as

microarrays.

WGCNA R software package (Langfelder & Horvath 2008) collects a set of R functions to

perform various types of weighted correlation network analysis such as co-expression network

analysis of gene expression data (Sengupta et al. 2009, Langfelder & Horvath 2012).

Given a n×m data matrix X = [xij ], where i = 1, ..., n are the genes (nodes of the networks)

and l = 1, ...,m are the samples measurements. The ith row xi is called the ith gene expression

profile across m sample measurements.

A graphical network is mathematically identified by its adjacency matrix defined as a n×n ma-
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trix whose elements [aij ] encode the connection strength between nodes i and j of the network.

In the specific case of co-expression networks, this strength is obtained by, first, calculating the

absolute value of the correlation coefficient (co-expression similarity) between the nodes profile i

and j: sij = |corr(xi, xj)|, and then, by applying a threshold that transforms the co-expression

similarity matrix into the adjacency matrix. The type of threshold applied determines the type

of network.

Hard thresholding, defined as:

aij =





1 if sij ≥ τ

0 otherwise

where τ is the hard threshold parameter, creates unweighted networks. Even though un-

weighted networks are widely used, they do not reflect the continuous factor of the underlying

co-expression which may lead to loss of information. On the other hand, weighed network ad-

jacency is obtained by setting a soft threshold that means raising the co-expression similarity

to a power: aij = sβij , with β ≥ 1. This implies that the weighted adjacency aij between two

genes is proportional to their similarity on a logarithmic scale, log(aij) = β × log(sij). To pick

the right value of beta WGCNA uses a biologically motivated criterion called the scale-free

topology criterion (Barabási & Albert 1999, Zhang et al. 2005). As opposed to the random

graph model (Erdős & Rényi 1959), scale-free networks present only few highly connected nodes

(hubs) and display a high degree of tolerance against errors (Barabási & Albert 1999). One

way to prove the network has this topology is to plot log10p(k) vs log10(k), if an approximate

straight line appears the scale-free topology is satisfied. Otherwise calculate the correlation

between log10p(k) and log10(k) which represents the model fitting index R2 of the linear model

that regresses log10p(k) on log10(k). If R
2 ≈ 1, then there is a straight line relationship between

log10p(k) and log10(k).

So, given the power adjacency function in a weighted gene network aij = |corr(xi, xj)|β ,

WGCNA considers β values that lead to a network that approximately satisfies the scale-free

topology.

An additional function available in the WGCNA package is to transform the adjacency func-

tion into the Topological Overlap Matrix (TOM) that detects subsets of nodes (modules) that

are tightly connected to each other and minimizes the effects of noise and spurious associations.

This is done by calculating the topological overlap dissimilarity measure (Ravasz et al. 2002)

which evaluates the relative interconnectedness between pair of nodes. TOM is defined as:

ωij =
lij + aij

min{ki, kj}+ 1− aij

where lij =
∑

u aiuaui and ki =
∑

u aiu is the node connectivity. In the case of hard thresholding
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(unweighted networks) ωij = 1 if the node with fewer connections is connected to the other node

and all of its neighbours are also neighbours of the other node, ωij = 0 otherwise. To generalise

it for the case of weighted networks aij accepts real numbers 0 ≤ aij ≤ 1.

Since TOM Ω = [ωij ] provides a similarity measure, the topological overlap dissimilarity measure

is 1 - TOM.

3.4.1 WGCNA networks applied to wheat

Biological networks show some characteristics that seems to satisfy the scale-free model organi-

zation. For example, these networks show a high degree of internal order that governs the cell’s

molecular organization (Barabasi & Oltvai 2004) rather than a random one and the growth

criteria can be satisfied by their evolutionary history. Although scale-free framework seems to

easily explain the complexity of biological networks, Khanin & Wit (2006) and Stumpf et al.

(2005) suggest to use some caution.

In this work we decide to explore building networks beyond pairwise correlation but, given its

success, we investigate WGCNA as a comparison of our pipeline abilities. The first pipeline per-

formance study on real data is made on multiple studies of wheat. We focus on 16 independent

studies downloaded from Array Express database (Rustici et al. 2013, Parkinson et al. 2007)

of stress enriched and non-stress condition, each containing 61290 genes. Table 3.1 shows the

studies and their corresponding number of samples and descriptions.

We first want to check if the entire system can be described by a scale-free network. So, after the

studies are merged together we calculate the connectivity k and then plot k vs p(k) to explore

the nature of the datasets. Figure 3.3 shows on one side the histogram of the connectivity which

denotes a high number of nodes with a low connectivity and lower one but still present for hubs

and on the other the relation of k vs p(k) in logarithmic scale. As also highlighted in the figure

title the value of R2 is equal to 0.83 which we can consider close enough to 1, as well as the

absolute value of the slope. On these first results we can deduce that the general underlying

mechanism of these studies can be described through a scale free network.

Given that, we now want to build weighted co-expression networks, one for each wheat dataset

and compare it afterwards with our pipeline results. For computational reasons, we first need to

reduce the number of variables. First, the genes that are not part of the Gene Ontology database

(Ashburner et al. 2000) and therefore not biologically known (yet), are discarded. Then, the

standard deviation for each gene in each study across all samples is calculated and only the

genes with sd ≥ 2 in at least 4 of the 16 studies are finally selected for the rest of the analysis.

The value of the sd threshold is defined by the user based on the number of genes that the user
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believe can be reasonably analysed. The first step reduces the genes from 61290 to 21487, that

after the second step are reduced to the final number of 67 genes. More details can be found

in Chapters 4 and 5. For each study, once we build the co-expression similarity matrix we need

to transform it into the adjacency matrix to define the final study-network. Since we are in-

terested in directed networks, we choose to apply the soft-thresolding procedure which requires

the selection of the parameter β (power). Common practise requires to set β = 6 for signed

networks and β = 12 for unsigned ones. Although, different studies imply different underlying

mechanisms and possibly a different β value. We explore a set of values for the parameter β

from 1 to 30 and analyse the effects.

Wheat Studies

Study Label Samples Description

1 E-MEXP-971 60 Salt stress

2 E-MEXP-1415 36 S and N deficient conditions

3 E-MEXP-1193 32 Heat and Drought Stress

4 E-MEXP-1694 6 Re-supply of sulfate

5 E-MEXP-1523 30 Heat stress

6 E-MEXP-1669 72 Different nitrogen fertiliser levels

7 E-GEOD-4929 4 Study parental genotypes 2

8 E-GEOD-4935 78 Study 39 genotypes 2

9 E-GEOD-6027 21 Meiosis and microsporogenesis in hexaploid bread

wheat

10 E-GEOD-9767 16 Genotypic differences in water soluble carbohydrate

metabolism

11 E-GEOD-12508 39 Wheat development

12 E-GEOD-12936 12 Effect of silicon

13 E-GEOD-11774 42 Cold treatment

14 E-GEOD-5937 4 Parental genotypes 2 biological replicates from SB

location

15 E-GEOD-5939 72 36 genotypes 2 biological replicates from SB location

16 E-GEOD-5942 76 Parental and progenies from SB location

Table 3.1: Study numbers, labels, number of samples and descriptions of the wheat microarray

dataset.
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Figure 3.3: Scale-free plot. The figure on the left hand side show the distribution of the connec-

tivity (k), while the one on the right represent the relation between k and p(k) in logarithmic

scale highlighting that the slope is close to -1.

Figure 3.4 shows the variation of R2 in correspondence to different values of β. As previously

explained the closer to 1 R2 gets the better it is. Therefore, in each study, we select the first

value of beta that corresponds to R2 ≥ 0.8. Although, in the figure, many studies never reach

the threshold 0.8, leaving us with no β to select. This may be due to the low number of samples

available per study or even to the set of reduced genes. Once the values of β are chosen, we

calculate the adjacency matrices that are going to define the study networks, one per study,

which in turn are used as a base to create unique networks to compare with the ones obtained

by our pipeline. The unique networks resulting from the WGCNA procedure can be seen in

Chapter 5.
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Figure 3.4: Scale independence. Each plot shows the variation of R2 for different values of β

(power) for each single study under analysis. The red horizontal line identifies the threshold set

at 0.8. Above which R2 satisfies the scale-free criteria therefore the corresponding value of β

can be used in the soft-thresholding procedure.
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3.5 Modelling GRNs using Glasso

3.5.1 Inverse covariance and partial correlation

The covariance is a statistical measure that, as well as the correlation coefficient, defines the

degree of similarity between two random variables. Given two random variables x and y,

cov(x, y) = σ(x, y) = E[(x − E[x])(y − E[y])]. A covariance value higher than 0 indicates

similar behaviour between the variables (e.g. given two variables A and B when A grows, B

grows as well), while a value lower than 0 indicates an opposite behaviour (when A grows, B

decrease and vice versa).

Because the covariance strongly depends on the data, correlation normalizes the covariance di-

viding it with by the product of the standard deviations of the variables in consideration (see

formula 3.1). This creates a dimensionless coefficient that ease the comparison of datasets with

different scale. On the other hand, the inverse of the covariance matrix (also called concentration

or precision matrix) is a matrix whose elements are interpreted in terms of partial correlation.

Partial correlation measures the degree of association between two random variables (same as

correlation and covariance), but with the effect of the controlling random variables removed. It

aims at finding correlation between two variables after removing the effects of other variables.

This analysis avoids spurious correlations (i.e. correlations explained by the effect of other vari-

ables) but reveals hidden ones (i.e. correlations masked by the effect of other variables).

Given two random variables x and y linearly related to variable z:

x = Az +B + dx

y = Cz +D + dy

the partial correlation coefficient rxy.z is defined as the correlation coefficient between the resid-

uals dx and dy. Again, this coefficient varies between -1 and 1. The variables are conditionally

independent, given all the other variables, if the partial correlation coefficient is equal to zero

and conditionally dependent, given all the other variables, otherwise (Lauritzen 1996).

3.5.2 Lasso

Another way of seeing this problem is through regression. Given the data (xi, yi), i = 1, 2, ..., N ,

where xi = (xi1, ..., xip)
T and yi are respectively the regressors and response for the ith ob-

servation, the ordinary least squares (OLS) estimates are obtained by minimizing the residual

squared error. However, this method incurs two drawbacks:

� Prediction accuracy: the OLS estimates often show low bias but large variance;
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� Interpretation: the large number of predictors complicates the interpretation of the results.

The prediction accuracy can be improved by shrinking or setting to 0 some coefficients. Sac-

rificing bias to reduce the variance of the predicted values may improve the overall prediction

accuracy. On the other hand interpretation can be refined selecting a smaller subset of predic-

tors which exhibits the strongest effects.

To improve the OLS estimates, two methods have been developed which became quite popular:

subset selection and ridge regression. Subset selection is a discrete process in which regressors

can either be conserved or discarded from the model. Small changes in the data often lead

to select very different models which reduces its prediction accuracy. On the other hand ridge

regression is a continuous process that shrinks the coefficients. The method is more stable but

because it does not set any coefficients to exactly 0, the interpretation is still complicated.

In Tibshirani (1996), the authors introduce a new method called Least Absolute Shrinkage and

Selection Operator (LASSO) which novelty is that it shrinks some coefficient and set others to

exactly zero. This, of course, ease the interpretation of the model and improve the prediction

accuracy. Given the predictor variables xi and the responses yi, it is assumed that the re-

sponses are conditionally independent given the predictors and the predictors are standardized

e.g.
∑

i xij/N = 0 and
∑

i x
2
ij/N = 1.

Let β̂ = (β̂1, ..., β̂p)
T , the lasso estimate (α̂, β̂) is defined by

(α̂, β̂) = arg min
{ n∑

i=1

(
yi − α−

p∑

j=1

βjxij

)2}
subject to

p∑

j=1

|βj | ≤ t. (3.3)

Where t ≥ 0 is the tuning parameter which determines how much penalization is applied to

the estimates. For all possible t, the solution for α is α̂ = y but the derivative of a constant is

zero, so we can assume y = 0 without loss of generality and then omit α. The structure of the

formula 3.3 suggests it is a quadratic programming problem with linear inequality constraints.

Now, considering β̂0
j the full least squares estimates and t0 =

∑
|β̂0

j |, all values of t < t0 shrink

the solutions towards 0, and some of them to exactly 0.

3.5.3 Graphical lasso

Consider a p-dimensional multivariate normal distributed random variable X = (X1, ..., Xp) ∼

N (µ,Σ). If the covariance matrix Σ is non singular, the conditional independence structure of

the distribution can be represented through a graphical model G = (Γ, E) where Γ = {1, ..., p}

is the set of nodes and E the set of edges in Γ× Γ. An edge (a, b) (between between a and b)

exists in E if and only if Xa is conditionally dependent on Xb, given all remaining variables.

Consequently, each pair of variables non included in the edge set is conditionally independent,

39



Chapter 3. Key Concepts

given the remaining variables, and correspond to a zero in the inverse covariance matrix (Lau-

ritzen 1996) (see section 3.5.1). Following this line of thoughts Dempster (1972) are the first to

use the covariance approach to build a graph (conditional independence restrictions) for a set

of i.i.d observations. The covariance selection needs the discrete optimization of an objective

function for which greedy forward and backward search are employed, but the complexity of the

procedures makes it computationally impractical even for small sized graphs.

In Meinshausen & Bühlmann (2006) the authors introduce a new procedure that explores

the Lasso for neighbourhood selection. They estimate a sparse graphical model by fitting a lasso

model consecutively to each node in the graph, using the others as predictors.

The Lasso (Tibshirani 1996) has a parsimonious property which means that when predicting a

variable Xa given the remaining variables {Xk : k ∈ Γ(n) \ {a}}}, the vanishing lasso coefficient

estimates identify asymptotically the neighbourhood of a node a in the graph.

Given the matrix X [n × p(n)] which contains n independent observations of X , so that the

columns Xa correspond for all a ∈ Γ(n) to the vector of n independent observations of Xa. The

Lasso estimate θ̂a,λ of θa is:

θ̂a,λ = argmin
θ:θa=0

(n−1‖Xa −Xθ‖22 + λ‖θ‖1)

where ‖θ‖1 =
∑

b∈Γ(n) |θb| is the l1-norm (Minkowski distance with exponent = 1) of the co-

efficient vector. The neighbourhood estimate (parametrized by λ) is defined by the non-zero

coefficient estimates of the l1-penalized regression,

n̂eλa = {b ∈ Γ(n) : θ̂a,λb 6= 0}.

Large values of the penalty reduce the size of the estimated set while small values increases

it. The method is computationally very efficient and is consistent even for high-dimensional

settings/graphs. Although it is an approximation to the exact problem.

3.5.4 Glasso implementation in R

To summarize what was previously said, the problem of identifying the structure of a network

can be solved by estimating the relationships between variables. In the case of undirected

graphs it is the same as learning the structure of the conditional independence graph (CIG),

which in the specific case of Gaussian random variables, means to identify the zeros of the

inverse covariance matrix (also called precision or concentration matrix). Given a p-dimensional

normally distributed random variable X , assuming that the covariance matrix is non-singular,

the conditional independence structure of the distribution can be represented by the graphical
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model G = (N,E) where N = (1, ..., p) is the set of nodes and E is the set of edges in N ×N . If

an edge (pair of variables) is not in the set E it means that the two variables are conditionally

independent given the other variables. This corresponds to a zero in the inverse covariance

matrix.

The R package glasso (graphical lasso) (Friedman et al. 2014) estimates sparse graphs by

applying the lasso penalty to the inverse covariance matrix. Continuous data are described by a

multivariate Gaussian distribution with mean µ and covariance Σ, therefore the variables i and

j are conditionally independent, given the other variables, if the i, jth element of Σ−1 is zero.

This method aims to simultaneously strengthen the connections between variables and reduce

the number which is done by applying the lasso with L1 penalty.

The problem is to maximize the penalized log likelihood:

log detΘ− tr(SΘ)− ρ ‖Θ‖1 (3.4)

where Θ = Σ−1, S is the empirical covariance matrix and ‖Θ‖1 is the L1 norm (the sum of the

absolute values of the elements of Σ−1) and ρ is the regularization parameter.

Banerjee et al. (2008) demonstrate the problem to be convex and solve it estimating Σ instead of

Σ−1. Specifically, given W the estimation of Σ they optimize over each row and corresponding

column of W following a block coordinate descent manner. Given W and S as:

W =


 W11 w12

wT
12 w22


 , S =


 S11 s12

sT12 s22


 (3.5)

then

w12 = argmin
y

{yTW−1
11 y : ‖y − s12‖∞ ≤ ρ} (3.6)

which, since the problem is convex, is equivalent to solve

min
β

{
1

2
‖W

1/2
11 β − b‖2 + ρ‖β‖1} (3.7)

where b = W
1/2
11 s12. If β solves 3.7, then w12 = W11β solves 3.6. The structure of this formula

looks like the lasso, so the fast coordinate descent algorithm (Friedman et al. 2007) is applied

which makes a good solution of the lasso problem. The usual lasso estimates takes as input S11

and s12. To solve 3.7, glasso instead uses W11 and s12. Then it updates W and cycle through

all the variables until convergence. The parameter ρ can be a scalar (typical situation) or a

p× p matrix, if ρ = 0 means no regularization (Friedman et al. 2008, Meinshausen & Bühlmann

2006). This algorithm is extremely fast even for high dimensional datasets such as microarrays.
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3.5.5 Glasso networks applied to wheat

Given the covariance matrix, glasso returns the inverse covariance matrix calculated applying

the lasso (L1) penalty. The penalty parameter ρ can be tuned by the user based on how sparse

the matrix needs to be. The more sparse the matrix is the less number of edges the resulting

networks will have but also the strength and reliability of these edges are highly improved.

Hence, the tuning parameter ρ can be chosen based on the number of connections the user is

happy to work with.

In this work we want to identify underlying mechanisms that are specific for the study or group

of studies under analysis. Of course, we expect only a reduced set of genes to be involved in the

unique-mechanisms, therefore we need to considerably reduce the possible number of edges and

consequently of genes involved in the network paths.

If ρ = 0 means no regularization (no penalty), we need to choose a value above zero. Tradition-

ally ρ is chosen between 0.010 and 0.020, but again the user can modify it depending on the

needs.

For each study and for all the datasets explored in this work we applied different values of

the tuning parameter, in wheat ρ = 0.020 in Fusarium ρ = 0.010 and for the cancer datasets

ρ = 0.050. The resulting networks for each study are called in here glasso-networks. A practical

example of the effect on wheat of different values of ρ is shown in Figures 3.5, 3.6 and 3.7. The

first network built with ρ = 0.005 shows a highly connected structure which is reflected in the

histogram of the nodes degree (number of connections a node has to other nodes). The his-

togram shows a quite distributed distribution with very few nodes with 0 or maximum degree.

The Figure 3.6 describes the network built with parameter ρ = 0.010. In here the network is less

connected and consequently the adjacency matrix more sparse. The histogram in fact shows a

higher number of nodes with degree equal to zero. Finally, Figure 3.7 is extremely sparse with

only very few connections and degree distribution shifted towards zero. These results can be

easily generalized for any other networks and datasets.
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Figure 3.5: Network built with glasso and parameter ρ = 0.005 for the first study of the wheat

dataset and corresponding histogram of nodes degree. The numbers in the network represent

genes names.
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Figure 3.6: Network built with glasso and parameter ρ = 0.010 for the first study of the wheat

dataset and corresponding histogram of nodes degree. The numbers in the network represent

genes names.
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Figure 3.7: Network built with glasso and parameter ρ = 0.020 for the first study of the wheat

dataset and corresponding histogram of nodes degree. The numbers in the network represent

genes names.
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3.6 Modelling GRNs using Bayesian Networks

Bayesian Networks (BNs) are a tool that combines statistics with graph theory to capture

relationships/dependencies among independent variables. The dependencies are qualitatively

visualised through graph-based structures (networks) while the strength of the relationships

are quantitatively represented by conditional probability tables or distributions for discrete

and continuous data respectively. The graph based structure coupled with the conditional

probability tables make BNs extremely easy to interpret by biologists and other non-technical

people, consequently they have become exceptionally popular for the analysis of biological data.

A Bayesian Network (Pearl 1988, Heckerman et al. 1995, Nagarajan et al. 2013) is defined as:

a probabilistic graphical model that encodes a joint probability distribution of a set of random

variables. It consists of:

� Directed Acyclic Graph (DAG) where the vertices/nodes are the random variables/genes

and the edges represent the conditional relationships between them;

� Conditional probability (distributions or tables) for each variable (continuous or discrete)

given the parents in the graph.

A simple example of a generic Bayesian network adapted from the Sprinkler network (Murphy

2001) is shown in Figure 3.8. The DAG shows 4 nodes, each representing a gene with discrete

values (on-off). The links between the nodes indicate that Gene 1 directly influences Gene 2

and Gene 3 which in turn influence Gene 4. The conditional probability tables quantify the

strength of each link.

Bayesian Networks are called Dynamic BNs when modelling time series data, and Static BNs or

simply BNs otherwise. In this research we explore microarray data with no temporal information,

therefore we concentrate on describing static BNs and their applications.

The process of learning a Bayesian Network from the data (Koller & Friedman 2009) consists

ot two steps:

� model selection

� parameter estimation.
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Figure 3.8: The figure shows the DAG of the Bayesian network with 4 random discrete valued

gene variables and the conditional probability tables related to each node in the DAG. Note

that G1=Gene1, G2=Gene2, G3=Gene3 and G4=Gene4 (Steele 2010).

3.6.1 Model selection

Model selection can be considered as the qualitative step. It consists on learning the BN struc-

ture, that is to identify a graphical model which best fit the data given as input. Although

several algorithms have been developed over the years, they all fall under three main categories:

constraint-based, score-based and hybrid.

Constraint-based algorithms aim to learn the graph structure by exploring conditional

independences between variables. The first algorithm of this class is called Inductive Causation

(IC) and was implemented by Pearl et al. (1991).

IC firstly determines the skeleton of the network identifying all the connections between the

variables regardless of its direction through statistical tests for conditional independence. If

there is an edge between variables A and B it means that A and B are dependent and cannot
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be independent given any subset of the variables. Then, it searches for the v-structures (two

non-adjacent nodes are not independent conditional on a third one). Last IC iterates on each

arc and derives the orientation to obtain the completed partially directed acyclic graph.

The IC algorithm is impracticable for real world problem due to the exponential number of possi-

ble combination of conditional independencies. Therefore, have been developed computationally

more reasonable algorithms such as: PC algorithm (Glymour et al. 2001) where a backward se-

lection from a saturated (fully connected) graph is applied; Grow-shrink (GS) (Margaritis 2003),

Incremental Association (IAMB) (Tsamardinos et al. 2003), Fast Incremental Association (Fast-

IAMB) (Yaramakala & Margaritis 2005) and interleaved Incremental Association (Inter-IAMB)

(Tsamardinos et al. 2003).

Score-based learning algorithms generally consist in building a set of possible networks

each with a corresponding score reflecting how well it fits the data and then select the one with

the higher score. The first and most popular of these class of algorithms is hill-climbing which

can be performed with either random restart or tabu search (Bouckaert 1995). Hill climbing

initiates an empty network and then apply the operations add, remove and reverse to the edges.

At each iteration a score is computed to determine if the new network fit the data better than

the previous one. The algorithm stops when there is no more improvement and the final network

is selected.

The score is usually calculated with the Bayesian Information Criterion (BIC) (Schwarz et al.

1978), but another popular option is the Akaike Information Criteria (AIC) (Akaike 1974).

The BIC is a combination of a log likelihood model and a penalization term which penalizes

complicated models against simpler ones:

BIC = logP (θ) + logP (θ|D)− 0.5× k × log(n)

where θ represents the model, D the data, k the number of parameters and n the number

of observations (sample size). Similarly, the AIC shows a penalization term of 2k instead of

0.5× k × log(n)

Because the BIC takes into account the number of observations (n) it is more suitable to use in

the case of microarray data.

Other score-based algorithms apply genetic algorithms (Larranaga et al. 1997) or simulated an-

nealing (Bouckaert 1995) to overcome issues with local optima.

Hybrid structure algorithms are, as the name suggests, a combination of model selection

and score-based. Some examples are Sparse Candidate algorithm (SC) (Friedman et al. 1999)
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and the Max-Min hill-climbing algorithm (MMHC) (Tsamardinos et al. 2006).

3.6.2 D-separation, Markov property and conditional independence

Once the structure of the network has been detected it is necessary to move our attention to

the quantitative aspect of the network analysis.

Before we explain how to learn the parameters of the network we need to illustrate few concepts

fundamental in Bayesian networks analysis.

The Directed Acyclic Graph (DAG) of a BN represents the set of conditional independence

relationships, which are explained by the directed separation (d-separation) criterion illustrated

in Pearl (1988). Given three subsets of disjoint nodes V1, V2, V3 in a DAG, V3 ‘d-separate’ V1

from V2 if among all the arcs between V1 and V2 there is one node v that satisfies one of the

following:

� v has converging arcs (all the arcs from the adjacent nodes point to v) and none of v or

its children are in V3;

� v is in V3 and does not have converging arcs.

Considering a generic network, the Markov blanket of a node is the structure including the

node’s parents, its children and the other parents of its children. The node is dependent from

the nodes in the Markov blanket and independent from all other nodes in the network. This

implies that it is possible to calculate the distribution of each node in the network by simply

considering the joint distribution of the variables in the Markov Blanket. We declare B as a

BN with respect to the graph G if each node in the network is conditionally independent of all

other nodes, given its Markov blanket. Consequently, we define the Markov property of BNs:

each variable is conditionally independent of its non-descendants given its parents.

The Markov property of Bayesian networks allows to represent the global distribution of

the network X as the product of the conditional probability distributions that are the local

distributions associated with each variable Xi. This is a direct application of the chain rule

(Korb & Nicholson 2003) so that for discrete random variables, the factorization of the joint

probability distribution P (X) is given by:

P (X) =

p∏

i=1

PXi
(Xi|πXi

) (3.8)
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where πXi
is the set of parents of Xi. Equally, for continuous random variables, the joint density

function f(X) is given by:

f(X) =

p∏

i=1

fXi
(Xi|πXi

) (3.9)

In addition, Markov blankets ease the comparison of Bayesian networks using graphical models

based on undirected graphs called Markov networks (Whittaker 2009). A DAG, in fact, can

be transformed in the undirected graph of the Markov Network by applying the moralization

transformation (Nagarajan et al. 2013) which links non-adjacenct parents that share a common

child. The obtained graph is called moral graph (Castillo 1997). Furthermore, because the local

distributions involve only fewer variables compare to the whole network, it also reduces the curse

of dimensionality problem.

Although BNs are defined using terms of conditional independence, there is no implication

that the arcs should represent cause-effect relationships. It could be argued that a ‘good’ BN

represents the causal structure of the data it is describing (Pearl et al. 2009), however in this

research the links between variables are not considered as such.

The aim, now, is to calculate the parameters of the conditional probability distribution/tables

for each node in the network, that best fit the data. Given a probability distribution X and

a dataset D = x1, x2, ..., xn we want to learn a set of parameters θ for X that maximizes the

likelihood (L(θ)) that the data D comes from X. There are two main approaches to estimate the

parameters either through classic bayesian estimation or maximum likelihood: argmaxθ L(θ) =

argmaxθ P (D|θ) = argmaxθ
∏n

i=1 P (xi|θ). Although this simplification, parameters estimation

for high dimensional data such as microarrays, may still be problematic.

3.6.3 Bayesian Network Inference Algorithms

Once the structure of the networks has been chosen and the parameters learnt one more function

of bayesian networks that is extremely useful to researchers is inference. Bayesian inference

also called probabilistic reasoning or belief updating allows to determine the state of a set of

variables given the state of others as evidence. The peculiarity is that it evaluates the evidence

and assign the state value no matter if that state has been observed already or not. This func-

tion is, then, crucial in terms of reducing the number of additional experiments.

The strength of inference is then to determine the state of a variable beyond the observations,

computing the posterior probabilities or densities (Pearl 1988, Koller & Friedman 2009). Given

the Bayesian network B with graphical structure G and parameters Θ we want to analyse the

effect of a new evidence E on the distribution of X using the knowledge encoded in B, which

means to analyse the posterior distribution: P(X|E,B) = P(X|E,G,Θ).
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Considering the example in Figure 3.8 we want to infer, using the logic sampling method (Hen-

rion 1988), the values of Gene 2 and Gene 3 when it is observed that Gene 4 = on. It is clear

from Figure 3.9 that both genes have a much higher probability of being on (green bars) when

Gene 4 is observed to be expressed (on).

Figure 3.9: The figure shows the probability of Gene 2 and Gene 3 being on or off when it is

observed that Gene 4 = on. Note that Gene 1 = G1, Gene 2 = G2, Gene 3 = G3 and Gene 4

= G4.

3.6.4 Prediction

Inference can be used to evaluate the performance of a BN by predicting a node values on a

new independent dataset. In fact, if a BN predicts better it means that there is less overfitting

on the training dataset and the BN can be considered more robust and reliable.

The prediction can either be done on continuous or discrete data. While on discrete data BN

can predict assigning a specific value, on continuous it can only indicate a range. Continuous

data requires calculation of conditional probability distribution which are computationally more

costly and less precise in the prediction. Therefore, it is often better to compute inference in a

discrete environment.

Although, inference can measure the performance of the network, to measure the goodness of

inference it is usually calculated the prediction accuracy which is the proportion of variables’

(genes) values that have been predicted correctly. In this research the prediction accuracy is
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calculated after applying the leave one out cross validation (LOOCV) technique on each dataset

under analysis and the others (externals). Given the m studies and n genes within each dataset

LOOCV uses m-1 studies as a training set and the remaining one as test set.

3.6.5 Application to gene expression profiles

Because of the way Bayesian networks present information and knowledge they are a popular

tool also among non technical practitioners. This of course make them extremely practical in the

analysis of all kind of biological data including gene expression profiles. The very first attempt

to exploit BNs in biology was done by Friedman et al. (2000) by building a framework for dis-

covering interactions between genes based on multiple expression measurements (microarrays).

Later Hartemink et al. (2002) develop a method for elucidating genetic regulatory networks

using Bayesian networks and genome-wide data describing gene expression and transcription

factor binding location. Gyftodimos & Flach (2002) implement a specific case of BNs called

Hierarchical Bayesian Networks to deal with structured data and allow representation of com-

plex hierarchical domains. Pe’er et al. (2006) identify a constrained family of Bayesian network

structures suitable for gene expression data and implement a search algorithm that utilizes these

structural constraints to find high scoring networks from data. In Sachs et al. (2005) they per-

turb cellular signaling networks and simultaneously measure multiple phosphorylated protein

and phospholipid components in thousands of individual primary human immune system cells.

They then apply Bayesian networks to identify both the traditional pathways but also predict

novel pathways that they verified experimentally.

3.7 Conclusion

Several algortihms and combination of them have been developed over the last few decades to

detect the best possible model to build Gene Regulatory Networks from the data. Each method

with its strengths and weaknesses can be applied to discover the underlying mechanism and the

relationship hidden in the data under analysis.

In the next chapter we describe a novel approach that explores some of the methods described in

this chapter in order to identify study-specific gene regulatory networks. In addition validation

techniques are applied to refine and support our findings.
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Analysis of synthetic data

4.1 Introduction

Organisms of any level of complexity (from bacteria to mammalian) developed a large set of

internal mechanisms during evolution, either the normal functioning or as a response to exter-

nal or internal stimuli that differ from normal activity. While many mechanisms, necessary for

survival, carry on mostly unchanged under all conditions the organism is subjected to (e.g. cell

metabolism), others are triggered or modified only when some event external or internal to the

organism (environmental changes, stress, cancer, etc.) happens.

Organisms’ mechanisms, in general, involve large numbers of interactions between thousands of

genes resulting in highly complex networks. However, all the necessary information are usually

fully explained by only a few genes and much smaller networks. Therefore, networks with many

thousands of connections can be rightly reduced in size by few orders of magnitude without loss

of information (Gillis & Pavlidis 2012).

Some conditions might trigger similar mechanisms (more or less based on how similar the con-

ditions are) that researchers identify using consensus networks analysis that identifies links in

common over a number of studies (Swift et al. 2004). Highlighting the similarities, though,

can overshadow or even hide what is unique and typical to one specific condition. Biologists

are clearly interested in what these similarities are but they are also interested in identifying

the condition-specific mechanisms/gene-paths of which knowledge will help in their detailed

understanding.

The novelty of our approach is the ability to semi-automatically identify subnetworks that

are unique to a number of independent studies (unique-networks). Identification of unique

networks can lead to a better understanding of behaviours relevant to that condition. We
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develop a pipeline that, given microarray raw input data from multiple independent studies,

firstly selects a subset of relevant genes, groups the studies with similar mechanisms, identifies

the mechanisms that are specific for each group of studies (study− cluster), and validates them

biologically and statistically through inter and intra study-cluster prediction.

In this chapter we present the pipeline and evaluate its performances by using synthetic

datasets. This chapter is organized as follows. Section 4.2 describes the pipeline. Section 4.3

explains the structure of the simulated data and the pre-processing. Section 4.4 shows the

results. Section 4.5 compares the results obtained by using the biclustering technique. Finally

Section 4.6 summarises and discusses the findings.

4.2 Methods

The pipeline described here, which we call UNIP (Unique Network Identification Pipeline) aims

to discover what genes and the relationships between them are specific to the study or group

of studies under consideration. To achieve this goal, we, first, identify the variables/genes that

uniquely appear in the GRN of one study or one group of studies, and then derive study-specific

gene regulatory networks (unique-networks). Unique-networks can be seen as the sub-GRNs

specific to the group of studies. This helps biologists to identify what are the typical mechanisms

that characterize one study rather than another.

To achieve this we need to sequentially go through a list of steps, each with a specific purpose.

Figure 4.1 shows a schematic representation of the steps involved, each explained in the following

sections.
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Figure 4.1: Pipeline overview. A schematic overview of the sequence of steps forming the

pipeline.
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4.2.1 Single study glasso network

Each organism has underlying mechanisms which apply under normal conditions. When the

same organism is subjected to different conditions (stress, environmental changes, etc...) then

it will need to respond to the change resulting in new paths of genes being highlighted. This

results in new underlying mechanisms and/or changes in already active mechanisms. So, differ-

ent experimental conditions can present different Gene Regulatory Networks (GRNs).

Given m independent studies of the same organism each with the same genes but a different

number of samples we merge them together in a data matrix D. As we want to identify net-

works that go beyond simple pairwise relationships, for each of the m studies we build a Gene

Regulatory Network (GRN) by either applying glasso (see Section 3.5.4) or bayesian networks

(see Section 3.6) both being able to model more complex interactions.

4.2.2 Graph similarity

We integrate several microarray datasets in order to compare different studies. Some studies will

still have some network paths in common (if the genes are regulating one another under those

conditions). For example, heat stress and drought stress will have gene pathways in common with

other stress-related studies. So, at this point of our pipeline the objective is to automatically

detect mechanisms common to similar studies and cluster them using an adaptation of the

sensitivity metric (Baldi & Brunak 2001) to obtain a restricted number of study-clusters. Given

two networks, network 1 (NW1) and network 2 (NW2), the connections that two networks

have in common are the true positives, those that are in NW1 but not in NW2 are the false

positives and those not in NW1 but in NW2 are the false negatives. Therefore, we analyse the

connections in common between two study-networks and build a contingency table. To verify

the reliability of the clusters we compare the results with the description of the studies available

when downloaded from public databases such as ArrayExpress (Parkinson et al. 2007). We

explored a number of clustering techniques but found that k-means (Hartigan & Wong 1979)

generated the most convincing study-clusters.

4.2.3 Consensus networks and unique-connections

In the process of identifying unique-networks we first build the consensus network for each

study-cluster as a representative of the general mechanism for that group of studies (Steele

& Tucker 2008). This step identifies the network pathways that are common to a thr % of

the networks in the study-cluster. Based on the data and the flexibility required we tune the

threshold thr. thr = 100% implies full consensus, meaning that only those edges identified in
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every single-network in the cluster are selected to build the consensus study-network. thr < 100

implies partial consensus and increases or decreases the size of the consensus study-network.

Once we have one consensus-study network per study-cluster, we select only those edges that

exist in the consensus-study network in consideration, but not in the other consensus-study

networks. We call these unique-connections. The resulting list of nodes involved in the unique-

connections is used to build the unique Bayesian networks as explained in detail in the following

sections.

4.2.4 Unique Networks

In the sections described above, we cluster the studies in k groups each identifying one generic

conditions. For each study-cluster a consensus network is constructed that represents the under-

lying gene regulatory mechanism(s) in common for that group of studies. This will allow us to

build more robust GRNs for each study-cluster. As explored in Chapter 2, consensus networks

together with consensus clustering are popular approaches but the focus of this research is to

create and apply the concept of unique-networks.

Given a generic graph G = (V,E). We have m fixed graphs Gi such that Gi = (V,Ei) ,

where V = 1, ..., n is the set of vertices(nodes) of the graph and Ei the set of edges. Ei =

{ei} = {(ui1, vi1), ..., (uiki
, viki

)}, ki =
∣∣∣Ei

∣∣∣ and ki ≤ n(n− 1)/2. We define the unique function

as Φ : G 7→ G, where, given Êi =
⋃m

j=1,j 6=i Ej

Definition 1: We define a function Φ(Gi) such that Φ(Gi) : (V, {ei : ej ∈ Ei and ej 6∈ Êi})

In simple words, the unique function returns the unique-connections (Φ(Gi)) that are the same

set of edges in the consensus network (Gi) of the study-cluster (i) under consideration except

those that also exist in the remaining consensus networks (Êi). An example is explained in

Figure 4.2. Given three consensus study-network, we are interested to identify the unique-

connections for the first study cluster. The dashed lines in consensus study-networks 2 and

3 indicate the connections that each network has in common with consensus study-network 1

and therefore will not be included in the unique-connections set. Genes not involved in any

unique-connections will also be discarded.
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Figure 4.2: Example of unique-connections construction approach. Given three study-clusters

each with a corresponding consensus study-cluster, the unique-connections for study-cluster 1

are the set of connections that are unique for that consensus study-network and do not appear

in consensus study-networks 2 and 3. Dashed connections indicate the connections that each

network has in common with consensus study-network 1 and therefore will not be included in

the unique-connections set. Genes not involved in any unique-connections will also be discarded

(genes crossed out)

4.2.5 Bayesian unique-networks

We choose to validate the networks through prediction using Bayesian Networks (BNs) which

naturally performs this using inference (see Section 3.6.3). We want to compare accuracy for a

network’s own study cluster versus other clusters to highlight its ‘uniqueness’. BNs (Heckerman

et al. 1995, Friedman et al. 2000) are a class of graphical models that represent the probabilistic

dependencies between a given set of random variables. A Bayesian network has a set of variables

called nodes and a set of directed edges between variables called arcs. The nodes and arcs
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together form a directed acyclic graph (DAG) G=(V ,A). Each variable in the network has an

associated conditional probability table of itself given its parents. Having reduced the number

of variables and samples by identifying the unique networks, we build one BN for each of the

study-clusters previously identified based on the genes with unique edges in the consensus-study

networks. To do this we use the hill climbing method (Bouckaert 1995) and the BIC score.

4.2.6 Prediction accuracy

Now that we have one unique-network per study-cluster, we are interested in finding the most

predictive (how well it predicts other expression level values) and predictable (how well its

expression level values are predicted) genes within (intra) and outside (inter) the study-clusters

using the leave one out cross validation technique (refer to Section 3.6.4). The idea is that genes

that are predictive or predicted better within the selected study-cluster than on other studies

are more likely to be relevant to the unique-network. Given the m studies and n genes within

each studies-cluster we use m-1 studies as a training set and the remaining one as test set. We

employ the inference method described in Højsgaard (2012) which, given the n-1 genes, predicts

the expression value of the one left out. Since, at this stage, we are dealing with discrete data we

can compare the predicted value of the left out gene with its real value. The algorithm returns

1 if the real value and the predicted one correspond and zero otherwise. We do this within

all the study-clusters and for all possible combinations of training and test sets of studies and

genes. Finally, we average the amount of correctly-predicted values among the total predictions

to obtain the correct-prediction for each gene.

4.2.7 Biological support

Having identified the study-clusters and, in turn, the study-specific mechanisms within the

unique-networks, we explore the biological meaning behind them by using external tools such

as Mapman (Thimm et al. 2004), the AIC-MICA method (Lysenko et al. 2011) or GeneCards

encyclopaedia (Safran et al. 2010) as well as gaining the help of biologists expert in the field.

For the case of synthetic data this analysis is not necessary as we are able to directly analyse

the id of unique genes.

4.2.8 Biclustering

Part of our pipeline’s purpose is to identify groups of genes involved in the unique mechanisms

specific for a set of conditions (study-cluster) to build unique-networks. Therefore, we compare

our results (the discovered clusters and their associated networks) with the closest technique
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we found that already performs what we are trying to achieve. Biclustering techniques aim

to cluster samples and genes simultaneously (Cheng & Church 2000) but it is important to

highlight that biclustering works on each sample and not on the studies. There are various

implementation variants in the literature for biclustering (Madeira & Oliveira 2004) but for

this work we specifically choose a method called Questmotif which is based on the framework

described in Murali & Kasif (2003), for the simulated (categorical) datasets and the BCS method

for the real datasets of wheat and Fusarium. BCS is a state-of-the-art method that normalizes

the data matrix and looks for checkerboard structures using the well-known technique of singular

value decomposition in eigenvectors applied to both rows and columns (Kluger et al. 2003). Both

BCS and Questmotif are implemented in the R package biclust (Kaiser et al. 2009).

4.3 Data structure

To explore, quantify and test the performance ability of UNIP it is necessary to apply it to well-

known and easily modifiable datasets. Therefore we now examine and verify its performance on

simulated data before we explore real microarray datasets (Chapters 5 and 6).

Following the steps described in Section 4.2 and the schematic flowchart in Figure 4.1, we first

need to build a data matrix, resembling microarray characteristics, that will work as input for

our pipeline. Synthetic data differs from real microarray datasets exhibiting no noise and a

much smaller set of variables. While the first one is addressed adding random noise to the

synthetic data, the latter is overcome knowing that real datasets always require a feature-

selection preprocessing step that massively reduces the original set of variables to a number

close to the dimension of synthetic data. Synthetic data variables are categorical while, on the

other hand, real microarray datasets are continuous. For the purpose of this work the nature

of the variables only slightly affects the pipeline which sees the use of bayesian network instead

of glasso for categorical data, but does not affect the final results. Furthermore, discrete and

categorical data are easier to work with when calculating the prediction accuracy. Bayesian

network, in fact, returns a range of values when predicting a continuous variable but a distinct

value for a discrete/categorical one.

From the Bayesian Network Repository (Scutari 2014), we select the networks: Alarm (Beinlich

et al. 1989) (Figure 4.3), Insurance (Binder et al. 1997) (Figure 4.4) and Child (Spiegelhalter &

Cowell 1992) (Figure 4.5) with 37, 27 and 20 nodes respectively. The possible number of states

of the variables vary from 2 to 6. As a result, the chance to correctly predict them varies from 1
2

to 1
6 . The variables in the alarm networks are categorical with a maximum of 4 possible states.

Out of 37 variables, 13 have only two possible states, 17 have 3 possible states and only 7 have
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4 possible states. Insurance network has 8 variables out of 27 with 2 possible states, 5 with 3,

12 with 4 and 2 with 5. Finally, Child on a total of 20 variables have a maximum of 6 possible

states: 8 variables with 2, other 8 with 3, 1 with 4, 2 with 5 and 1 again with 6.

For each network we download the structure and the corresponding conditional probability

tables and then simulate to randomly take 200 samples. At this point we have three datasets of

sizes: 37 × 200, 27× 200 and 20× 200. Each dataset is representative of a different underlying

structure (much like a gene network under different experimental conditions).

The 84 total variables are far from the usual microarray number of variables (tens of thousands

of genes), but in real dataset is usually required a pre-processing step which apply some feature

selection technique to reduce the number of variables to a computationally reasonable number.

Therefore, in this dataset we assume that the 84 total variables are already the results of the

variable selection which we won’t explore any further in this section, since this is not the main

focus of our work.

Microarrays can be biased and noisy so we need to mimic this behaviour with our simulated

data. Therefore, we perturb the datasets adding noise and creating what we will call from now

on big matrix.

Big matrix represents our simulated data and is composed of 9 smaller matrices. Three matrices

are the datasets sampled from the networks while the remaining six are randomly created based

on the values of the original variables/nodes. If we consider the big matrix as a 3x3 block matrix

composed of nine blocks, each row of the big matrix has one sampled dataset and two random

ones. Figure 4.6 shows a representation of the big matrix where the capital letters A, I and

C indicate the datasets of Alarm, Insurance and Child respectively while R represents random

values (noise).

This structure simulates one organism in which specific group of genes are involved in the

mechanism(s) of one or a group of conditions. So, in Figure 4.6 the genes (rows) from 1 to 37

are characteristics for the specific mechanism(s) described in the condition(s) represented by the

samples (columns) 1 to 200.

In order to test the robustness of our pipeline we gradually introduce noise by swapping

actual samples with random values. We first analyse the big matrix with no noise (0%). Then,

we gradually introduce an increasing percentage (from 10% to 90% with intervals of ten) of ran-

dom samples of the total (noise) and decide to focus on what we find to be the most revealing

noise-levels: 10%, 50% and 90%.

We gather the 600 samples in 15 studies of 40 samples each so that each column-block of big

matrix contains exactly 5 studies of 40 samples each and 84 variables/nodes (37+27+20). In

Table 4.1 we show the correspondence of studies and original networks.
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Figure 4.3: Original structure of the Alarm network.
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Figure 4.4: Original structure of the Insurance network.
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Figure 4.5: Original structure of the Child network.
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Figure 4.6: Big matrix constructed from the datasets generated from the three networks and

six randomly generated datasets which represent the noise. The shaded regions indicate the

non-noisy datasets generated from Alarm, Insurance and Child networks (respectively A, I and

C in the figure). While R indicates random values (noise).
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Studies Network

1,2,3,4,5 Alarm

6,7,8,9,10 Insurance

11,12,13,14,15 Child

Table 4.1: Simulation studies generated independently from the three networks in consideration.

4.4 Results on simulated data

Once the Bigmatrix is set, the UNIP pipeline builds one Gene Regulatory Network (GRN) per

study for a total of 15 networks. Here, due to the categorical nature of the data, we use Bayesian

networks and the smaller number of variables rather than glasso. We learn the structure using

the score-based approach hill climbing (Russell 2003) combined with the BIC score.

Ideally, this pipeline will cluster the studies as they belong to the original networks and detect,

for each study-cluster, the variables that are truly involved in each of them. We calculate the

graph similarity metric described in Section 4.2.2 and apply the k-means (Hartigan & Wong

1979) algorithm with k = 3 (3 is the number of original networks) to cluster the studies in the

bigmatrix.

Figure 4.7 shows the clusters’ arrangement for the original data and for the data with an increas-

ing amount of noise (from 10% till 90%). While at 10% of the noise the study-groups detected

by our pipeline reflect the real studies arrangement, an increase to 50% disrupts the process and

shuffles the studies. As expected, the noisier the input is, the more mixed the study-groups are.

0% and 10% of noise are equivalently good and both perfectly separate the study into the real

clusters. When the noise increases to 50% only two studies gets mixed in the wrong cluster.

Finally, in the case of 90% of noise the clusters are extremely mixed with each other. This

pre-analysis already gives us a good idea of how robust our unique network pipeline is per each

level of noise.

Figure 4.7: Study-clusters for the original data (0% of noise), 10%, 50% and 90% of noise. The

studies’ number highlighted with the same colour belong to the same cluster.
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4.4.1 Unique-networks and intermediate results

For each cluster of networks (study-cluster) we build the consensus (where links in the network

must exist in all networks for that cluster) and identify the unique-connections. Finally, con-

sidering only the genes involved in the unique connections we apply again Bayesian networks to

obtain the unique-networks (where links must only occur in that cluster). Big matrix contains

all 84 variables from all the three networks, which leads to the fact that all the unique study-

cluster networks will most probably include variables and connections that do not belong to the

original structure.

Given the unique-cluster networks, the next step in the pipeline is to compare each original

network with the corresponding obtained unique one for each level of noise. These intermediate

results are visualized in Figure 4.8 and show the ability of the pipeline, at this specific stage, to

detect the true positive (TP) nodes and connections between nodes as the noise increases. TPs

are the number of connections/nodes in the simulated network that are also in the corresponding

original network, while FPs are the number of connections/nodes in the simulated network that

are not in the original one. This, in Figure 4.1 corresponds to the step preceding the calculation

of internal vs external prediction accuracy where non-predictive variables are filtered out. The

number of both TPs and FPs nodes for all the clusters only slightly increase along with noise.

This is due to the fact that at zero noise the pipeline manages to already select the majority of

the correct nodes.

The connections, on the other hand, behave differently. The TPs constantly decrease: only

slightly between no-noise and 10% but decrease much more for noise ≥ 50% with almost zero

at 90% of noise. FPs, instead, tend to increase very slightly for lower percentages of noise in

(Alarm and Insurance). Later, when the data becomes almost completely random, the algorithm

recognizes the faulty information and massively decreases the number of connections detected

to zero. One way to decrease the number of FPs, especially for the nodes, would be to increase

the number of samples per study in the input dataset. Some tests, we have run, proved that

samples need to be more than 200 which is an extremely rare case for microarray datasets.

To summarize, at this stage of the pipeline we discovered that for low levels of noise our

pipeline can robustly identify unique-networks and what is more it is also resilient to moderate

noise up to 50%. Very high levels of noise, however, appear to affect the TPs and FPs of the

connection identification more than the node identification.
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Figure 4.8: TPs and FPs vs noise before calculating the correct-prediction. The figures show

the evolution of TPs and FPs vs noise in terms of nodes (variables involved in the discovered

subnetworks) and connections between nodes. The green dotted lines indicate what is the

original number of nodes. These are the partial results, prior to the filtering of the informative

nodes based on the intra cluster correct-prediction accuracy (which are shown in Figure 4.9).
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4.4.2 Prediction accuracy and final results

Finally, we calculate the inter and intra clusters prediction to validate the predictive power of

the unique-subnetworks for datasets that are clustered together and to filter out any nodes that

do not appear to be uniquely predictive to their study-cluster.

The possible number of states of the variables vary from 2 to 6. As a result, the chance to

correctly predict them varies respectively from 1
2 to 1

6 . So, to be able to say that one variable

is predicting better than chance, its average correct-prediction across training and test sets has

to be higher than its accuracy by chance.

The graphs in Figure 4.9 represent (in the case of 0 % noise) the boxplot of the average correct-

prediction across training and test within each of the three study-groups, including all the

variables involved in the unique network for that group. The study-clusters are listed in the

titles and we can refer to table 4.1 to identify the networks they belong to. The variables

involved in the unique networks for each group of studies are listed in the x axis. We clearly see

groups of variables that stand out. The variables that truly belong to the corresponding real

networks result in having an average accuracy above 0.6 which is significantly higher than their

accuracy by chance. The circled variables are the ones with the highest correct-prediction and

are likely to be the ones that are involved in the original networks.

Similarly, Figure 4.10 shows the distribution of the node’s intra cluster correct-prediction when

the noise is increased to 10, 50 and 90%. As we increase the noise, a number of things come to

our attention. For lower percentages of noise, the variables’ accuracy histogram shows one major

peak at high correct-prediction values and another smaller peak at low correct-prediction values

creating bimodal distribution. While the higher peak indicates the TPs, the lower one identifies

the amount of FPs. An increase of noise, however, gives a more uniform distribution. Even

for the highest level of noise there are still a good number of nodes with relatively high intra

cluster (within the same study-cluster) correct-prediction levels. This gives us confidence that

even for the noisiest datasets, the pipeline is still capable of identifying key variables. Although

the clusters become incorrect they contain enough correct studies to learn predictive models.

Following the flowchart, we now select the variables that truly are involved in the network

mechanism setting a threshold for the accuracy (Section 4.2.6 - Prediction accuracy). Different

thresholds return a different number of TPs and FPs. Results show that for a threshold accuracy

of 0.6 we obtain the best combination of TPs act while the number of TPs is very high, the

number of FPs is reduced to zero. Which means that calculating the intra cluster correct-

prediction allows to discard all the variables that are not involved in the original network.

Figure 4.11 shows the behaviour of FPs and TPs as the noise increases, this is compared to
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Figure 4.8 before filtering unpredictive variables.

As expected, when we increase the noise TPs’ trend decreases while FPs slightly increases. The

noisier the data are, the more difficult it is to set a threshold for the variables. The reasons

for this are twofold: because the trend of FPs is higher and because both trends reach zero

very quickly. Even if the number of TPs detected by the pipeline decreases when the noise level

exceed 0.5, the number of FPs remains close to zero for all level of noise. This shows that even

for extremely noisy and biased input data, the pipeline is still able to detect variables that are

highly important.
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Figure 4.9: Intra cluster correct-prediction for simulated data. The figure shows the boxplots of

the intra cluster correct-prediction (calculated within the same cluster using cross-validation)

for the simulated dataset in the case of 0% of noise.

71



Chapter 4. Analysis of synthetic data

Figure 4.10: Intra cluster correct-prediction distribution for 10, 50 and 90% perturbation. The

figures show the histograms of the intra cluster correct-prediction (calculated within the same

cluster using cross-validation) for the simulated dataset for different levels of noise.
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Figure 4.11: TPs and FPs vs noise after calculating correct-prediction. The graphs show the

number of TPs and FPs nodes and connections detected at different levels of noise. Threshold

set to 0.6. The dotted lines at the top of the graphs indicates the number of nodes in the relative

original network.
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4.5 Comparison with Biclustering

We now compare our pipeline with a biclustering method called Questmotif which is based on

the framework described in Murali & Kasif (2003). Biclustering identifies both genes and samples

simultaneously so whilst subnetworks are not discovered (which our approach focuses on), it

should at least identify variables that are clustered for specific studies. We apply biclustering to

the same big matrix dataset of 600 samples and 84 variables, and exploit the results. Questmotif

detects 9 biclusters. Cluster 1 groups 124 samples out of which 122 belongs to network alarm,

and 8 variables all involved in the alarm mechanism. Cluster two groups 261 samples of which

190 belongs to network insurance and only two genes both belonging to the insurance network.

Cluster 3 groups 93 samples, 88 of which belong to the child network along with 4 variables

from the child network. Bicluster 4 groups 20 samples and 10 variables from the alarm network.

Bicluster 5 still groups a majority of samples belonging to alarm. The remaining clusters groups

have mixed samples and mixed variables in a very low number. The results are shown in Figures

4.12a and 4.12b

Overall, bicluster does not perform as well as our pipeline. It manages to identify a respectable

number of correct samples, but fails at detecting as many corresponding true variables as our

pipeline (and no connections are discovered as it is not a network-based approach).

4.6 Discussion

In this chapter we have explained our aims with its challenges and proposed a combination of

steps to overcome them and achieve our goal. The pipeline developed is called UNIP (Unique

Network Identification Pipeline) and consists of a list of steps to deal with certain characteristics

of microarray data. To verify that UNIP robustly and reliably generates unique networks we test

it on multiple independent synthetic datasets downloaded from a publicly available repository

database.

We selected three networks with comparable numbers of nodes in a way that when the datasets

are integrated the total number of variables stays below 100. This allows Bayesian networks to

work with a computationally reasonable input dataset.

To simulate different conditions and the noise typical of real microarrays, we merge the data

together adding random values. We also perturb the original data to simulate increasing level

of noise from no-noise (0%) to 10% until 90%. For each level of noise a GRN for each study is

built using Bayesian networks. Given the graphical structure obtained, the similarity measure

is calculated and the studies are grouped in study-clusters. Finally, for each study-cluster a
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(a)

(b)

Figure 4.12: The figures show the group of samples and variables respectively obtained using

the bicluster method QuestMotif (Murali & Kasif 2003). Each bar represents a sample-group

indicated with a number on the x-axis. The different colours indicate to which original network

the samples in the sample-group truly belong to. The y-axis indicates the number of samples

in Figure a and the number of variables in Figure b.
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consensus network first and a unique-network afterwards is built and the prediction-accuracy

intra and inter clusters is measured.

The simulated data study indicates that our pipeline works almost perfectly when the input

data presents no-noise (0%). The same behaviour is followed when the noise level only slightly

increases to 10%. Furthermore, it proved to be reasonably resilient to noise until 50% of the

data is affected. While as expected much of the power is lost when the data is 90% or more

random and therefore contains little information.

Both the network clustering process and the detection of variables that truly belong to the

original networks seem robust and only fail at higher level of noise.

In conclusion we can state that our pipeline appears robust and reliable enough to explore real

microarray data.

In the following chapter we will use our method with two sets of real microarray data studies:

Wheat and Fusarium. Unlike the case of synthetic datasets, real data requires a pre-processing

step which may affect the following results. In addition to the prediction-accuracy two different

tools Mapman (Thimm et al. 2004) and AIC-MICA (Lysenko et al. 2011) are used as support

to the biological validation. We will show that wheat datasets behave similarly to the case of

zero or very low noise, while Fusarium appears to be associated with noisier data as a result of

more clearly defined conditions for wheat.
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Analysis of Real Data

5.1 Introduction

In the previous chapter we developed a pipeline called UNIP to semi automatically identify

subnetworks that are specific to a set of conditions. The pipeline takes as input a set of raw

independent microarray datasets (studies) obtained using the same platform to avoid bias and

extra pre-processing. The data is downloaded from public databases such as Array Express

(Rustici et al. 2013, Parkinson et al. 2007) and NCBI GEO (Edgar et al. 2002). For each study

it builds a GRN and uses a network similarity measure to group the studies into study-clusters

using clustering which aims to cluster studies which belong to similar generic conditions. For

example ‘salt stress’ and ‘drought stress’ both belong to the generic category of ‘stress-enriched’

and are therefore clustered together. After a consensus network for each study-cluster is cal-

culated the unique-networks (study-specific subnetworks) are derived. Finally intra and inter

clusters prediction accuracy are calculated to refine the results.

The first step developing this pipeline was to test it using synthetic data with characteristics

that are already well known in order to evaluate the results. The findings proved the pipeline

able to reliably identify sub-networks specific to a set of studies and to be robust for quite

high levels of noise. Microarray data generated from organisms subjected to different conditions

(even under well standardised experimental conditions) involves a lot of bias and noise.

We now apply UNIP to real datasets, explore the findings and statistically evaluate the results.

When analysed we have to keep into consideration experimental variation, bias and both hu-

man and machine errors without forgetting issues with the structure of microarray, involving

thousands of genes but only few tens of samples. In this Chapter we focus our attention on two

different organisms: wheat and on Fusarium.
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The following Chapter is organized as following. Section 5.2 describes the adaptations made

to the UNIP pipeline to work with real datasets. Section 5.3 explains the real dataset structure

and the results obtained from our pipeline. Section 5.4 compares the findings with other popular

techniques. Section 5.5 shows what we found in the literature in support of our findings. Section

5.6 explores the results on Fusarium. Finally, section 5.7 discusses the findings.

5.2 Pipeline adaptation to real datasets

As previously explained, the number of variables in microarray data and connections between

them can be reduced by several order of magnitude without any loss of information. Therefore,

a preprocessing step is necessary, first, to make UNIP applicable to real data.

5.2.1 Variables selection

The first real data set we focus on is wheat. Wheat is an hexaploid organism and consequently

presents a highly developed genome with 61290 genes (about three times the human genome) and

therefore requires the identification of informative genes. To prevent noise and bias increasing

we choose not to cluster but to discard all non informative genes. Knowledge of wheat is still

young, so we decide to focus on those genes that researchers have already explored and assigned

a (preliminary) function to.

The Gene Ontology database (Ashburner et al. 2000), as the name says is an up-to-date

tree-structured ontology database which describes gene products in terms of their associated

biological processes, cellular components and molecular functions in a species-independent man-

ner. We first discard all the genes that are not yet present in GO to focus on genes that we can

validate biologically. This filtering step reduce the variables number to about a third (21487).

All the studies downloaded for wheat have the characteristic of including one or few control

samples. If a gene is particularly informative we expected it to behave very differently in the

treated samples compared to the controls. Consequently its variance within the study under

consideration will be high. Therefore we select the most informative genes selecting those with

a variance higher than a threshold thr. As is commonly performed in gene expression analysis

(see Section 2.4) we preserve only those genes that passed the thr threshold in at least s studies.

Both thr and s are set by the user depending on the computational needs.
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5.2.2 Consensus and unique networks

Once the most informative variables/genes have been selected, we simply apply each step of the

pipeline UNIP described in Chapter 4.2 an overview of which is showed in Figure 4.1. Given

n independent studies we firstly need to derive n GRNs, one for each study. Because of the

continuous nature of microarray data and the higher number of genes (compared to synthetic

data) we opt for glasso rather than BN learning. Glasso (Friedman et al. 2008, 2014) is a

highly scalable approach which calculate the inverse covariance matrix using the lasso penalty

(Tibshirani 1996) to define the dependencies between the nodes. To make the network as sparse

as possible glasso uses the regularization parameter ρ. If ρ = 0 there is no penalization and

consequently the matrix is not made more sparse. The higher ρ is set to be the more sparse the

matrix become meaning that the weaker connections are discarded and only the strongest and

more reliable are revealed.

Given the n glasso derived networks we calculate the sensitivity measure to quantify the

graph similarity across all the studies and use it to cluster them using k-means, as it proved to

be the most accurate. For each study-cluster we derive the consensus network which consists of

the connections in common among all the studies (or a percentage of them) within the study-

cluster under consideration.

Next, we identify the connections in each consensus-network that are present in the network

under consideration but not in the others (unique-connections) and consider the genes that

the unique-connections link together. Now from the original microarray dataset and for each

study-cluster, we select the sub-dataset containing the genes involved in the unique-networks

and the samples of the studies in the study-cluster under consideration. We discretize the value

of the sub-dataset and build the unique-networks applying the Bayesian networks (Heckerman

et al. 1995, Friedman et al. 2000) through the bnlearn package (Scutari 2009) using hill climbing

coupled with the Bayesian Information Criterion (BIC) (Schwarz et al. 1978).

Finally to statistically evaluate our findings we calculate inter and intra cluster prediction

accuracy. Across all study-clusters we derive a training and a test set using the leave-one-out

cross validation (refer to Section 3.6.4). If the gene value is predicted correctly a 1 is assigned,

zero otherwise. The average prediction is calculated across all genes and for all training and

test combinations, to obtain the prediction accuracy.

5.2.3 Biological support

Having identified the study-clusters and, in turn, the study-specific mechanisms within the

unique-networks, we explore the biological meaning behind them. To do this, we exploit two
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pieces of software:

1. Mapman (Thimm et al. 2004) which explores gene-by-gene the functions related to it and

returns a list of functions and a graph of connections

2. The AIC-MICA method (Lysenko et al. 2011). The method identifies functions in the

biological process aspects of the Gene Ontology that best characterise particular groups of

genes. It uses both the structure of the ontology and a term specificity measure (informa-

tion content, IC) to find terms that are both biologically specific (e.g. not too high-level)

and applicable to the largest possible subset of each group. Therefore, unlike the over-

representation measures, it gives a general idea about the role of the cluster as a whole

and a level of ontology at which such commonality could be found (e.g. average IC of the

found terms).

The combination of these tools allows us to identify gene functions that are characteristic of the

study-cluster in consideration, adding credence to our findings.

Finally, in the case of the wheat dataset, to prove that the results are robust and consistent,

we conduct a search in the literature for every gene involved in the unique-networks and its

connections. The results of this research are explained in Section 5.5.

5.3 Wheat results

We now focus on the analysis of various wheat transcriptome datasets derived from multiple

experiments of plants subjected to a range of treatments: stress, development, etc. Unprocessed

wheat microarray expression data for this work was downloaded from ArrayExpress database

(Parkinson et al. 2007). Only studies using A-AFFY-57 GeneChip Affymetrix Wheat Genome

Array technology which profiled wheat species were included. The combined dataset was

pre-processed using Robust Multichip Average method (Irizarry et al. 2003) and redundancy-

adjusted Pearson correlation coefficient was calculated according to the method described in

Obayashi et al. (2011).

The combined microarray dataset contains 61290 and 16 independent studies for a total of 523

samples. Each study represents a different treatment the plant has been subjected to, as shown

in Table 5.1. Studies 1-6, 12, and 13 are considered stress-enriched, and the remaining as non-

stressed treatments based on the labels taken from Array Express (Parkinson et al. 2007, Rustici

et al. 2013).
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Wheat Studies

Study Label Number samples Description

1 E-MEXP-971 60 Salt stress

2 E-MEXP-1415 36 S and N deficient conditions

3 E-MEXP-1193 32 Heat and Drought Stress

4 E-MEXP-1694 6 Re-supply of sulfate

5 E-MEXP-1523 30 Heat stress

6 E-MEXP-1669 72 Different nitrogen fertiliser levels

7 E-GEOD-4929 4 Study parental genotypes 2

8 E-GEOD-4935 78 Study 39 genotypes 2

9 E-GEOD-6027 21 Meiosis and microsporogenesis in

hexaploid bread wheat

10 E-GEOD-9767 16 Genotypic differences in water

soluble carbohydrate metabolism

11 E-GEOD-12508 39 Wheat development

12 E-GEOD-12936 12 Effect of silicon

13 E-GEOD-11774 42 Cold treatment

14 E-GEOD-5937 4 Parental genotypes 2 biological

replicates from SB location

15 E-GEOD-5939 72 36 genotypes 2 biological replicates

from SB location

16 E-GEOD-5942 76 Parental and progenies from SB location

Table 5.1: Study numbers, labels, number of samples and descriptions of the wheat microarray

dataset.

Each study contains a variable number of samples, the majority derived from the treatment

and only few as controls. Because of this after filtering the genes existing in the GO (Ashburner

et al. 2000) database (reduced to 21487 genes) we further reduce the number of variables calcu-

lating the standard deviation across each study and select only the genes presenting a sd higher

than a user-defined threshold set to 2. This leaves each study with a different set and number

of genes. To standardise and allow a comparison we globally select the genes that exceed the

sd threshold in at least 4 (25%) of the 16 studies to obtain a final number of informative genes

equal to 67. Again this percentage can be customized based on the user needs.

Once the relevant genes are selected, following the step of UNIP, we apply glasso to build a net-

81



Chapter 5. Analysis of Real Data

work for each study and then, calculate the sensitivity measure in order to cluster the studies

based on graphical similarities. As for the simulated data, we explored k-means (see Section

3.2 ) which generated the most convincing study-clusters. We evaluated different values of k

but found that 3 clusters were the most revealing. Table 5.1 demonstrates that the studies can

be grouped in two generic conditions: stress-enriched and non-stress. The clusters resulting

from k-means are: {2, 5, 6, 10, 12}, {1, 3, 4, 9, 11, 13} and {7, 8, 14, 15, 16} based upon the studies

numbering from Table 5.1. While the third cluster clearly groups together all the non-stress

studies, the other two reflect studies that are stress enriched. In the Figures 5.1, 5.2 and 5.3 we

show the unique-networks, learnt with bnlearn, for wheat in the two study-clusters of stress-

enriched conditions (Figures 5.1 and 5.2) and the unique-network for the non-stress conditions

cluster (Figure 5.3). Once the unique-networks for each cluster are derived, we calculate the

prediction-accuracy using the leave one out cross validation (LOOCV) technique as explained in

details in Section 4.2.6. For each combination of training and test set we build the corresponding

unique-network and use this structure combined with the data to derive the conditional proba-

bility tables associated with it and consequently calculate the prediction accuracy for each gene

involved. A clear and visible consequence of this is the existence, in the unique-networks derived

from each cluster, of highly predicted isolated nodes (prediction-accuracy≥ 0.6). Although these

nodes are isolated, in the networks in these figures, they clearly have one or multiple parents in

at least one of the unique-networks derived during the LOOCV.
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Figure 5.1: Network 1. Unique-Network for wheat under stress-enriched conditions in cluster

1. The highlighted genes (black and grey) have a intra prediction accuracy higher than 0.6,

meaning that they have been predicted correctly at least 60% of the times by the remaining genes

inside the same study-cluster. The network shows one big path starting with a highly predicted

stress related gene (black genes number 29) connected through one gene (47) to a two more

stress related genes all directly connected to highly predictive genes and another stress-related

path involving the genes 41-53-23-25.

83



Chapter 5. Analysis of Real Data

Figure 5.2: Network 2. Unique-Network for wheat under stress-enriched conditions in cluster 2.

Grey nodes indicate highly predictive (average correct-prediction level higher or equal to 0.6)

genes. Black nodes highlight highly predictive and stress related genes. This network presents a

high number of highly predicted genes, but only one that is highly predicted and stress-related.

84



Chapter 5. Analysis of Real Data

Figure 5.3: Network 3. Unique-Network for wheat under non-stress conditions in cluster 3. This

network is composed of multiple smaller sub-networks not immediately related to each other.

Few genes of those involved are still stress-related (black nodes) and almost the total of the

them present high prediction (grey nodes).
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For visualization purposes the numbers identify the genes (the corresponding gene number

and boxplot of each gene’s internal prediction are found on appendix table) and the black

circles represent in both the highly predictive genes that are involved in biotic (caused by living

organisms) and abiotic (caused by non-alive factors) stress response. In both networks we clearly

see specific paths and groups of genes that are highly connected. Using Mapman (Thimm et al.

2004) we were able to associate a function to each gene.

Focusing on the stress-enriched conditions network, the procedure has managed to identify a

relatively small number (58) of well-connected nodes which form a distinctive path. Isolated

points are not shown because uninformative. We see that genes involved in both kinds of stress

response (biotic and abiotic stress) are involved in the network. Specifically the first four genes

that start the network pathway in Figure 5.1 (29 - 47 - 17 - 30) are all involved in biotic stress.

The remaining highlighted genes instead are mostly involved in heat stress. A good number of

photosynthesis related genes are also involved, in particular (18 - 27 - 21 - 28 - 6 - 22). On the

non-stress related network in Figure 5.3, we have again identified a reasonable number of genes

though these are less connected. However, one very well defined pathway exists that consists

mainly of photosynthesis-related genes (not highlighted).

In the same network in Figure 5.3, less genes are found that are related to stress response and

those that do appear are much less connected, except for the path formed by (46 - 57 - 26 -

50) nodes. The software described in Lysenko et al. (2011) returns the following (see Table 5.2)

highlighted biological functions which go to reinforce the results from Mapman. Higher values

of Information Content (IC) are associated with more informative terms. Values greater than 3

are generally considered to be biologically informative.

In the Figure 5.4 we show the intra predictive accuracy boxplot for each study-cluster and

a line which indicate the average inter clusters prediction-accuracy. What we expect is a better

correct-prediction within the study-clusters and a weaker one outside the clusters. Each boxplot

represents the percentage of how many times the gene has been predicted correctly among all

the different given samples.

The chance of correctly predicting the genes randomly is one in three (there are three possi-

ble states for each gene: under-regulated, normal, over-regulated ). Values above this can be

considered better than random. In the figures we clearly see that the intra cluster predictions

(calculated by cross validating within a study-cluster) are quite high for most of the genes with

little variations. For the inter cluster predictions (predictions on data outside of the study-

cluster), however, the mean correct-prediction values are mostly not better than chance as one

would expect, and the standard deviations are very high making them not reliable. In the ma-

jority of the cases, in fact, when a gene has an extremely high intra cluster correct-prediction it
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also shows a very low or a wide standard deviation in the inter clusters correct-prediction graph.

This implies that the identified subnetworks are indeed specific to their study cluster, making

them easier to characterise.

Figure 5.5 summarizes the results shown in Figure 5.4. It shows a comparison of the average

mean and average variance across all genes between intra-cluster and inter-clusters prediction-

accuracy. As expected it shows a very clear distinction in Network 1 and Network 3 study-

clusters with intra-cluster prediction always higher than the inter-clusters. The poor perfor-

mance of Network 2 is easily explained by the fact that study-cluster 2 is not a good cluster

containing half stress-enriched studies and half non-stress.

U-N GO Id GO Name IC

1 GO:0019538 protein metabolic process 3.19

1 GO:0006950 response to stress 3.96

1 GO:0071840 cellular component organization or biogenesis 3.98

2 GO:0006950 response to stress 3.96

2 GO:0071840 cellular component organization or biogenesis 3.98

2 GO:0019684 photosynthesis, light reaction 8.32

2 GO:0044267 cellular protein metabolic process 3.45

3 GO:0006950 response to stress 3.96

3 GO:0015979 photosynthesis 7.13

3 GO:0071840 cellular component organization or biogenesis 3.98

3 GO:0009628 response to abiotic stimulus 4.97

3 GO:0042221 response to chemical stimulus 4.12

3 GO:0006091 generation of precursor metabolites and energy 5.14

3 GO:0044267 cellular protein metabolic process 3.45

Table 5.2: Wheat Unique-Networks(U-N) biological process functions from Gene Ontology as

described in Lysenko et al. (2011). IC values greater than 3 are considered to be biologically

informative.
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Figure 5.4: Boxplot intra clusters prediction. The boxplots in each figure represents the intra

(internal) cluster prediction-accuracy for each gene where the line indicates the average inter-

clusters (external) prediction-accuracy.
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Figure 5.5: Boxplot intra vs inter clusters correct-prediction.

5.4 Wheat comparison

5.4.1 Comparison with Bicluster

Finally, we compare the results obtained with our algorithm in wheat with the one obtained

using the Spectral Bicluster algorithm (Kluger et al. 2003). The method, after appropriately

tuning the parameters, identifies 17 biclusters. On the wheat data each resulting bicluster

highlights a different set of samples but the same set of six genes, 5 of which are related to

abiotic heat stress. The genes highlighted by biclustering are also in the list of genes detected by

the algorithm described in this paper, specifically we can see five of these genes also highlighted

in Figure 5.1 (23 -25 - 41 - 46 - 53). This discovery points out the importance of these 5

stress-related and 1 protein-degradation-related genes but unfortunately biclustering fails at

identifying other equally important stress-related genes identified by our algorithm. In addition

the six genes that are identified do not seem to be associated with a specific subset of samples.

Rather each of them have been detected in all of the biclusters. Regarding the samples, about

half of the biclusters manage to group together samples of stress-enriched studies but split

samples from the same study. Unfortunately, none of the biclusters group the non-stress studies

accurately enough to identify specific non-stress clusters. Furthermore, considering that each
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study consists of both actual treatment samples and a small number of controls it might be

that biclustering merges together the control samples of the stress-conditions with non-stress

samples but this union occurs too often and with too many samples for this to be considered

the case. In conclusion, we have found that the resulting biclusters do not properly cluster the

samples together, even ones belonging to the same study. Every bicluster highlights the same

group of genes preventing any discovery of differences between treatments. It still discovers some

important genes but much less than the ones we are able to find with the method proposed in

this thesis.

5.4.2 Comparison with WGCNA

As previously pointed out the glasso technique goes beyond simple pairwise relationships esti-

mating a sparse inverse covariance matrix using the lasso (L1) penalty. We compare it with the

WGCNA (Weighted Gene Co-expression Network Analysis) technique as explained in section

3.4 of Chapter 3. We applied both the scale free criterion for each study obtaining an array of

different values of beta and then with only one value of beta set to 6 which is suggested to be

the most appropriate value (Horvath 2005). In both cases the results are extremely similar. Of

the three clusters obtained with k-means only one of the stress clusters is quite reliable while

the other two are quite mixed or meaningless (only two elements). Furthermore the unique

networks reveals very small size graphs with much less nodes (less than 10) involved and very

few connections. The small number of nodes detected in WGCNA have also been previously

detected in glasso. As expected, the intra cluster correct-prediction is extremely good for the

genes involved in each study-cluster, but, in this case, the number is so little that these results

leave some strong doubts on the WGCNA algorithm usability on this dataset. Next, we show

another case study with Fusarium microarray data.

5.5 Biological validation - literature

A key focus of this work is the exploration of wheat of which there is still much uncertainty. We

now explore in some detail the biological feedback based on the discovered unique networks. The

three networks in Figures 5.1, 5.2 and 5.3 are indicative for different sample sets e.g different

stress conditions. They represent increase in the gene transcription for certain genes and the

links between them. Eighty percent of Networks 1, 2 and 3 are consistent with the literature.

The remaining twenty percent did not present direct correlation though there is evidence for

some correlation in database sources such as The Arabidopsis Information Resource (Lamesch

et al. 2012), NCBI - The National Center for Biotechnology Information (Edgar et al. 2002)

90



Chapter 5. Analysis of Real Data

and Plant Transcription Factor Database (Pérez-Rodŕıguez et al. 2009).

First, the main genes correlated to biotic stress were basic chitinase. Basic chitinases are an-

timicrobial proteins that are capable of degrading fungal cell wall chitin. They are two classes

either basic or acidic isoelectric points (Samac et al. 1990). Gene 19 (PR3 (Basic chitinase)) in

network 2 (NW2) in Figure 5.2 (30 in NW1, Figure 5.1; 15 in NW3, Figure 5.3) is correlated

to gene 30 (allergen V5/Tpx-1-related family protein) in NW2, followed by 35 (BMY1, (BETA-

AMYLASE)) in NW2 and 31 (PR3, (Basic chitinase)) in NW2. Basic chitinase (19 in NW2)

also affects 49 (CK215257 Dirigent-like superfamily) via gene 4 (cysteine proteinase, putative).

Allergen V5, pathogenesis related 4 and basic chitinase (29, 47, 17 in NW1; 30, 19 and 50

in NW2, respectively) are represented in both networks with different links between the gene

expressions. Differently in network three (NW3) begins with gene 20 (PR3, (Basic chitinase))

followed by 51 (HEL, PR-4, (Pathogenesis-related 4)) and 36 (BMY1, (Beta-amylase)), where

allergen V5 is completely missing. Therefore we conclude that gene expression of allergen V5

may be only visible under certain stress conditions.

Glycine decarboxylase complex H (gene 39, NW1) was correlated to transcription of Rubisco

gene (56, NW1) that regulated genome uncouples 5 (GUN5). GUN5 is a plastid derived signal

that plays an important role in the coordinated expression of both nuclear and chloroplast lo-

calised genes that encode photosynthetic-related proteins (Mochizuki et al. 2001). It regulated

genes 21 (LHCA1), 28 (PSAK (Photosystem subunit K)), 6 (LHCB5 (Light harvesting complex

of photosystem II 5), 22 (PSAD-1 (photosystem I subunit D-1)) and 4 (cysteine proteinase, pu-

tative) and gene 18 (LHCB1.5, Photosystem II light harvesting complex gene 1.5). Followed by

gene 27 (LHCB3*1, Light-harvesting chlorophyll binding protein 3) and 5 (RNS1 (Ribonuclease

1); endoribonuclease) confirming its functional properties. In NW2 the relationship between

Rubisco (gene 58, NW2) and glycine decarboxylase complex H (44, NW2) seems to be in the

opposite direction. The previously published data suggest that the expression of both genes

is light dependent and tissue specific, which is due to 259-bp upstream region of the promoter

region (Srinivasan & Oliver 1995). In both NWs ferredoxin gene (59, NW2) and (57, NW1))

was linked to Rubisco and glycine decarboxilase complex. Due to physiological importance of

these genes in both networks the two relationships could be correct. In NW3 the photosynthetic

reaction is regulated by MYB like transcription factor (19, NW3) and glycine decarboxylase

complex (44, NW3) while the transcription of Rubisco gene is below the level of significance

(Kwon et al. 2013).

Photosystem I was represented by genes 22 and 28 in NW1; 24, 29 and 22 in NW2; and

24, 31 34 in NW3. The photosystem I composed of four complex (Lhc (light harvest complex)

proteins and a1-Lhca4 belonging to the light harvesting protein family (Wientjes & Croce 2011).

91



Chapter 5. Analysis of Real Data

Also the light harvesting complex II (LHCII) is implicated by the regulation of excitation energy

distribution between Photosystem I (PSI) (21, NW 1) and Photosystem II (PSII) (6, NW 1)

during the state transition and also light-harvesting complex II binds to several small subunits

of photosystem I (Zhang & Scheller 2004). PSI-K subunit of photosystem I (28, NW1; 29,

NW2 and 31, NW3), is involved in the interaction between light harvesting complex I and the

photosystem reaction centre core (Ihalainen et al. 2002, Jensen et al. 2000).

The main trimeric light-harvesting complex of higher plants (LHCII) consists of three differ-

ent Lhcb proteins (Lhcb 1-3) in Arabidopsis thaliana. In NW1 these genes are 27 (LHCB3*1,

(Light-harvesting chlorophyll binding protein 3) and gene 18 (LHCB1.5, (Photosystem II light

harvesting complex gene 1.5)) (Damkjær et al. 2009). Gene 6 or LHCB5, (Light harvesting com-

plex of photosystem II 5), this gene is significant because is affected by different light regimes

in rye plants. It may be also indicative for wheat function due to the high similarity in the gene

sequences between wheat and rye. In NW2, the genes 7, 8 were the same as in the NW1. Also

gene 33 (PSAN (photosystem I reaction centre subunit PSI-N); calmodulin binding), 42 (APX4

(Ascorbate peroxidase 4); peroxidase) are related due to their function in photosynthesis (Bang

et al. 2008).

Other fundametal parts of the network are the group of heat shock proteins. The major

groups are HSP100, HSP90, HSP70 and they are also confirmed in wheat (Grigorova et al. 2011).

The novel finding in NW1 is that the genes indicated by 41 (HSP70), 23 (HSP101 (Heat Shock

Protein 101)), 53 (HSP70), 25 (HSP21) and 46 (ATHP22.0) are related to a protein degrada-

tion gene 54 (CLPP wheat.gb/CA607537) which is 98% similar to AB042240 Triticum aestivum

chloroplast (http://www.ncbi.nlm.nih.gov/nucleotide/13928184). This finding provides new in-

sights into relationships between heat shock proteins and this particular chloroplast gene that

seems to have a regulatory function over the sequence in Figure 5.1. In NW2 transcripts for

heat shock proteins were not present.

In NW2 the main effects were indicated with the gens MLP-like protein (39, NW2 and 35,

NW1), beta amylase (35 in NW2 and 33 in NW1) and rare-cold inducible (RCI) 54, NW2

and 51, NW1). The MLP-like protein is related to beta amylase but there was no explanation

exactly how (Ando & Grumet 2010). The link with rare-cold inducible protein and one helix

protein seems impossible because rare cold inducible protein is expressed in the roots and is

mainly restricted to endodermis (Llorente et al. 2002), one helix protein belong to one of the

light-harvesting chlorophyll a/b-binding (Lhc) proteins (Andersson et al. 2003). More research

would be required to prove or disprove the relationship between them. Transcript for MLP-like

protein in NW3 was not detected to be involved in the network (Figure 5.3; NW3).

ATPRX Q; antioxidant gene (42, NW1 and 46, NW2 and 47, NW3) is central for NW1 and
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NW2 but peripheral for NW3. It is highly expressed in leaves and low expressed in the stem. Its

expression patterns indicated that is induced by ultraviolet irradiation, low temperature and salt

stress. The induction of Prx in response to abiotic stimuli may suggest that Prx may protect

the host against environmental stresses (Kim et al. 2010). It looks like gene 42 affects gene

41 (HSP70T-2; ATP binding) and gene 7 (PSBS, (Nonphotochemical quenching), 16 (lipase,

putative) and 38 (APX4 (Ascorbate peroxidase 4); peroxidase) and it is itself affected by 39

(GDCH (Glycine decarboxylase complex H)).

The transcript of the chloroplast glyceraldehyde-3-phopshate dehydrogenase (phosphorylat-

ing, E.C 1.2.1.14) (GADPH) (38 (GAPA-2—GAPA-2) was only found in NW2. In higher plants

exists as heterotetrameter that catalyses the reductive step of the Calvin cycle (Baalmann et al.

1996). GAPA-A subunit was also identified chloroplast localized proteins (Infanger et al. 2011).

GAPDH is a classical glycolytic enzyme that is involved in cellular energy production and has

suppressed heat shock-induced peroxide production and cell death (Baek et al. 2008). It is also

involved in spontaneous assembly of photosynthetic supramolecular complex with CP12 protein

that contributes to Calvin cycle regulation and phosphoribulokinase (PRK) in photosynthetic

organisms (Marri et al. 2008). It is surprising that the tree proteins GAPDH, CP12 and PRK

are not expressed together (Marri et al. 2005). The importance of this gene is its involve-

ment in photosynthesis and Calvin cycle regulation at the same time. Its strategic place in our

NW2 points that this gene could be a potential target for further investigation to establish the

relationships and regulatory function in both processes.

As described in these biological findings the networks principally highlight stress (as ex-

pected), photosynthesis and the Calvin cycle mechanisms. The majority of the links identified

by our method have been observed in the literature validating the reliability of our pipeline.

The remaining relationships, on the other hand, may be a starting point for further analysis.
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5.6 Fusarium results

Together with wheat, we also analyse a Fusarium graminearum dataset. The microarrays related

to this organism (downloaded from Dash et al. (2012)) include 18069 genes and 158 samples

gathered in 13 treatments as shown in Table 5.3. We apply the variable selection, as described

in Section 5.2.1, and we reduce the number of variables from 18069 to 98. For computational

reason we aim to keep the number of genes under 100, though this can be altered at the discre-

tion of the analyst.

Fusarium Studies

Study Label Samples Description

1 FG11-CEL 9 Gene Regulation by Fusarium TFs Tri6 and Tri10

2 FG13-CEL 18 The TF FgStuAp influences spore development,

pathogenicity and secondary metabolism

3 FG14-CEL 8 DON induction media

4 FG2-CEL 9 Expression Profiles in Carbon and Nitrogen

Starvation Conditions

5 FG3-CEL 14 Cross-species hybridization

6 FG1-CEL 18 Transcript detection on Morex barley spikes

7 FG12-CEL 15 Gene expression during crown rot of wheat

8 FG6-CEL 9 Transcript detection during in vitro sexual development

of Fusarium Cch1 calcium channel deletion mutant

9 FG10-CEL 6 Response to trichodiene treatment

10 FG7-CEL 12 Gene expression profiles during conidia germination stages

11 FG16-CEL 12 Fusarium gene expression in wheat stems during infection

12 FG4-CEL 5 Fusarium/Barley RNA dilution

13 FG5-CEL 23 Transcript detection during in vitro sexual development

Table 5.3: Study numbers, labels, number of samples and descriptions of the Fusarium microar-

ray dataset.

Unlike in the wheat dataset, Fusarium studies are not easy to group at a first sight. As a

result we decided to apply the glasso algorithm and calculate the sensitivity measure as it has

been done before and then we apply k-means with different values of k and verify if there is

any constant pattern. We repeatedly change the value of k in a range from 2 to 10 and we find
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that two groups of studies (of 5 and 2 studies respectively) always group together. This allows

us to identify two study groups: cluster 1: 8,11 and cluster 2: 2,5,6,7,13. These studies do not

belong to any stress condition, but they are recognized to have a similar underlying mechanism

through the sensitivity measure.

After the cluster detection we build the Bayesian unique networks for these two groups. Because

of their similarity here we show only the unique network for the second group in Figure 5.6.

All 98 variables selected appear to be involved in both study-cluster unique networks (except

number 45 in the unique for cluster 1). This is because there are no major theoretical differences

between the two study-cluster which means that the underlying mechanism might have only

slight differences. Again we calculate the prediction accuracy for each gene using the leave one

out cross validation as described in Section 4.2.6. The intra cluster prediction shows for both

clusters a very good prediction accuracy. For the first cluster, because of its size (only 2 studies)

we need to consider only genes with a very high accuracy average and a limited standard

deviation range. Only few genes respect these criteria in both clusters. But a very limited

number of genes results being very predictive in cluster one and not in cluster two and vice

versa. Figure 5.7 compares the average intra-cluster prediction with the average inter-cluster

prediction for both cluster. Because only some of the genes are better predicted internally than

externally, as expected no difference appears in the average behaviour between internal and

external prediction in either groups.

We now apply the AIC-MICA algorithm developed in Lysenko et al. (2011). Since both networks

involve the same genes they both have the same main functions. In Table 5.4 we show the main

functions. Mapman was not applicable because it does not contain Fusarium data.

These results show us that even if the clusters have a similar underlying mechanism we still

can identify genes that are highly predictive and therefore characteristic of the clusters. These

results can be compared to the one found for the simulated data with a higher level of noise.

5.6.1 Comparison with WGCNA:

At this point we explore the WGCNA technique and compare it with glasso. As explained in

Chapter 3 we first calculate the co-expression similarity matrix and convert it into the adjacency

matrix using the scale-free topology criterion. Here again the clusters are organized differently

and are not as significant as the ones obtained with glasso. The unique networks include far

fewer genes and the internal correct-prediction also shows less highly predictive genes compared

to the ones we found using glasso. Based on the poor results previously obtained from applying

biclustering, we decide not to apply this technique on this dataset.
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Figure 5.6: Unique-Network for Fusarium cluster 2,5,6,7,13. In this figure grey background

indicates highly predictive genes (average correct-prediction equal or higher than 0.6). Despite

the lack of different conditions in the dataset, as explained in the text, still about a 1/3 of the

genes selected are highly predictive.
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Figure 5.7: Intra vs inter clusters prediction for Fusarium.

GO Id GO Name IC Term

GO:0004175 endopeptidase activity 6.93

GO:0015179 L-amino acid transmembrane transporter activity 6.90

GO:0004497 monooxygenase activity 6.23

GO:0008324 cation transmembrane transporter activity 6.16

GO:0005506 iron ion binding 6.12

GO:0022804 active transmembrane transporter activity 5.29

GO:0022891 substrate-specific transmembrane transporter activity 3.78

GO:0046872 metal ion binding 3.50

GO:0016491 oxidoreductase activity 3.15

Table 5.4: Fusarium unique networks biological process functions from Gene Ontology as de-

scribed in Lysenko et al. (2011). IC values greater than 3 are considered to be biologically

informative.
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5.7 Discussion

In this chapter we apply the UNIP pipeline thoroughly described step by step in Section 4.2

and schematically explained in Figure 4.1 to two different set of microarray data: wheat and

Fusarium to identify sub-networks specific for a set of conditions. Compared to synthetic data,

real studies are noisier and often affected from high level of bias. We applied a pre-processing

step involving Robust Multichip Average method (Irizarry et al. 2003) and redundancy-adjusted

Pearson correlation coefficient according to the method described in Obayashi et al. (2011).

Given the high dimensionality of the wheat dataset containing more than 60000 genes, two

variable-selection techniques are combined and the informative genes reduced of three orders of

magnitude. GRNs for each study are calculated and through a combination of graph similarity

and clustering the consensus network are calculated for each study-cluster. Once the data are

discretized we finally derived the unique-networks using Bayesian networks. We then exploit

the inference ability of BNs to calculate intra and inter cluster prediction accuracy for each gene

across all study-clusters. To biologically support our findings we explore two well-developed

tools: Mapman (Thimm et al. 2004) and AIC-MICA (Lysenko et al. 2011) knowing that specific

mechanisms must be carried on by paths of genes already known to be involved in that function.

For the wheat dataset the pipeline managed to distinguish three clusters of studies two

belonging to stress-enriched conditions and one to non stress. The related unique-networks

found are of small size and show clear gene paths. Throughout the whole process the results

appear to be robust. The clustering technique, even if using the simple k-means algorithm,

combined with the sensitivity measure returns study-clusters that reflect the study description

in Table 5.1. The size of the final unique-network indicates that the unique networks pipeline can

discriminate important gene-paths and avoid uninformative connections. Thanks to the high

value of intra and inter cluster prediction accuracy and the results extrapolated from Mapman,

the AIC-MICA algorithm and the literature research conducted (Section 5.5) means that we

are confident that the genes, and consequently the links between them in these subnetworks are

truly involved in the underlying mechanisms.

The Fusarium dataset, is not as straightforward. First of all the studies collected do not show

as clear a distinction of generic conditions, but k-means still identifies one set of conditions that

are graphically similar and therefore clusters them together. Consequently the unique-networks

identified are not specific for one particular generic condition but still identify highly predictive

genes that are specific for the group of studies in the study-cluster. These results show similarity

to the high level of noise in the simulated data.

Finally, based on these biological findings we can conclude that our pipeline is a robust and
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reliable method to analyse large sets of transcriptomic data. It easily detects the main complex

relationships between transcriptional expression of genes specific for different conditions and

also highlights structures and nodes that could be potential targets for further research.
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Cancer data and logic application

6.1 Introduction

In the previous chapter we applied our method (UNIP) to two real datasets: wheat and Fusar-

ium. In addition, to qualify the quality of our findings we first explore genes’ functions using

Mapman (Thimm et al. 2004) and the AIC-MICA algorithm (Lysenko et al. 2011) and then

explore the literature for further information.

Wheat and its combination of studies resembled the performances obtained when the pipeline

was applied to a dataset with low level of noise (see Chapter 4.4). Fusarium on the other

hand showed a different set of studies where no clear division in clusters was visible. This re-

sults showed similarities with the case of high level of noise in the simulated dataset but still

identified several highly predicted and predictive genes.

In this chapter, in order to demonstrate the general applicability of our pipeline, we apply

UNIP to a new set of real studies, but all relating to the same generic condition: human cancer.

We select four independent datasets of different kinds of cancer: breast, ovarian, medullary-

breast and lung.

An organism affected by cancer is characterised by the ability to sustain chronic proliferation,

evade growth suppressors and avoid apoptosis, all of which are caused by genome instability

(Hanahan & Weinberg 2011) which defines changes in gene expression which in turn clearly

affect the underlying mechanisms among the genes involved.

Zhang J. et al. (2012) select several cancer studies together with several control ones. For

each dataset gene-pair expression correlation is computed and then used to build a frequency

table whose values are used to build a weighted gene co-expression frequency network. Sub-

networks with similar members are identified and iteratively merged together to generate two
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final networks one representing the underlying mechanism in cancer and the other in the healthy

tissues. Compared to Zhang’s work we go beyond simple pairwise correlation analysis and

explore the differences between similar studies rather than the similarities.

We exploit Genecards encyclopaedia (Safran et al. 2010) and its tools to identify the genes

uniquely involved in each cancer type and measure the significance of these findings using the

probability score used in Swift et al. (2004).

Finally, we develop a user-friendly application to detect both unique connections and genes

using AND and OR logic operators in order to select different types of conditions (here, cancer

types).

The remainder of this Chapter is organized as follows. Section 6.2 describes how the pipeline

has been adapted for the analysis of the cancer datasets. Section 6.3 shows the results obtained

with the cancer datasets. Section 6.4 explains how the logic interface was developed and how

does it work with the help of some examples. Finally, Section 6.5 discusses the results and

derives the conclusions of the chapter.

6.2 Method description

We now focus on the analysis of human microarray datasets based on different kinds of cancer.

We downloaded 4 independent cancer data from the NCBI GEO database (Edgar et al. 2002).

To avoid inter-platform bias we selected studies obtained using the Affymetrix HU133 Plus 2.0

Genechip platform. We included only studies with a substantial number of samples. No controls

were available. The four chosen studies are listed in Table 6.1 with a description summary and

the corresponding size (number of samples) of each study.

Each downloaded raw series of data contains a total of 54675 genes and a different number of

samples, specified in Table 6.1. Firstly, the rma (Robust Multi-Array Average) (Irizarry et al.

2003) expression measure is applied as a pre-processing step to convert each AffyBatch object

(class representation for Affymetrix GeneChip probe level data) into a normalized numeric

matrix.
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Study number Study ID Study title Samples

1 GSE18864 Triple Negative Breast Cancer 84

2 GSE9891 Ovarian Tumour 285

3 GSE21653 Medullary Breast Cancer 266

4 GSE10445 Adenocarcinoma and large cell Lung Carcinoma 72

Table 6.1: Cancer datasets identification code, description and samples number.

6.2.1 Variable selection

The high discrepancy between the number of genes (54675) and the samples (refer to Table

6.1) measured simultaneously in microarray data leads to the necessity of reducing the number

of variables (genes) involved in the analysis. Unlike the previously analysed datasets (wheat

and Fusarium) these studies do not contain control samples. As a result, standard deviation

thresholding is not immediately applicable as a first step and therefore it is necessary to find a

valid alternative to it.

R statistics provides the pvac package (Lu & Bushel 2010) which applies the PCA (Principal

Component Analysis) (Pearson 1901) and returns a subset of the original variables: the closest

to the principal components identified.

To further refine the variable reduction, the standard deviation of each gene across all the

samples in each separate study is calculated and only genes with sd ≥ 1.5 in at least one of the

4 studies are selected. In fact, the genes that variate the most among patients are probably the

ones that are active the most. The reduced datasets are used as input to the following steps of

the analysis.

At this point we apply glasso with the penalization parameter ρ = 0.05, to build a GRN for

each study dataset.

In addition, to further improve the sparsity and reduce the nodes involved, we maintain only

the connections with an inverse covariance value greater or equal to 0.8.

In this study we only have four cancer datasets and we are interested in identifying the

unique mechanism for each of them, so we don’t apply the consensus network algorithm but

we consider each of the four studies as a study-cluster of one element and the related glasso-

network (built earlier) as the consensus network for that study-cluster. Given each GRN (4

GRNs - one per each cancer study), each unique-network consists of the same set of edges

in the network under consideration except those that also exist in the remaining ones. We

choose to measure the reliability of the unique-networks through prediction using Bayesian
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Networks (BNs) (Heckerman et al. 1995, Friedman et al. 2000) which naturally perform this

using inference, given the graphical structure obtained using the genes involved in the unique-

networks provided by glasso.

Given the unique edges in the glasso-derived networks we first build one BN for each of the

study-clusters and then identify the most predictive (how well it predicts other expression level

values) and predictable (how well its expression level values are predicted) genes within (intra)

and outside (inter) the study using the leave one out cross validation technique as described in

details in section 4.2.6. The idea is that genes that are predictive or predicted better within the

selected study than on other studies are more likely to be relevant to the unique-network.

6.2.2 Genecards validation and probability score

As we detect study-specific sub-networks we also want to verify that our method captures study-

specific genes. We query GeneCards encyclopaedia (Safran et al. 2010) selecting each cancer

type to obtain the list of genes that are known to be involved in each of them. We compare

the list for each study to the others and select the genes that appear only in the study under

consideration. To compare the unique-gene list for each type of cancer with the genes found in

the corresponding unique-network, we apply the NBH (normal approximation of the binomial

approximation of the hypergeometric approximation) probability score developed in Swift et al.

(2004) used to test the significance of observing multiple genes with known function in a given

cluster against the null hypothesis of this happening by chance. This score is based on the

hypothesis that, if a given cluster, i of size si, contains x genes from a defined functional group

of size kj , then the chance of this occurring by chance follows a binomial distribution and is

defined by: Pr(Observing x from group j) =
(
kj

x

)
pxqkj−x where p =

sj
n , q = 1 − p and n is

the number of genes in the dataset. As in this paper, when kj and x are very large Pr cannot

be evaluated. Therefore we use the normal approximation of the binomial distribution where:

z = x−µ
σ , µ = kjp and σ =

√
kjpq. Values of z above zero mean that the probability of

observing x elements from functional group j in cluster i by chance is very small (values of

z ≥ 2.326 correspond to a probability less than 1%). The test performed is the one tailed test.

6.2.3 Logic and GUI

Finally a user interface has been developed using the R package shiny (RStudio & Inc. 2014).

This interface allows the user to input the networks obtained with glasso and let the user choose

which combination of unique networks to identify, using the logic operators AND and NOT. For

example setting 1 AND 2 - NOT 3 will identify the sub-networks that study 1 and 2 have
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in common but do not appear in study 3. The unique sub-networks for that rule/pattern are

identified and plotted on the interface together with the list of genes involved. The user has the

possibility to save the network in a .tiff file and the list of genes involved in .csv format.

6.3 Results and applications

In this study four cancer datasets are explored: breast, ovarian, medullary breast (a subtype

of breast cancer) and lung, in human patients. Each dataset contains a different number of

samples (see Table 6.1). The variable selection approach reduces the number of variables/genes

to analyse from 54675 to 1629. Variable reduction is followed by the implementation of glasso

with the parameter ρ = 0.05 and the application of a threshold on the inverse covariance values

set to 0.8. Given the glasso networks for each study we consider only the edges that are present

in the network under consideration but not in the others. Once the unique-connections are

detected, the genes involved are used to build a BN for each study called unique-networks (U-

Ns). The unique-networks obtained for all the studies are shown in Figure 6.1, 6.2, 6.3 and

6.4. Nodes with grey background indicate a prediction accuracy for the nodes greater than 0.6.

Isolated nodes do not have connections due to the structure differences between glasso U-Ns

and Bayesian U-Ns. Nodes are labelled with numbers, directly corresponding to the gene ID

(see Appendix), for visualization purposes.

Because of the study description in Table 6.1, we would expect breast cancer to be very

similar (involving almost the same genes) to medullary breast cancer and slightly less similar to

ovarian, but very different from lung cancer. This implies that the average internal prediction for

each study will not differ much from the external prediction. The internal vs external prediction

for each study shown in Figure 6.5 reveals, as expected a very clear difference only in Network 2

and 4, ovarian and lung cancer respectively, with a small difference in 1 and 3. This deduction

is supported by the p-values obtained from the applied t-test as shown in Table 6.2.

Study number Study ID Study title P-value

1 GSE18864 Triple Negative Breast Cancer 0.55

2 GSE9891 Ovarian Tumour 0.00

3 GSE21653 Medullary Breast Cancer 0.02

4 GSE10445 Adenocarcinoma and large cell Lung Carcinoma 0.00

Table 6.2: Cancer datasets identification code, description and the p-values obtained from the

t-test.
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Figure 6.1: Bayesian unique-network for breast cancer.
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Figure 6.2: Bayesian unique-network for ovarian cancer.
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Figure 6.3: Bayesian unique-network for medullary-breast cancer.
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Figure 6.4: Bayesian unique-network for lung cancer.
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Figure 6.5: Internal (intra) vs External (inter) prediction accuracy for each study averaged

among all genes involved in the related unique-network.

6.3.1 Identification of unique-genes through GeneCards

We now evaluate the significance of detecting the identified unique-genes by calculating the NBH

probability score using the normal approximation. For this paper si is the size of each unique

network, kj the number of genes in the unique gene-list obtained for each cancer type comparing

the GeneCards gene lists, x the number of genes that are present on both the unique network

and the corresponding unique gene-list and n is the number of genes in the original unprocessed

dataset. The results in Table 6.3 show the z-score and the corresponding p-value indicating that

the probability of observing x elements from functional group j in cluster i by chance is in all

four cases very small. This implies that the unique genes identified by our pipeline are highly

significant in all studies.

Parameters values for each study

Study number Study ID si kj x n z-score p-value

1 GSE18864 117 2982 11 54675 1.83 ≤ 3.4%

2 GSE9891 61 692 4 54675 3.68 ≤ 1%

3 GSE21653 89 0 0 54675 N/A ≤ 1%

4 GSE10445 80 240 3 54675 4.47 ≤ 1%

Table 6.3: Parameters values, z-score and p-value for each study.
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6.3.2 Gene-a-la-carte and source selection

Gene cards research domain includes several sources among which: Kegg (Kanehisa et al. 2000),

UniProtKB (Magrane et al. 2011), GO (Ashburner et al. 2000) and so on. When we obtain the

list of genes involved in each disease we don’t automatically see where the information regarding

each gene involvement come from. Assuming that for the most part the selection of the genes

is done made on the content of the articles in Pubmed where the genes are cited, we now ex-

plore the genes’ information from some of the available selected based on which are considered

relevant to us.

Gene a la carte is a tool of Genecards where the user input the list of genes of interest and the

sources (one or multiple) he/she is interested in retrieving. In this work we input each list of

unique-genes and select the following sources: UniProtKB (Magrane et al. 2011) for the func-

tions, Biosystems (Geer et al. 2009), KEGG (Kanehisa et al. 2000) and UniProt/UniPathway

(Morgat et al. 2011) for the genes pathways, Novoseek (a tool to extract knowledge from bio-

logical databases and text repositories), Malacards (Rappaport et al. 2013) and UniProt for the

diseases and PubMed for the publications IDs.

Inputting the list of unique-genes involved in breast cancer (see Table 6.4) we find that 7

of the 11 genes have been assigned a function in UniProt, 5 are involved in pathways in both

BioSystems and KEGG while only 2 in UniPathway. 8 are indicated in Malacards, 6 in Novoseek

and only 3 in UniProt-disorders. As expected all 11 genes are mentioned in several PubMed

articles which makes it the most important source. Only one gene HBA2 (involved in oxygen

transport from the lung to the various peripheral tissues and in the Selenium pathway) appears

in all the sources selected, immediately followed by FGG which is missing only in UniPathway.

TMEM45B and FSIP1 instead appear only in 1 of the 8 sources - PubMed. MAGEA12 is the

only one that is directly associated with tumour transformation and progression. Following

PubMed, Uniprot Function and Malacards contain information on 7 and 8 genes out of 11

respectively and therefore they are the sources from where most of the information come from.

For the case of ovarian cancer FSTL1 (involved in cell proliferation and differentiation) is

registered in Uniprot both functions and Pathways, in MalaCards and Novoseek diseases and

of course, in Pubmed. RAD51AP1 results to be involved in DNA damage response pathway

where DNA damage is one of the hallmarks of tumours while the others seems to be involved in

arthritis and muscular dystrophy. Here again Uniprot Function and Malacards contain entries

for most of the genes: 4 and 3 out of 5 respectively.

While medullary breast show no unique-genes, probably due to the high similarity to breast

cancer, lung instead reported 3 unique-genes - refer to Table 6.4. MALAT1 is recognized to be
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involved in lung carcinoma (Malacards) SFTPC and MZB1 in pulmonary surfactant metabolism

dysfunction (Malacards and Novoseek).

As expected, Medullary breast cancer analysis did not return any unique-genes due to the

high similarity to breast cancer. On the other hand, breast cancer indicate several genes uniquely

involved in it. Out of 11 genes only 2 (FSIP1 and TMEM45B) are recognised in less than half

of the sources we explored. For the ovarian cancer only 1 gene out of 5 (SPRR1A) is recognised

in 4 of the 10 sources available. Finally for the lung cancer 2 genes (MALAT1 and MZB1) have

entries in 4 sources and the remaining gene (SFTPC) in 7 sources out of 10.

Based on these findings we conclude that although Pubmed and its articles are the most

important source of information, also other sources, easier and quicker to explore, are also ex-

tremely useful. In particular, UniProt followed by Malacards resulted to be the most informative.

Unique-genes in each cancer study

Breast Ovarian Medullary-Breast Lung

FSIP1 RAD51API MALT1

PCSK1 FSTL1 SFTPC

ADH1B SPRR1A MZB1

TFPI COL12A1

MAGEA12

RPS11

HBA2

FGG

ODAM

THEM45B

RERG

Table 6.4: List of the identified unique-genes in each study.

6.4 Interface description - Logic

As a final part of this work we developed a user interface to derive unique-connections and

unique-genes of a given set of studies. The application is composed of two main panels one

intended for the selection of the set of parameters and the other for the visualization of results.

The first panel is situated on the left hand-side and includes three browse buttons:
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� Load continuous data: to allow loading of datasets of studies in the format obtained

after the rma pre-process step.

� Load adjacency matrix: to browse the corresponding adjacency matrix of each study

network.

� Studies description: to load a table with the corresponding study-number and descrip-

tion.

Once all files have been uploaded a new part is automatically generated to allow the combination

of AND and NOT logic operators among the studies under consideration. The implementation

of two boxes help the user to easily select which studies to include in the AND box and which

ones in the NOT box. The decision is guided through the table that indicates each study de-

scription. Figures 6.6 and 6.7 show the Logic Application interface. The example represented in

Figures 6.6 shows the case where the user wants to visualize the unique-connections and the list

of related genes that study 1 AND 4 have in common but do not appear in study 2. Following

the same example, if the NOT box is left empty by the user, the algorithm will automatically as-

sume that the resulting unique-connections network needs to include all the connections shared

by the studies 1 and 4 but that do no appear in any of the other studies in the set. This was

implemented for practical reason based on what the user is most probably interested in finding.

Finally the user can use the buttons at the end of each tab to save the results.
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Figure 6.6: Left hand-side panel of the Logic Application interface. The figure shows the three

loading buttons and the AND and NOT boxes for the studies logic combination. This example

shows the case where the user wants to visualize the unique-connections and the list of related

genes that study 1 AND 4 have in common but do not appear in study 2.
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Figure 6.7: Right hand-side of the Logic Application interface. The figure shows both tabs of

the results panel placed side by side. The first shows the unique-connections network and the

other the table containing the correspondence between genes number in the network and real

names.
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6.5 Discussion

In this chapter we applied the UNIP pipeline to four different cancer datasets to show the general

potential of UNIP on different microarray data. We focus on the discovery of unique-networks

for each study skipping the identification of study-cluster and relative consensus-networks. In

addition we explore the concept of unique-genes using GeneCards and its internal tools. We

support our results using prediction accuracy and a score to test the significance of identifying a

subset of unique genes. Furthermore, we developed a user interface to allow the user to combine

studies under analysis using AND and NOT logic operators in order to derive the unique-

connections and genes. Based on the results, our pipeline proved once again to be reliable

and robust and identifies the mechanisms and the genes involved in them that characterize the

studies under consideration.

The following chapter discusses the methods and the findings of this thesis, highlighting

contributions of the research, limitations and suggests future works.
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Conclusions

This chapter discusses the conclusions reached, based on the research presented in this thesis.

Firstly the research contributions are outlined. Followed by an analysis of the limitations.

Finally, a list of potential future work addressing both research limitations and extending the

applicability of the work.

7.1 Thesis contributions

7.1.1 Unique-networks

Literature analysis showed that researchers focus their attention to discover underlying genetic

mechanisms common to a set of studies. In this research instead we introduced and fully

define the concept of unique-networks. Unique-networks are gene regulatory networks and sub-

networks that are found to be specific for one or a set of studies selected. While consensus

mechanisms highlight what different conditions applied to the same organism have in common,

unique mechanisms instead highlight what make them different.

7.1.2 Unique Network Discovery Pipeline

We developed a pipeline to semi-automatically identify unique-networks for one or a set of stud-

ies.

Deriving unique-networks from the data is not a straightforward process. Microarrays, despite

their popularity, have several issues which include noise and bias in addition to a large discrep-

ancy between the size of samples and the size of genes measured simultaneously.

In Chapter 4 we described how we implemented the Unique Network Discovery Pipeline (UNIP)
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and quantified its performances based on a synthetic dataset. UNIP first integrates a set of stud-

ies on the same organism but subjected to different conditions. The larger number of samples

allows us to build reliable gene regulatory networks for each group of similar conditions (study-

clusters). Then, the networks are compared and those links that are present in the network

under consideration but not in the others are considered together with the genes involved to

apply Bayesian networks and derive the unique-networks that are specific for the study or set of

studies under consideration. This pipeline take a set of studies as input and returns the corre-

sponding unique networks. To allow the user to customize the results based on the information

he/she needs to retrieve, several parameters can be tuned along the process.

7.1.3 Application to several datasets

The UNIP pipeline has been applied to a synthetic dataset first, to quantify its performance.

Once we were confident enough on its reliability we applied it to several sets of real data to

further test the pipeline and also derive new information.

The first set of data regarded wheat. Both stress and non stress studies were included. Based

on the validation process the results were robust and reliable showing a clear difference between

the two classes of conditions in terms of different networks that characterised each condition

based on predictive power and biological support such as Mapman and literature analysis.

Fusarium, on the other hand, included a set of control studies with no clear separation between

them. Despite the results being affected by the higher level of noise, still the pipeline was able

to retrieve a relevant number of highly predictive genes.

Finally, a small set of cancer datasets (only four) was analysed. Unlike the other sets of real

data this one was (intentionally) too small to apply either clustering or consensus analysis and

instead we derive unique-networks and genes for each study from selected cancer types. Despite

the lower number of samples in some studies UNIP still reported interesting and reliable results

in terms of networks that were specific to each cancer type based on predictive power and

biological validation obtained through the use of Genecards and the calculation of a probability

score to quantify the importance of the findings.

7.1.4 Unique genes and probability score

Along with the concept of unique-networks we also derive the one of unique-genes. Unique

networks are derived in a way that only the unique links (unique-connections) are considered,

no matter which genes are involved. This means that unique networks of different conditions can

still include genes that are present in both as long as they are connected in different ways. On
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the other hand, there are genes whose expression is triggered only by the organism reacting to a

specific condition it is subjected to and therefore even the detection of one single gene, specific

for one disease, can be highly important and further simplify the diagnosis of the correct disease

in shorter time.

Following the same line of reasoning as the one for the unique-networks we identify the unique

genes by selecting those that only appear in the unique-network under consideration and not the

others. In addition we also include the literature knowledge and further filter the unique-genes

found including only those that are known (in the literature) to be involved.

Finally, we evaluate the significance of detecting the identified unique-genes by calculating the

NBH probability score using the normal approximation.

7.1.5 Logic Application

The set of algorithms described in this work can be difficult to apply for non-technical users.

Therefore, for visualization purposes, we created a Graphical User Interface (GUI) to allow the

user to explore different combinations of any set of studies.

The application takes, as input, the adjacency matrices of the corresponding networks of the

studies under consideration. Then, the user applies the AND and NOT logic operators to

combine the studies based on the information needed, for example, to identify sub-networks

and genes that are unique to a subset of cancer types. In addition a button is implemented

to download the resulting unique sub-network(s) in figure format and the corresponding list of

genes involved in a csv table.

The user is allowed to make several attempts of different logic combinations to explore new

studies and new datasets and eventually discover the information needed or new information to

use as a base for new studies.

7.2 Limitations

The UNIP pipeline coupled with several external tools for the results’ refinement and the val-

idation process implied to be a robust method for this type of data. Although we detect and

highlight here its limitations.

� Data Quality. In this work we focus on microarray datasets and the pipeline is conse-

quently adapted to the analysis of this type of data. Microarray are well known for being

often biased and characterized with high levels of noise which may reflect on the results

obtained with our pipeline.
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� Small samples. Unlike consensus-network techniques our study-networks are based on

smaller set of samples which if not combined together may obstruct the reliability of the

results.

� Undefined pre-process step. Based on the set of data that the user intends to use a

different gene filtering method is required. The user must specify this based on the data

structure and the number of genes.

� Scalability. The high number of genes usually involved in biological data is a huge

computational issue. We solved this problem only for a number of variables up to 2000

applying the glasso technique which proved to scale very well.

� Dynamic Data. The whole pipeline is shaped on the analysis of static microarray data.

Although a large amount of information is held in static data, a great deal of information

is also lost when the variable time is not taken into consideration.

� Running Time. While the majority of the steps involved in the pipeline manage to run

in a reasonable amount of time, the step involving the use of the inference to calculate the

intra and inter cluster prediction-accuracy is instead extremely long. The high amount of

variables involved and the numerous combinations, in fact, may even require the algorithm

to run overnight.

� Shiny. In this work we recognized the importance of developing a user friendly interface,

but shiny has been remarkably slow and therefore, we could only develop a GUI for

visualization purposes and were forced to leave the actual process hidden from the user.

7.3 Further work

The following sections bring to the attention potential future work, based on the limitations

analysed above and the extension of the method presented in this thesis.

7.3.1 Next Generation Sequencing

Microarray techniques are still very popular thanks to their ability to collect thousands of

individual gene sequences in parallel to study gene expression and gene variation in any given

cell type, time, set of conditions or treatments. Although more recently a new set of techniques

called Next Generation Sequencing has been developed, which appear to be more reliable and,

in certain cases, more appropriate. Biologists still show a higher preference for microarrays
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but also their maturity as a technology results in an enormous amount of data still waiting to

be analysed. Laboratories are now making the switch and more and more data are becoming

publicly available and so an important development that could be applied to our pipeline would

be to introduce new pre-processing steps or modify the already existing ones in a way that NGS

data can be examined.

7.3.2 Application to different kind of data

Several areas now make use of networks to explore real problems: biology, medicine, economics,

etc. Although, the UNIP pipeline has been created and specifically studied for biological data,

the concept of unique networks combined with unique variables can be easily applied to many

more kind of real data such as social networks. Few adjustments in the preprocessing step will

shape UNIP in a way to be applied to all kinds of data.

7.3.3 Static vs dynamic data

Here we only focused on static data. We analysed only studies that did not involve time.

Although, several diseases and underlying mechanisms in general vary together with time. Static

data carries a lot of knowledge but also misses a great deal of information that is usually revealed

by taking time into consideration.

A further step would be to explore dynamic data and the potential of their use following the

adaptation of all steps of the pipeline.

7.3.4 Improvement of the Graphical User Interface

The importance of implementing Graphical User Interfaces (GUI) resides in the fact that it

renders complex code accessible to non-technical researchers and therefore extend their usability.

The GUI developed in this research and described in Chapter 6 allows the user to set different

combinations of the set of studies using the AND and NOT logic operators. Once the logic

combination has been set the application visualizes the resulting unique-connections and the

genes involved in them.

We have made several attempts to implement more than just the visualization process but the

R package Shiny, despite all its advantages, is not able to elaborate the necessary query in a

reasonable amount of time due to the complexity of the algorithms involved.

In the future it would be extremely useful to implement a GUI, even using a new language to

load directly the raw data and allow the user to follow step by step the process and tuning the

parameters directly in the GUI to customize the results.
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Additional tables and results

This appendix contains additional tables and results relating to Chapter 5 and 6.

A.1 Chapter 5 additional tables

The tables listed in here refer to the results found applying UNIP to the wheat dataset.They

represent the correspondence of genes numbers in the networks and genes names together with

the genes functions detected with Mapman (Thimm et al. 2004). Table A.1 details the genes

in the unique-network for the first study-cluster stress-enriched using the wheat dataset. Table

A.2 details the genes in the unique-network for the second study-cluster stress-enriched using

the wheat dataset. Table A.3 details the genes in the unique-network for the third study-cluster,

non-stress using the wheat dataset.
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Gene no Affy ID Function Pathway

1 Ta.10329.17.S1 at DNA.synthesis/chromatin structure.histone

2 Ta.10329.17.S1 x at DNA.synthesis/chromatin structure.histone

3 Ta.10329.3.S1 at DNA.synthesis/chromatin structure.histone

4 Ta.10390.1.S1 at protein.degradation.cysteine protease

5 Ta.10480.1.S1 a at RNA.processing.ribonucleases

6 Ta.1139.1.S1 at PS.lightreaction.photosystem II.LHC-II

7 Ta.1161.1.S1 at PS.lightreaction.photosystem II.PSII polypeptide subunits

8 Ta.12118.1.S1 a at misc.gluco-, galacto- and mannosidases

9 Ta.14034.1.a1 at misc.protease inhibitor/seed storage/lipid transfer protein

family protein

10 Ta.14475.1.S1 at protein.degradation.ubiquitin.ubiquitin

11 Ta.14543.2.a1 at protein.glycosylation

12 Ta.1725.3.S1 at misc.plastocyanin-like

13 Ta.1929.1.S1 at stress.biotic

14 Ta.1953.1.S1 x at RNA.regulation of transcription.unclassified

16 Ta.20949.1.a1 at amino acid metabolism.degradation.aspartate.

family.threonine

17 Ta.21342.1.S1 x at stress.biotic

18 Ta.22984.2.S1 x at PS.lightreaction.photosystem II.LHC-II

19 Ta.23366.2.S1 x at misc.peroxidases

21 Ta.2402.3.S1 x at PS.lightreaction.photosystem II.LHC-II

22 Ta.24304.2.S1 a at PS.lightreaction.photosystem I.PSI.polypeptide subunits

23 Ta.261.1.S1 at stress.abiotic.heat

24 Ta.26907.1.S1 at RNA.processing.ribonucleases

25 Ta.2747.1.S1 at stress.abiotic.heat

26 Ta.27657.11.S1 x at DNA.synthesis/chromatin structure.histone

27 Ta.27751.2.S1 x at PS.lightreaction.photosystem II.LHC-II

28 Ta.27761.1.S1 x at PS.lightreaction.photosystem I.PSI polypeptide subunits

29 Ta.278.1.S1 x at stress.biotic

30 Ta.2784.1.a1 at stress.biotic

31 Ta.28123.1.S1 at protein.synthesis.ribosomal

protein.prokaryotic.chloroplast.50S subunit.L28

32 Ta.28368.2.S1 at lipid metabolism.lipid transfer proteins etc
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Gene no Affy ID Function Pathway

33 Ta.3.1.S1 at major CHO metabolism.degradation.starch.starch cleavage

34 Ta.30501.1.S1 at stress.biotic

35 Ta.3361.1.S1 x at stress.abiotic.unspecified

36 Ta.3651.1.S1 at misc.nitrilases, *nitrile lyases, berberine bridge enzymes,

reticuline oxidases, troponine reductases

37 Ta.3987.1.S1 x at PS.lightreaction.photosystem II.PSII polypeptide subunits

38 Ta.488.1.S1 at redox.ascorbate and glutathione.ascorbate

39 Ta.581.2.S1 a at PS.photorespiration.glycine cleavage

40 Ta.601.1.a1 at lipid metabolism.lipid degradation.lipases

41 Ta.6123.1.a1 s at stress.abiotic.heat

42 Ta.6572.1.S1 a at redox.peroxiredoxin

43 Ta.7378.18.S1 at DNA.synthesis/chromatin structure.histone

44 Ta.7378.18.S1 x at DNA.synthesis/chromatin structure.histone

45 Ta.7963.2.S1 x at stress.biotic

46 Ta.8665.1.S1 at stress.abiotic.heat

47 Ta.9226.1.S1 at stress.biotic

48 Ta.9409.1.S1 at RNA.regulation of transcription.General Transcription

49 Ta.9574.1.S1 at tetrapyrrole synthesis.magnesium chelatase

50 Ta.9599.1.S1 a at misc.glutathione S transferases

51 Ta.9679.1.a1 at misc.peroxidases

52 Ta.9718.1.S1 at PS.lightreaction.photosystem II.LHC-II

53 Taaffx.18332.1.S1 at stress.abiotic.heat

54 Taaffx.3720.7.S1 at protein.degradation

55 Taaffx.38476.1.S1 at misc.UDP glucosyl and glucoronyl transferases

56 Taaffx.449.1.a1 at PS.calvin cyle.rubisco small subunit

Table A.1: Correspondence of genes numbers and affymetrix names together with the functions

indicated by Mapman in unique-network 1 (stress-enriched) for the wheat dataset.
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Gene no Affy ID Function Pathway

1 Ta.10329.17.S1 at DNA.synthesis/chromatin structure.histone

2 Ta.10329.17.S1 x at DNA.synthesis/chromatin structure.histone

3 Ta.10329.3.S1 at DNA.synthesis/chromatin structure.histone

4 Ta.10390.1.S1 at protein.degradation.cysteine protease

5 Ta.10480.1.S1 a at RNA.processing.ribonucleases

6 Ta.1130.1.S1 a at PS.lightreaction.photosystem II.LHC-II

7 Ta.1130.2.S1 x at PS.lightreaction.photosystem II.LHC-II

8 Ta.1130.3.S1 x at PS.lightreaction.photosystem II.LHC-II

9 Ta.1139.1.S1 x at PS.lightreaction.photosystem II.LHC-II

10 Ta.1161.1.S1 at PS.lightreaction.photosystem II.PSII

polypeptide subunits

11 Ta.12118.1.S1 a at misc.gluco-, galacto- and mannosidases

12 Ta.14034.1.A1 at misc.protease inhibitor/seed storage/lipid

transfer protein (LTP) family protein

13 Ta.14475.1.S1 at protein.degradation.ubiquitin.ubiquitin

14 Ta.14543.2.A1 at protein.glycosylation

15 Ta.1725.3.S1 at misc.plastocyanin-like

16 Ta.1953.1.S1 x at RNA.regulation of transcription.unclassified

19 Ta.21342.1.S1 x at stress.biotic

20 Ta.22984.2.S1 x at PS.lightreaction.photosystem II.LHC-II

21 Ta.23366.2.S1 x at misc.peroxidases

23 Ta.2402.3.S1 x at PS.lightreaction.photosystem II.LHC-II

24 Ta.24304.2.S1 a at PS.lightreaction.photosystem I.PSI polypeptide subunits

25 Ta.25600.1.S1 x at PS.lightreaction.photosystem II.LHC-II

26 Ta.26907.1.S1 at RNA.processing.ribonucleases

27 Ta.27657.11.S1 x at DNA.synthesis/chromatin structure.histone

28 Ta.27751.2.S1 x at PS.lightreaction.photosystem II.LHC-II

29 Ta.27761.1.S1 x at PS.lightreaction.photosystem I.PSI polypeptide subunits

30 Ta.278.1.S1 x at stress.biotic

31 Ta.2784.1.A1 at stress.biotic

32 Ta.28123.1.S1 at protein.synthesis.ribosomal protein.prokaryotic.

chloroplast.50S subunit.L28

33 Ta.28363.3.S1 x at PS.lightreaction.photosystem I.PSI polypeptide subunits
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Gene no Affy ID Function Pathway

34 Ta.28368.2.S1 at lipid metabolism.lipid transfer proteins etc

35 Ta.3.1.S1 at major CHO metabolism.degradation.starch.starch cleavage

36 Ta.30501.1.S1 at stress.biotic

37 Ta.30727.1.S1 at PS.lightreaction.photosystem II.LHC-II

38 Ta.30808.1.S1 s at PS.calvin cyle.GAP

38 Ta.30808.1.S1 s at glycolysis.glyceraldehyde 3-phosphate dehydrogenase

39 Ta.3361.1.S1 x at stress.abiotic.unspecified

40 Ta.3651.1.S1 at misc.nitrilases, *nitrile lyases, berberine bridge

enzymes, reticuline oxidases, troponine reductases

41 Ta.3987.1.S1 x at PS.lightreaction.photosystem II.PSII polypeptide subunits

42 Ta.488.1.S1 at redox.ascorbate and glutathione.ascorbate

43 Ta.488.1.S1 x at redox.ascorbate and glutathione.ascorbate

44 Ta.581.2.S1 a at PS.photorespiration.glycine cleavage

45 Ta.601.1.A1 at lipid metabolism.lipid degradation.lipases

46 Ta.6572.1.S1 a at redox.peroxiredoxin

47 Ta.7378.18.S1 at DNA.synthesis/chromatin structure.histone

48 Ta.7378.18.S1 x at DNA.synthesis/chromatin structure.histone

49 Ta.7963.2.S1 x at stress.biotic

50 Ta.9226.1.S1 at stress.biotic

51 Ta.9409.1.S1 at RNA.regulation of transcription.General Transcription

52 Ta.9574.1.S1 at tetrapyrrole synthesis.magnesium chelatase

53 Ta.9599.1.S1 a at misc.glutathione S transferases

54 Ta.9679.1.A1 at misc.peroxidases

55 Ta.9718.1.S1 at PS.lightreaction.photosystem II.LHC-II

56 Taaffx.3720.7.S1 at protein.degradation

57 Taaffx.38476.1.S1 at misc.UDP glucosyl and glucoronyl transferases

58 Taaffx.449.1.A1 at PS.calvin cyle.rubisco small subunit

Table A.2: Correspondence of genes number sand affymetrix names together with the functions

indicated by Mapman in unique-network 2 (stress-enriched) for the wheat dataset.
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Gene no Affy ID Function Pathway

1 Ta.10329.17.S1 at DNA.synthesis/chromatin structure.histone

2 Ta.10329.17.S1 x at DNA.synthesis/chromatin structure.histone

3 Ta.10329.3.S1 at DNA.synthesis/chromatin structure.histone

4 Ta.10480.1.S1 a at RNA.processing.ribonucleases

5 Ta.1130.1.S1 a at PS.lightreaction.photosystem II.LHC-II

6 Ta.1130.2.S1 x at PS.lightreaction.photosystem II.LHC-II

7 Ta.1130.3.S1 x at PS.lightreaction.photosystem II.LHC-II

8 Ta.1139.1.S1 at PS.lightreaction.photosystem II.LHC-II

9 Ta.1139.1.S1 x at PS.lightreaction.photosystem II.LHC-II

10 Ta.1161.1.S1 at PS.lightreaction.photosystem II.PSII polypeptide subunits

11 Ta.14034.1.A1 at misc.protease inhibitor/seed storage/lipid

transfer protein (LTP) family protein

12 Ta.14475.1.S1 at protein.degradation.ubiquitin.ubiquitin

13 Ta.14543.2.A1 at protein.glycosylation

14 Ta.1725.3.S1 at misc.plastocyanin-like

15 Ta.1929.1.S1 at stress.biotic

16 Ta.1953.1.S1 x at RNA.regulation of transcription.unclassified

18 Ta.20949.1.A1 at amino acid metabolism.degradation.aspartate

family.threonine

20 Ta.21342.1.S1 x at stress.biotic

21 Ta.22984.2.S1 x at PS.lightreaction.photosystem II.LHC-II

22 Ta.23366.2.S1 x at misc.peroxidases

24 Ta.24304.2.S1 a at PS.lightreaction.photosystem I.PSI polypeptide subunits

25 Ta.25600.1.S1 x at PS.lightreaction.photosystem II.LHC-II

26 Ta.261.1.S1 at stress.abiotic.heat

27 Ta.26907.1.S1 at RNA.processing.ribonucleases

28 Ta.2747.1.S1 at stress.abiotic.heat

29 Ta.27657.11.S1 x at DNA.synthesis/chromatin structure.histone

30 Ta.27751.2.S1 x at PS.lightreaction.photosystem II.LHC-II

31 Ta.27761.1.S1 x at PS.lightreaction.photosystem I.PSI polypeptide subunits

32 Ta.278.1.S1 x at stress.biotic

33 Ta.28123.1.S1 at protein.synthesis.ribosomal protein.prokaryotic.

chloroplast.50S subunit.L28
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Gene no Affy ID Function Pathway

34 Ta.28363.3.S1 x at PS.lightreaction.photosystem I.PSI polypeptide subunits

35 Ta.28368.2.S1 at lipid metabolism.lipid transfer proteins etc

36 Ta.3.1.S1 at major CHO metabolism.degradation.starch.starch cleavage

37 Ta.30501.1.S1 at stress.biotic

38 Ta.30727.1.S1 at PS.lightreaction.photosystem II.LHC-II

39 Ta.30808.1.S1 s at PS.calvin cyle.GAP

39 Ta.30808.1.S1 s at glycolysis.glyceraldehyde 3-phosphate dehydrogenase

40 Ta.3361.1.S1 x at stress.abiotic.unspecified

41 Ta.3651.1.S1 at misc.nitrilases, *nitrile lyases, berberine bridge

enzymes, reticuline oxidases, troponine reductases

42 Ta.488.1.S1 at redox.ascorbate and glutathione.ascorbate

43 Ta.488.1.S1 x at redox.ascorbate and glutathione.ascorbate

44 Ta.581.2.S1 a at PS.photorespiration.glycine cleavage

45 Ta.601.1.A1 at lipid metabolism.lipid degradation.lipases

46 Ta.6123.1.A1 s at stress.abiotic.heat

47 Ta.6572.1.S1 a at redox.peroxiredoxin

48 Ta.7378.18.S1 x at DNA.synthesis/chromatin structure.histone

49 Ta.7963.2.S1 x at stress.biotic

50 Ta.8665.1.S1 at stress.abiotic.heat

51 Ta.9226.1.S1 at stress.biotic

52 Ta.9409.1.S1 at RNA.regulation of transcription.General Transcription

53 Ta.9574.1.S1 at tetrapyrrole synthesis.magnesium chelatase

54 Ta.9599.1.S1 a at misc.glutathione S transferases

55 Ta.9679.1.A1 at misc.peroxidases

56 Ta.9718.1.S1 at PS.lightreaction.photosystem II.LHC-II

57 Taaffx.18332.1.S1 at stress.abiotic.heat

58 Taaffx.3720.7.S1 at protein.degradation

59 Taaffx.38476.1.S1 at misc.UDP glucosyl and glucoronyl transferases

60 Taaffx.449.1.A1 at PS.calvin cyle.rubisco small subunit

Table A.3: Correspondence of genes number sand affymetrix names together with the functions

indicated by Mapman in unique-network 3 (non-stress) for the wheat dataset.
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A.2 Chapter 6 additional tables

The tables listed in here refer to the results found applying UNIP to the cancer datasets.They

represent the correspondence of genes numbers in the networks, affymetrix id and symbol. Table

A.4 details the genes in the unique-network for breast cancer.

Breast cancer dataset

Gene number Affy ID Symbol

12 1553183 at UMODL1

21 1553622 a at FSIP1

22 1553678 a at ITGB1

48 1555801 s at ZNF385B

53 1556012 at KLHDC7A

62 1558034 s at CP

63 1558048 x at NA

66 1558678 s at MALAT1

78 1564479 a at NA

118 201438 at COL6A3

130 201744 s at LUM

135 201852 x at COL3A1

140 201893 x at DCN

176 202450 s at CTSK

229 203477 at COL15A1

236 203559 s at ABP1

260 203908 at SLC4A4

269 203980 at FABP4

285 204260 at CHGB

315 204533 at CXCL10

319 204563 at SELL

339 204733 at KLK6

407 205402 x at PRSS2

450 205825 at PCSK1

469 206022 at NDP

487 206228 at PAX2

498 206407 s at CCL13
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Breast cancer dataset

Gene number Affy ID Symbol

508 206561 s at AKR1B10

532 207142 at KCNJ3

534 207175 at ADIPOQ

538 207430 s at MSMB

585 209116 x at HBB

587 209138 x at IGLV3-21

587 209138 x at IGL@

605 209335 at DCN

623 209469 at GPM6A

639 209612 s at ADH1B

643 209676 at TFPI

650 209720 s at SERPINB3

651 209728 at HLA-DRB4

671 209937 at TM4SF4

672 209942 x at MAGEA3

682 210072 at CCL19

688 210145 at PLA2G4A

690 210163 at CXCL11

693 210297 s at MSMB

694 210338 s at HSPA8

702 210467 x at MAGEA12

713 210665 at TFPI

723 210906 x at AQP4

728 211074 at FOLR1

732 211161 s at COL3A1

747 211621 at AR

748 211634 x at IGHV1-69

748 211634 x at IGHM

750 211637 x at IGHV4-59

750 211637 x at IGHV4-31

750 211637 x at IGHV3-23

750 211637 x at IGHA1
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Breast cancer dataset

Gene number Affy ID Symbol

750 211637 x at IGHA2

750 211637 x at IGHD

750 211637 x at IGHG1

750 211637 x at IGHG3

750 211637 x at IGHG4

750 211637 x at IGHM

751 211643 x at IGKC

751 211643 x at IGKV3D-15

751 211643 x at IGK@

752 211644 x at IGKC

752 211644 x at IGK@

753 211645 x at NA

754 211650 x at IGK@

754 211650 x at IGHV4-31

754 211650 x at IGHV3-23

754 211650 x at IGHV1-69

754 211650 x at IGHA1

754 211650 x at IGHD

754 211650 x at IGHG1

754 211650 x at IGHG3

754 211650 x at IGHM

769 211796 s at IL23A

769 211796 s at TRBC2

769 211796 s at TRBC1

773 211881 x at IGLJ3

774 211896 s at DCN

782 212092 at PEG10

791 212298 at NRP1

803 212667 at SPARC

804 212671 s at HLA-DQA1

804 212671 s at HLA-DQA2

813 212950 at GPR116
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Breast cancer dataset

Gene number Affy ID Symbol

825 213258 at TFPI

829 213350 at RPS11

841 213674 x at IGHG1

841 213674 x at IGHD

853 213813 x at NA

855 213844 at HOXA5

870 214078 at NA

876 214183 s at TKTL1

885 214359 s at HSP90AB1

887 214414 x at HBA1

887 214414 x at HBA2

889 214433 s at SELENBP1

894 214461 at LBP

908 214836 x at IGKC

908 214836 x at IGKV1-5

908 214836 x at IGK@

912 214973 x at IGHD

920 215176 x at IGKC

920 215176 x at IGK@

923 215304 at NA

936 215946 x at IGLL3P

938 216207 x at IGKV1D-13

938 216207 x at IGKV1-5

938 216207 x at IGKV1D-8

938 216207 x at IGKC

940 216401 x at NA

942 216491 x at IGHM

943 216510 x at IGHV4-31

943 216510 x at IGHV3-23

943 216510 x at IGHA1

943 216510 x at IGHG1

943 216510 x at IGHM
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Breast cancer dataset

Gene number Affy ID Symbol

944 216557 x at LOC100291917

944 216557 x at IGHV4-31

944 216557 x at IGHV3-48

944 216557 x at IGHA1

944 216557 x at IGHD

944 216557 x at IGHG1

944 216557 x at IGHG3

944 216557 x at IGHM

946 216576 x at IGKC

946 216576 x at IGK@

960 217157 x at IGKC

960 217157 x at IGK@

967 217281 x at LOC100290036

967 217281 x at IGHV4-31

967 217281 x at IGHA1

967 217281 x at IGHA2

967 217281 x at IGHG1

967 217281 x at IGHG2

967 217281 x at IGHG3

967 217281 x at IGHM

984 217590 s at TRPA1

1036 219508 at GCNT3

1042 219612 s at FGG

1054 219850 s at EHF

1063 220133 at ODAM

1067 220196 at MUC16

1069 220232 at SCD5

1089 221577 x at GDF15

1090 221651 x at IGKC

1090 221651 x at IGK@

1091 221671 x at IGKC

1091 221671 x at IGK@
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Breast cancer dataset

Gene number Affy ID Symbol

1110 222281 s at LOC100505650

1150 223642 at ZIC2

1161 223940 x at MALAT1

1169 224321 at TMEFF2

1174 224559 at MALAT1

1178 224568 x at MALAT1

1183 224795 x at IGK@

1183 224795 x at IGKC

1207 225645 at EHF

1229 226192 at AR

1318 228143 at CP

1333 228592 at MS4A1

1342 228821 at ST6GAL2

1381 229638 at IRX3

1385 229782 at RMST

1404 230319 at NA

1405 230323 s at TMEM45B

1433 231597 x at NA

1438 231771 at GJB6

1452 232360 at EHF

1464 232944 at NA

1480 234764 x at IGLV1-44

1480 234764 x at IGLV1-36

1510 236085 at CAPSL

1519 236308 at VSTM2A

1525 237086 at FOXA1

1535 238021 s at CRNDE

1550 239006 at SLC26A7

1566 240065 at FAM81B

1567 240161 s at CDC20B

1579 241617 x at NA

1592 242517 at KISS1R
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Breast cancer dataset

Gene number Affy ID Symbol

1600 243489 at NA

1604 243929 at NA

1608 244745 at RERG

1613 37512 at HSD17B6

1627 AFFX-HUMRGE/M10098 5 at NA

Table A.4: Correspondence of genes numbers, affymetrix names and symbols for the breast

cancer dataset.
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Ovarian cancer dataset

Gene number Affy ID Symbol

27 1554679 a at LAPTM4B

47 1555800 at ZNF385B

69 1559459 at LOC613266

84 1567458 s at RAC1

93 200641 s at YWHAZ

104 201118 at PGD

162 202310 s at COL1A1

169 202403 s at COL1A2

170 202404 s at COL1A2

193 202831 at GPX2

280 204146 at RAD51AP1

287 204272 at LGALS4

299 204415 at IFI6

313 204508 s at CA12

326 204620 s at VCAN

369 205009 at TFF1

378 205064 at SPRR1B

388 205239 at AREG

415 205483 s at ISG15

436 205650 s at FGA

440 205696 s at GFRA1

446 205767 at EREG

488 206239 s at SPINK1

514 206641 at TNFRSF17

560 208310 s at FSTL1

560 208310 s at CCZ1B

560 208310 s at CCZ1

600 209290 s at NFIB

605 209335 at DCN

618 209437 s at SPON1

716 210735 s at CA12

730 211110 s at AR
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Ovarian cancer dataset

Gene number Affy ID Symbol

746 211571 s at VCAN

747 211621 at AR

760 211682 x at UGT2B28

761 211696 x at HBB

774 211896 s at DCN

779 211991 s at HLA-DPA1

793 212344 at SULF1

794 212353 at SULF1

804 212671 s at HLA-DQA1

804 212671 s at HLA-DQA2

850 213796 at SPRR1A

863 213993 at SPON1

874 214135 at CLDN18

875 214164 x at CA12

878 214218 s at XIST

887 214414 x at HBA1

887 214414 x at HBA2

891 214451 at TFAP2B

904 214768 x at IGKC

904 214768 x at IGKV1-5

908 214836 x at IGKC

908 214836 x at IGKV1-5

908 214836 x at IGK@

931 215646 s at VCAN

934 215867 x at CA12

940 216401 x at NA

969 217294 s at ENO1

977 217480 x at IGKC

1042 219612 s at FGG

1054 219850 s at EHF

1093 221728 x at XIST

1096 221731 x at VCAN
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Ovarian cancer dataset

Gene number Affy ID Symbol

1120 222835 at THSD4

1134 223307 at CDCA3

1145 223565 at MZB1

1161 223940 x at MALAT1

1174 224559 at MALAT1

1177 224567 x at MALAT1

1179 224588 at XIST

1180 224589 at XIST

1181 224590 at XIST

1210 225664 at COL12A1

1230 226197 at AR

1290 227550 at GFRA1

1332 228582 x at MALAT1

1368 229218 at COL1A2

1392 229975 at BMPR1B

1403 230291 s at NFIB

1413 230585 at NA

1414 230673 at PKHD1L1

1421 230865 at LIX1

1427 231181 at NA

1439 231879 at COL12A1

1453 232361 s at EHF

1459 232578 at CLDN18

1462 232855 at NA

1464 232944 at NA

1471 233388 at NA

1504 235904 at UGT3A1

1512 236163 at LIX1

1523 236773 at NA

1530 237625 s at IGKC

1537 238103 at LOC100505989

1551 239010 at DUXAP10
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Ovarian cancer dataset

Gene number Affy ID Symbol

1569 240253 at NA

1572 240331 at NA

1591 242468 at NA

1593 242546 at FLJ39632

1594 242579 at BMPR1B

1604 243929 at NA

Table A.5: Correspondence of genes numbers, affymetrix names and symbols for the ovarian

cancer dataset.

Medullary breast cancer dataset

Gene number Affy ID Symbol

1 1405 i at CCL5

5 1552507 at KCNE4

6 1552508 at KCNE4

42 1555730 a at CFL1

78 1564479 a at NA

85 1567628 at CD74

118 201438 at COL6A3

130 201744 s at LUM

135 201852 x at COL3A1

141 201909 at RPS4Y1

144 201971 s at ATP6V1A

169 202403 s at COL1A2

170 202404 s at COL1A2

192 202768 at FOSB

208 203065 s at CAV1

214 203153 at IFIT1

220 203324 s at CAV2

278 204114 at NID2
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Medullary breast cancer dataset

Gene number Affy ID Symbol

287 204272 at LGALS4

298 204409 s at EIF1AY

415 205483 s at ISG15

434 205625 s at CALB1

436 205650 s at FGA

445 205765 at CYP3A5

462 205941 s at COL10A1

479 206164 at CLCA2

481 206166 s at CLCA2

502 206488 s at CD36

543 207663 x at GAGE3

544 207739 s at GAGE2C

544 207739 s at GAGE12F

544 207739 s at GAGE8

544 207739 s at GAGE1

544 207739 s at GAGE3

544 207739 s at GAGE4

544 207739 s at GAGE5

544 207739 s at GAGE6

544 207739 s at GAGE7

544 207739 s at GAGE12I

544 207739 s at GAGE2E

544 207739 s at GAGE2B

544 207739 s at GAGE12G

544 207739 s at GAGE12J

544 207739 s at GAGE2D

544 207739 s at GAGE2A

558 208235 x at GAGE7

558 208235 x at GAGE12F

558 208235 x at GAGE5

558 208235 x at GAGE12I

558 208235 x at GAGE12G
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Medullary breast cancer dataset

Gene number Affy ID Symbol

591 209189 at FOS

624 209480 at HLA-DQB1

631 209555 s at CD36

649 209719 x at SERPINB3

674 209987 s at ASCL1

680 210065 s at UPK1B

704 210511 s at INHBA

715 210728 s at CALCA

732 211161 s at COL3A1

752 211644 x at IGKC

752 211644 x at IGK@

753 211645 x at NA

754 211650 x at IGK@

754 211650 x at IGHV4-31

754 211650 x at IGHV3-23

754 211650 x at IGHV1-69

754 211650 x at IGHA1

754 211650 x at IGHD

754 211650 x at IGHG1

754 211650 x at IGHG3

754 211650 x at IGHM

769 211796 s at IL23A

769 211796 s at TRBC2

769 211796 s at TRBC1

775 211906 s at SERPINB4

779 211991 s at HLA-DPA1

797 212488 at COL5A1

813 212950 at GPR116

848 213768 s at ASCL1

874 214135 at CLDN18

880 214235 at CYP3A5

901 214657 s at NEAT1
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Medullary breast cancer dataset

Gene number Affy ID Symbol

902 214669 x at IGKC

920 215176 x at IGKC

920 215176 x at IGK@

923 215304 at NA

927 215454 x at SFTPC

939 216238 s at FGB

944 216557 x at LOC100291917

944 216557 x at IGHV4-31

944 216557 x at IGHV3-48

944 216557 x at IGHA1

944 216557 x at IGHD

944 216557 x at IGHG1

944 216557 x at IGHG3

944 216557 x at IGHM

960 217157 x at IGKC

960 217157 x at IGK@

962 217227 x at IGLV1-44

962 217227 x at IGLV1-40

966 217258 x at IGLV1-44

966 217258 x at IGLV1-40

977 217480 x at IGKC

978 217495 x at CALCA

1042 219612 s at FGG

1074 220425 x at ROPN1

1074 220425 x at ROPN1B

1079 220624 s at ELF5

1080 220625 s at ELF5

1086 221423 s at YIPF5

1120 222835 at THSD4

1157 223806 s at NAPSA

1175 224565 at NEAT1

1179 224588 at XIST
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Medullary breast cancer dataset

Gene number Affy ID Symbol

1184 224823 at MYLK

1215 225782 at MSRB3

1238 226311 at ADAMTS2

1295 227671 at XIST

1368 229218 at COL1A2

1376 229542 at C20orf85

1455 232458 at COL3A1

1459 232578 at CLDN18

1468 233203 at ROPN1

1513 236203 at HLA-DQA1

1567 240161 s at CDC20B

1569 240253 at NA

1579 241617 x at NA

1618 40284 at FOXA2

1624 AFFX-HUMGAPDH/M33197 5 at GAPDH

Table A.6: Correspondence of genes numbers, affymetrix names and symbols for the medullary

breast cancer dataset.
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Lung cancer dataset

Gene number Affy ID Symbol

29 1554899 s at FCER1G

41 1555728 a at MS4A4A

44 1555758 a at CDKN3

51 1555854 at AKR1C1

51 1555854 at AKR1C2

63 1558048 x at NA

66 1558678 s at MALAT1

107 201149 s at TIMP3

108 201150 s at TIMP3

136 201858 s at SRGN

169 202403 s at COL1A2

219 203323 at CAV2

242 203649 s at PLA2G2A

248 203764 at DLGAP5

263 203915 at CXCL9

271 204006 s at FCGR3B

271 204006 s at FCGR3A

304 204439 at IFI44L

315 204533 at CXCL10

335 204688 at SGCE

370 205014 at FGFBP1

378 205064 at SPRR1B

391 205267 at POU2AF1

398 205350 at CRABP1

412 205475 at SCRG1

450 205825 at PCSK1

467 205982 x at SFTPC

494 206378 at SCGB2A2

514 206641 at TNFRSF17

520 206799 at SCGB1D2

546 207802 at CRISP3

566 208627 s at YBX1
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Lung cancer dataset

Gene number Affy ID Symbol

587 209138 x at IGLV3-21

587 209138 x at IGL@

607 209351 at KRT14

660 209810 at SFTPB

694 210338 s at HSPA8

700 210432 s at SCN3A

702 210467 x at MAGEA12

736 211421 s at RET

753 211645 x at NA

755 211653 x at AKR1C2

765 211735 x at SFTPC

779 211991 s at HLA-DPA1

784 212094 at PEG10

785 212097 at CAV1

797 212488 at COL5A1

803 212667 at SPARC

816 212998 x at HLA-DQB1

835 213502 x at GUSBP11

848 213768 s at ASCL1

851 213797 at RSAD2

861 213936 x at SFTPB

872 214087 s at MYBPC1

876 214183 s at TKTL1

878 214218 s at XIST

884 214354 x at SFTPB

886 214387 x at SFTPC

902 214669 x at IGKC

903 214677 x at IGLJ3

903 214677 x at CYAT1

903 214677 x at IGLV1-44

924 215379 x at IGLV3-21

924 215379 x at IGLV1-44
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Lung cancer dataset

Gene number Affy ID Symbol

924 215379 x at IGLC7

936 215946 x at IGLL3P

940 216401 x at NA

946 216576 x at IGKC

946 216576 x at IGK@

961 217179 x at NA

971 217378 x at NA

977 217480 x at IGKC

1069 220232 at SCD5

1070 220269 at ZBBX

1075 220445 s at CSAG2

1075 220445 s at CSAG3

1081 220782 x at KLK12

1094 221729 at COL5A2

1133 223278 at GJB2

1145 223565 at MZB1

1161 223940 x at MALAT1

1180 224589 at XIST

1215 225782 at MSRB3

1254 226811 at FAM46C

1295 227671 at XIST

1340 228780 at NA

1376 229542 at C20orf85

1385 229782 at RMST

1423 231077 at C1orf192

1424 231084 at WDR96

1438 231771 at GJB6

1457 232523 at MEGF10

1473 233586 s at KLK12

1478 234316 x at KLK12

1480 234764 x at IGLV1-44

1480 234764 x at IGLV1-36
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Appendix A. Additional tables and results

Lung cancer dataset

Gene number Affy ID Symbol

1488 235060 at LOC100190986

1510 236085 at CAPSL

1515 236256 at NA

1540 238320 at NEAT1

1553 239150 at SNTN

1570 240303 at TMC5

1571 240304 s at TMC5

1615 38691 s at SFTPC

Table A.7: Correspondence of genes numbers, affymetrix names and symbols for the lung cancer

dataset.
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