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Abstract—Ultrasonic guided waves can be used to assess 
and monitor long elements of a structure from a single posi-
tion. The greatest challenges for any guided wave system are 
the plethora of wave modes arising from the geometry of the 
structural element which propagate with a range of frequency-
dependent velocities and the interpretation of these combined 
signals reflected by discontinuities in the structural element. In 
this paper, a novel signal processing technique is presented us-
ing a combination of frequency-sweep measurement, sampling 
rate conversion, and Fourier transform. The technique is ap-
plied to synthesized and experimental data to identify different 
modes in complex ultrasonic guided wave signals. It is dem-
onstrated throughout the paper that the technique also has 
the capability to derive the time of flight and group velocity 
dispersion curve of different wave modes in field inspections.

I. Introduction

Ultrasonic guided waves (UGWs) have been used in 
the last few years to examine the health of structural 

components of varied geometries; principally for detection 
of flaws, corrosion, and metal loss. In the case of one-
dimensional structures, e.g., pipes, the reflected guided 
waves are measured and translated into defect categori-
zation, giving parameters including total cross sectional 
area and through-wall depth of the defect [1]. Although 
many recent techniques are evolving into promising in-
spection tools, several challenges still exist. UGWs give 
rise to multiple wave modes within a frequency region 
with a dispersive nature because their velocities can be 
frequency dependent. In addition, signal interpretations 
are often difficult because of multimode propagation and 
mode conversion, along with test structure geometric fea-
tures [2]. These limitations influence design procedures 
and software preconditioning, which consequently affects 
the overall performance of UGW inspections.

Dispersion curves deliver useful quantitative informa-
tion in any UGW inspection system. A dispersion curve 
diagram illustrates the frequency or wavenumber relation 

to the wave velocity in separate curves for existing modes 
in a frequency region. These are curves of the variation 
in phase and group velocity (vph and vgr) over a range of 
frequencies for each wave mode. The gradient of the phase 
velocity dispersion curve for a nondispersive wave mode 
over a particular frequency range, will be flat over that 
bandwidth; therefore, phase velocity will be quite close to 
group velocity [3]. On the other hand, dispersive signals 
have a tendency to spread out over time and space as the 
phase will be traveling with a different velocity (vph) to 
the envelope (vgr). Thus, multimode dispersive propaga-
tion is a more challenging scenario for UGW inspections. 
Fig. 1 represents the group velocity dispersion curves for 
an 8-mm-diameter aluminum rod plotted by the Disperse 
software designed and developed by Imperial College Lon-
don [4]. As can be seen in Fig. 1, numerous dispersive 
and nondispersive wave modes exist across the frequency 
regions which superpose to confuse the inspection. An ef-
fective technique is therefore required to identify the con-
stituent elements for a reliable interpretation.

Alleyne and Cawley [5] demonstrated how two-dimen-
sional data are required to achieve wave mode isolation, 
using time-domain data collected from several equally 
spaced points on the surface of a pipe along the axis. 
This is a useful method from a research point of view, 
but inconvenient for field inspections in a pitch–catch ex-
periment. This requires either an array of transducers or 
laser vibrometry equipment, which can be expensive and/
or time consuming. Prosser and Seale [6] used a time-
frequency analysis (the pseudo-Wigner–Ville distribution) 
and managed to characterize the Lamb-mode dispersion 
and recover a part of the dispersion curve of the wave 
modes. Wilcox et al. [7] presented a technique for model-
ing the propagation of a dispersive wave packet. They also 
introduced a minimum resolvable distance (MRD) which 
could facilitate the minimization of the wave packet’s du-
ration after a given propagation distance.

Sicard et al. [8] and Wilcox [9] presented a method 
to compensate the effect of dispersion from UGW sig-
nal. However, the method only works for a specified wave 
mode, in a particular structure, with known dispersion 
characteristics within the signal bandwidth. Later, Toi-
yama and Hayashi [10] proposed a dispersion compensa-
tion method using pulse compression to remove the effect 
of velocity dispersion and improve the SNR. Kuttig et 
al. [11], used the time–frequency representation (TFR) 
spectrogram and chirplet transform to extract the propor-
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tional energy distribution of a single wave mode from a 
multimode dispersive signal. Minozio et al. [12], proposed 
a technique using singular value decomposition (SVD) 
and managed to recover a UGW phase velocity dispersion 
curve. However, the technique requires measurements of 
several propagation distances. Xu et al. [13] used a crazy-
climber algorithm to separate time-frequency ridges of 
individual modes from TFR ridges. However, there were 
some limitations because of the difficulty in identification 
of some modes. Moreover, the application of this tech-
nique is restricted by the requirement for manual interven-
tion. Song et al. [14] used a blind identification algorithm 
via the joint approximate diagonalization of eigenmatrices 
(JADE). They suggested that the JADE algorithm may 
be used to separate the superposed signals and could po-
tentially be used to evaluate long bones. However, such 
an approach requires multi-measured acquisitions concur-
rently. Recently, Xu et al. successfully solved the single-
mode limitation of the traditional dispersion compensation 
methods and further proposed a multimode compensation 
technique [15] with the advantages of selective mode sepa-
ration and parameter estimation. However, because all of 
the dispersion compensation methods make use of a priori 
knowledge of the dispersion curve, further improvements 
are still required. Thus, according to the literature, an ef-
fective and automatic technique to identify UGW modes 
remains a challenge in signal processing for UGW inspec-
tions.

II. Proposed Technique

In this paper, a novel signal processing technique is de-
veloped using the combination of sampling rate conversion 
in fractional-ratio, Fourier transform, and the concept of 
frequency sweep spectrum (FSS) to identify different wave 
modes in a complex UGW response including several su-
perposed signals. Specifically, accurate quantitative infor-
mation, such as total number of existing wave modes in 
a particular frequency range, number of constituent wave 
packets in a superposed signal, and vgr of a wave mode 

by extracting the time-of-flight (ToF), is to be taken out 
from the technique outcome to ease the defect detection 
process. The technique employs multiple-cycle Hann-
windowed sinusoidal pulse train [16], [17] excitations at a 
range of UGW frequencies which are equally incremented. 
It proposes to identify signals with similar group velocities 
but different gradient arising from independent modes.

It is shown that the rate-converted time shift caused by 
sampling rate conversion for each signal can adjust their 
operating frequency to the frequency of interest. Con-
sequently, this promotes sequential rate-converted time 
shifts to the individual acquisitions at each frequency in-
crement. Hence, the technique can exploit the different 
gradients of the lines corresponding to each wave mode in 
the group velocity dispersion curve, which facilitates the 
identification of different wave modes in the superposed 
signals. It is also best suited for one-dimensional struc-
tures e.g., rods, bars, pipes, rails, etc.

The methodology is initially applied to synthesized 
data performed by Matlab-R2011b and then validated 
using experimental data collected using a Teletest Focus 
pulser/receiver (TWI Ltd., Cambridge, UK).

A. Data Collection

To extract useful information from the application of 
the frequency-sweep examination (FSE) technique, the 
data collection must follow a particular routine. The UGW 
excitations should cover a wide range of UGW frequencies 
starting from f0 to fp−1 with equal incremental factor (q). 
The acquisitions xα(t), with the excitation index of α = 
{0, 1, 2, …, p − 1} are arranged in a matrix with p different 
steps/rows at each excitation frequency. Therefore, the 
frequency-sweep increment (q) and the acquisition matrix 
can be expressed, respectively, as
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where c is the number of columns in the matrix, which 
represents the length of each single acquisition, fp−1 is the 
upper limit of frequency-sweep, and f0 is the lower limit.

A constant appropriate sampling rate [18] is used for 
each acquisition in the array, xα(t), which satisfies the Ny-
quist criterion for the highest frequency/bandwidth acqui-
sition. The criteria for the choice of p and q is discussed in 
later sections in the context of data accuracy.

B. Sampling Rate Conversion

Each acquisition x(t) is transformed to a new signal 
y(τ ) as defined in (2) and (7) by fractional ratio sampling 

Fig. 1. Group velocity dispersion curve of an aluminum rod. 
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rate conversion [19]. For each signal, a spline [20] is fitted 
to the samples to reconstruct the original signals. Sam-
pling starts at the beginning of the signal so that the first 
sample is common to both x(t) and y(τ ). The fractional 
ratio for each transformation is chosen and defined in (3) 
and (4) according to the frequency of excitation, so that 
each signal appears to have the same excitation frequency 
as f0. Thus, the acquisitions will be ready for the direct 
comparison along the rate-converted frequency-sweep axis.

Series of fractional sampling rate conversions are ap-
plied to each acquisition to rate convert over the entire 
range of frequencies, ( f0 to fp−1) and adjust them back to 
the f0 frequency. Therefore, it can facilitate the extraction 
of quantitative information; i.e., ToF and group velocity 
at f0 after the application of the Fourier transform. The 
fractional-ratio converter can be made by arranging two 
integer-ratio converters M and L in series. The input sam-
pling rate is multiplied by L in an interpolator, and the 
result is divided by M in a downsampler. Therefore, the 
general fractional ratio can be expressed as

	
T
T

M
L R F

L
M F F Rs

s
s s sor /

′
= = ′ = = ,	 (3)

where Ts, Ts′ and Fs, Fs′ are the input and output sam-
pling intervals and sampling frequencies, respectively.

In this paper, we consider an adaptive ratio (Rα) for 
each frequency-sweep excitation:

	 R M Lα αω ω ,= =/ / 0 	 (4)

where ω0 and ωα are the angular velocity at f0 and succes-
sive sweeping frequencies, fα, respectively, defined as

	 ω π ω πα α0 02 2= =f f,  .	 (5)

Thus, the output of the sampling rate conversion, y(τ ) can 
be expressed in terms of interpolation and downsampling 
as [21],
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where h(k) is a digital filter which operates both downs-
ampling and interpolation process.

Thus, according to the input matrix given in (2) and the 
aforementioned sampling rate conversion, the output of 
the rate-converted set of acquisitions can be expressed as
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where τ is the rate-converted time and z is the number of 
columns in the matrix, which represents the length of each 
rate-converted acquisition given after the sampling rate 
conversion. It is also notable that the number of columns 
changed (from c to z) because of the effect of sampling 
rate conversion on the length of each acquisition. This 
change in the length creates the rate-converted time (τ), 
which is constructed based on the sample shifts caused 
after the sampling rate conversion. For each individual 
acquisition, zero-paddings may be needed to create the 
�Op z×  matrix, because they are rate-converted with differ-
ent fractional ratios defined in (4).

After the sampling rate conversion, all of the acquisi-
tions appear as if excited at the same frequency as f0. 
Therefore, the excitation index (α ) has been set as the 
variable of the column vectors. Here, the amplitude sweep 
wave form (ASW) can be defined as
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It is constructed as the combination of single value am-
plitude information of the sampling rate-converted acqui-
sitions for a point in rate-converted time defined in (7). 
Sample ASWs are illustrated in Sections III and IV. It is 
notable that the x-axis represents the samples collected 
from the individual rate-converted frequency-sweep acqui-
sitions. They show how several superposed signals can be 
represented in different oscillations.

C. Fourier Transform of the Signal Array

To obtain the spectrum of the incremental variations 
after the sampling rate conversion, the ASWs defined in 
(8) should be Fourier transformed. This will reveal the 
spectrum of incremental variations for each fixed point 
in rate-converted time which is called frequency sweep 
spectrum (FSS). The FSS measures the rate of shifts in 
rate-converted time for various wave modes in number of 
cycles per sample.

According to the time-domain system input-output 
given in (2) and (7), the transform relationships of the 
individual integer downsampling and interpolation sys-
tem, the output spectrum FSS( )�f  can be determined in 
terms of the input ASW(α) as
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Thus, the total frequency-sweep spectrum (TFSS) of the 
signal array can be expressed as
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The incremental variations correspond to individual rows 
in the TFSSz×w matrix, which include individual FSS( )�f  at 
each instant in rate-converted time. This facilitates the 
identification of existing wave modes at f0 in Fourier do-
main and extraction of the ToF using a threshold based on 
the specific value sensitive to the level of coherent noise 
[22] according to the measured SNR at f0.

D. Data Accuracy

As discussed in Section II-A, a constant appropriate 
sampling rate was used for each acquisition in the array 
which could satisfy the Nyquist criterion for the highest 
frequency/bandwidth acquisition. However, the accuracy 
of the ASWs depends on choosing an appropriate number 
of frequency-sweep acquisitions, p. Fig. 2 shows the echoes 
from a nondispersive wave modes [e.g., the L(0, 1) wave 
mode in the rod under investigation] which have a linearly 
increasing shift in rate-converted time as the frequency 
of excitation increases from f0 to fp−1. Fig. 2 also shows 
a pictorial representation of the variables used in subse-
quent equations.

The maximum rate-converted time shift caused by 
sampling rate conversion for a nondispersive signal can be 
expressed as
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where tFSE is the lowest experienced rate-converted time 
shift caused by the sampling rate conversion.

The shift between f0 and adjacent vertical sample can 
be expressed as
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It is known [23] that the frequency band B of an n-cycle 
Hann windowed sine wave at f0 which corresponds to the 
excitation signal is expressed as

	 B f f n f f n= − +[ ]: .0 0 0 02 2/ / 	 (13)

Thus, according to (11), (12), and the Nyquist criterion, 
the minimum number of steps ( p) should comply with
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As a result, the necessary range for p is

	 p f f n f f tp> + −−( )(( ) )( ).0 0 1 02 1/ / FSE 	 (15)

It is sufficient for the necessary range for p to be rounded 
to the next power of two, so as to perform a computation-
ally efficient Fourier analysis.

In addition, according to the dispersion curve shown in 
Fig. 1, the velocity and the ToF of a wave mode may tend 
to vary and/or remain constant in a certain frequency 
region depending on its dispersive and/or nondispersive 
propagation. Subsequently, these variations change the 
gradient of the rate-converted time shift after sampling 
rate conversion. Therefore, an alternative way to increase 
the data resolution in the system output, or change the 
gradient of the rate-converted time shift, is to shorten the 
original time range to detect the presence of different wave 
modes.

E. Group Velocity Value Extraction

According to information given in Section II-C, and 
assuming that the length of propagation is known (l ), the 
group velocity value at f0 can be extracted by

	 v
l
tgr
ToF

= ,	 (16)

where tTOF is the extracted ToF of the wave mode of in-
terest.

The group velocity dispersion curve can also be com-
puted by frequently applying the FSE procedure to the 
input matrix given in (2) with a given gradual change in 
the value of the f0 frequency, so that the group velocity at 
that frequency could be extracted sequentially.

Fig. 2. Theoretical signals before (Ip×c) and after ( )�Op z×  sampling rate 
conversion. 
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F. FSE Summary and Analysis

For each of the frequency-sweep experiments, the time 
duration of the n-cycle excitation pulse is reduced. As a 
consequence, the time duration of the reflected signals (es-
pecially the nondispersive signals) is also reduced. 

For nondispersive signals in the frequency-sweep acqui-
sitions, the increasing shift associated with the sampling 
rate conversion is linearly related to the increasing excita-
tion frequency. Therefore, they can possess a constant 
frequency in the FSS domain. Fig. 2 shows this effect for 
the nondispersive signals. For dispersive signals, the vari-
ations of group and phase velocity with respect to excita-
tion frequency will cause a shift in the time domain even 
before sampling rate conversion. However, these shifts 
cannot be traced with ASWs/FSSs because of the pres-
ence of different excitation frequencies in each acquisi-
tion. After sampling rate conversion, the acquisitions ap-
pear as if they were excited at the same frequency as f0. 
Therefore, a more exaggerated nonlinear shift can be ex-
perienced by dispersive signals, which can potentially ex-
hibit higher frequency in FSS( )�f  compared with the non-
dispersive signals. These different frequencies in FSS( )�f  
facilitate the identification of different dispersive and 
nondispersive signals. As a result, the superposed signals 
should possess different oscillations in the ASW(α ) and 
appear as clear peaks in the FSS( ),�f  which facilitates the 
extraction of ToF and group velocity of the constituent 
wave modes.

To summarize, the steps in applying the FSE are as 
follows:

•	Collect the frequency-sweep acquisitions, xα(t) based 
on (1), (2), and (15), from f0 to fp−1.
•	Apply the sampling rate conversion with the ratios 
given in (4). Therefore, all of the acquisitions should 
appear as if excited at the same frequency as f0.
•	Construct the ASW(α ) based on (7) and (8).
•	Perform the Fourier transform on the ASW(α ) at the 
entire rate-converted time range to obtain the FSS( )�f  
based on (9).
•	Collect the whole obtained FSS( )�f  to produce 
TFSS( , )�f τ  based on (10).
•	While performing the Fourier transform and con-
structing the TFSS( , ),�f τ  define a threshold value sen-
sitive to the level of coherent noise (according to the 
already measured SNR at f0) to automatically identify 
the existence of the wave modes in a superposed wave 
packet.
•	Perform peak searches in the responses given by 
FSS( )�f  to extract the number of existing wave modes 
in a superposed wave packet with their ToF informa-
tion.
•	Compute the group velocity at f0 based on (16).
•	Repeat the whole process from the start with a given 
gradual change in f0 to compute the desired portion of 
group velocity dispersion curve.

III. Signal Synthesis

Signals were synthesized to examine the FSE proposed 
in Section II. The technique is applied to superposed com-
plex wave packets representing the interaction between 
L(0, 1) and F(1, 1) [24] propagating wave modes. A disper-
sion simulation was carried out as a part of the synthesis.

A. Wave Modes Analysis

A superposed wave packet comprising L(0, 1) and 
F(1, 1) wave modes were synthesized based on the group 
velocity dispersion curve given in Fig. 1 to identify them 
with the aid of FSE procedure. Fig. 3(left) illustrates sam-
ple isolated and superposed wave modes as a result of 20-
kHz, 10-cycle Hann windowed excitation. With reference 
to Section II-A and Section II-D, a set of 512 superposed 
signals were generated from f0 (20 kHz) to fp−1 (100 kHz) 
and were rate-converted back to f0 20 kHz.

The simulation of dispersive F(1, 1) wave mode was per-
formed according to the method described by Wilcox et 
al. [7] using the parameters given in the dispersion curve. 
In this case, it was assumed that the transducer is ideal 
and only excites the guided wave modes of interest at the 
given location.

Three sample FSS s( )�f  of the isolated L(0, 1), F(1, 1) and 
their superposition at 2300 µs are displayed in Fig. 3(mid-
dle).

Fig. 3(right) illustrates contour plots of the TFSS( , )�f τ  
measured at the entire rate-converted time instants. The 
distinct curves illustrated in Fig. 3(right) are traced en-
ergy peaks which show the discriminated wave modes of 
interest and the ability of FSE to identify the superposed 
wave modes at the frequency of interest where signals are 
overlapped, i.e., f0, 20 kHz.

According to the discussion provided in Section II, each 
row of the rate-converted output matrix given in (7) con-
tains superposed signals where each is gradually shifted in 
rate-converted time. The spectrum of the acquistion sig-
nals before the sampling rate conversion, gives no indica-
tion as to how the frequency content of a signal changes 
with the FSS( )�f  of the signal at each single rate-converted 
time instant. However; after sampling rate conversion, all 
of the nondispersive and dispersive signals of the frequen-
cy-sweep acquisition appear as if excited at the same fre-
quency as f0, while experiencing different shifts in rate-
converted time as the excitation frequency increases, 
because of the existance of flat and nonlinear group veloc-
ity dispersion curves, respectively. These different shifts in 
rate-converted time (linear/nonlinear) after sampling rate 
conversion, facilitate a situation in which each column of 
the �O fp z× ( , )τ  matrix to be selected as ASW(α ) has differ-
ent oscillations e.g., Fig. 4. These different oscillations in 
the selected ASWs defined in (8) contain key information 
about any nondispersive and dispersive signals which clas-
sify each single reflection in different oscillations. It is no-
table that the x-axis of the ASW(α ) represents the indi-
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vidual samples at the corresponding rate-converted 
frequency-sweep acquisitions.

After the application of Fourier transform on ASWs, 
FSSs are obtained, as shown in Fig. 3(middle). The dis-
tinct peaks illustrated in Fig. 3(middle) correspond to the 
identified wave modes of interest in the superposed wave 
packet shown in Fig. 3(c)(left).

TFSS shown in Fig. 3(right) represents all of the FSSs 
meshed together at each of their respective rate-converted 
time instants. The nondispersive L(0, 1) wave mode exhib-
its a constantly increasing shift in rate-converted time, 
(Section II-D, Fig. 2) so the position of the peak which is 
observed in the FSS( )�f  and TFSS( , )�f τ  [Fig. 3(a)(middle) 
and (right)] remains constant. However, the dispersive 
F(1, 1) wave mode exhibits a nonlinearly increasing shift 
in rate-converted time causing a variation in the position 
of the peak observed in the FSS( )�f  and TFSS( , )�f τ  [Fig. 
3(b)(middle) and (right)]. As was discussed in Section II-
C, the ToF of each wave mode at f0 frequency, i.e., 20 kHz, 
is extracted by capturing the presence of a new gradually 

rising magnitude spectrum at each successive time instant. 
Given the ToF, the group velocity was estimated accord-
ing to (16). Fig. 5 represents the computed F(1, 1) and 
L(0, 1) dispersion curve mapped to the dispersion curve 
given by Disperse.

Fig. 3. From left to right: signal, frequency sweep spectrum (FSS), and total frequency sweep spectrum (TFSS) of (a) nondispersive L(0, 1) and (b) 
dispersive F(1, 1); (c) Superposition of (a) and (b). 

Fig. 4. Amplitude sweep wave form (ASW) at 2300 µs.
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IV. Experimental Validation

The technique is applied to pulse–echo UGW signals 
from an aluminum rod. The data are acquired according 
to Section IV-B and analyzed using the FSE technique 
in Section IV-C. The group velocity dispersion curve of 
the specimen is also extracted from the given results and 
validated via Disperse.

A. Experimental Setup

The experimental set-up is illustrated in Fig. 6. A shear 
piezoelectric transducer [25] is orientated in a manner that 
allows it to actuate longitudinally in the axial direction of 
the 2.15-m-long aluminum rod with 8 mm diameter. The 
transducer was connected to the unit via a tool lead cable 
and then the unit was connected to the laptop by com-
munication cable. A ten-cycle Hann windowed signal was 
injected from the laptop to the unit and fired from the 
transducer through the rod.

B. Data Collection and Experimental Results

In this experiment, several UGW signals were collect-
ed from the rod with different frequencies and an equal 
incremental factor. With reference to Section II-A, 512 
frequency-sweep excitations are performed in a wide range 
of frequencies starting from 20 kHz ( f0) and stopping at 
100 kHz ( fp−1).

Fig. 7(left) displays the acquisition collected at f0. It 
displays multimodal reflection from the end of the rod 

with overlapped echoes at different ToFs. It is notable 
that the first echo of L(0, 1) was ignored therefore the 
acquisition could be analyzed with a challenging scenario 
where several echoes are strongly overlapped.

The total signal acquisitions are accumulated as an in-
put to the sampling rate conversion. Figs. 7(middle) and 
(right) and Fig. 8 represent sample ASW(α ) and FSS( )�f  
at chosen individual rate-converted time instants, respec-
tively. The x-axis in Figs. 7(middle) and (right) represents 
the individual samples collected at the corresponding rate-
converted frequency-sweep acquisitions. Fig. 9 displays 
the TFSS( , )�f τ  derived from the superposed signals.

C. Group Velocity Extraction and Further Analysis

According to (16) the group velocities of the modes 
of interest were estimated and compared with the values 
given by Disperse in Fig. 10. Although T(0, 1) could be 
theoretically generated within the frequency range that 
has been excited, the orientation of the piezoelectric trans-
ducer is aligned to the axial direction of the rod, hence 
this restricts any displacements in the circumferential di-
rection. Therefore, the presence of T(0, 1) in this set of 
experiments will be negligible. It is also notable that ac-
cording to the dispersion curve of the specimen, the cut-
off frequency of L(0, 2) is approximately at 460 kHz, which 
is beyond the frequency range of excitation.

Here, the mode conversion occurred [9], [26]–[29] be-
cause the transducer is clamped on the end of the rod via 
a G-clamp. The rod surface is in contact with the piezo-
electric ceramic at an arbitrary point on the circumference 
and the reactive force of the clamp surface is in contact 
with the rod directly 180° to the prior mentioned arbitrary 
point. The location at which the transducer and clamp are 
situated produces a feature on the rod; hence, after the 

Fig. 5. Group velocity dispersion curve of the aluminum rod. 

Fig. 6. Experimental setup.

Fig. 7. (left) Acquisition at f0, (middle) amplitude sweep wave form (ASW) at 2300 µs, (right) ASW at 4300 µs.
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reflection of the waves from the end of the rod toward the 
clamp and the transducer, the longitudinal wave converts 
to a flexural wave and/or a generated flexural wave has 
been converted into a longitudinal mode. This produces 
an additional wave packet in the acquisition with relative-
ly lower amplitude than the other echoes. This mode-con-
verted wave packet possesses the same velocity as L(0, 1) 
because it has the same round trip time [26].

Having the capability to identify and discriminate the 
wave modes with their velocity makes the defect detection 
process straightforward, where the end of the rod can be 
treated as a defect of interest which produces mode con-
versions.

The distinct curves illustrated in Fig. 9 are traced en-
ergy peaks which show the existing superposed wave 
modes with different gradients at successive echoes. As 
discussed in Section II-D, during the technique implemen-
tation, the original time range has been shorten to high-
light the presence of the longitudinal, flexural, and con-
verted wave modes at different rate-converted times. The 
wave modes were identified according to their group veloc-
ity value given in Fig. 10. Fig. 9(left) represents the super-
position of the second echo of L(0, 1) and first echo of 
F(1, 1) in the given time range of 1400 to 6400 µs. The 
L(0, 1) wave mode shows a constantly increasing shift in 
rate-converted time (Section II-D, Fig. 2), so the position 
of the L(0, 1) peaks which are observed in the FSS( )�f  and 

TFSS( , )�f τ  (Figs. 8 and 9) remain constant. However, the 
dispersive F(1, 1) wave mode exhibits a nonlinearly in-
creasing shift in rate-converted time, causing the nonlin-
ear variation in the position of the F(1, 1) peaks observed 
in the FSS( )�f  and TFSS( , )�f τ  (Figs. 8 and 9). Fig. 9(mid-
dle) represents the superposition of third echo of L(0, 1) 
and first echo of the mode-converted signal over the given 
rate-converted time 2000 to 8500 µs. Fig. 9(right) repre-
sents the superposition of three wave modes arising be-
cause of the reflection and mode conversion at the clamped 
end of the rod at a given time range of 3500 to 10 000 µs. 
The FSE procedure was performed in sequence with a 
given gradual change in f0 frequency, therefore a portion 
of the group velocity dispersion curve covering the fre-
quency range of excitation was measured and validated 
via Disperse in Fig. 10.

According to the given results, the proposed technique 
shows promise for wave mode identification in a multi-
modal UGW signal. It is also demonstrated to have the 
capability to plot the group velocity dispersion curve of 
an aluminum rod. Therefore, the technique is mostly ex-
pected to be suitable for reliable inspection of one-dimen-
sional structures (e.g., wires, bars, pipes, rails, etc.) in 
field inspections, because it requires a frequency-sweep 
pulse–echo measurement.

It is notable that the time-domain separation has not 
been performed in this paper because the objective of the 

Fig. 8. Frequency sweep spectrum (FSS) at (left) 2300 µs, (middle) 3500 µs, (right) 4300 µs.

Fig. 9. Total frequency sweep spectrum (TFSS) image of (left) second echo L(0, 1) and first echo F(1, 1); (middle) third echo L(0, 1) and first echo 
mode-converted signal; (right) fourth echo L(0, 1), second echo F(1, 1) and second echo mode-converted signal. 
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paper was wave mode identification focused in the Fourier 
domain. According to the potentials of the proposed tech-
nique that have been highlighted throughout the paper, 
the authors suggest employing customized filters on FSS 
responses to extract individual time-domain wave forms; 
therefore, it could also be particularly beneficial in practi-
cal applications, e.g., defect sizing and attenuation mea-
surements out in the field.

V. Conclusions

In this paper, a frequency-sweep examination (FSE) 
technique was introduced and showed promise for defect 
detection in complex UGW inspections. It has been em-
pirically demonstrated that the proposed signal processing 
technique is useful for ToF/group velocity extraction and 
wave mode identification of superposed UGWs. The tech-
nique obtained the number of present wave modes with 
accurate quantitative information allowing a portion of 
group velocity dispersion curve to be computed.

The assumption of a known propagation distance is a 
drawback of the technique which must be taken into ac-
count in field inspection, as well as the one presented by 
TFR methods [13] and [15]. In addition, the time-domain 
separation has not been performed in this paper because 
the paper is mainly focused on wave mode identification, 
which was achieved in the Fourier domain. According to 
the potentials of the proposed technique, customized fil-
tering in the FSS domain can be a possible solution to 
such a requirement.

The advantage of this approach over spatial 2-D-FFT 
[5] or SVD [12] measurements is that it is based on per-
forming pulse–echo frequency-sweep excitations of UGWs 
rather than several pitch–catch measurements. Moreover, 
the use of FSE enables the empirical computation of the 
dispersion curve, which overcomes the need for a priori 
knowledge, whereas it is needed for dispersion compensa-
tion methods [15].

The future work on this topic will focus on empirically 
plotting the entire phase and group velocity dispersion 
curves assuming that the length of the structure is un-
known.
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