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Abstract: A method for uncertainty analysis in power system state estimation is proposed. The
two-step method uses static weighted least-squares analysis to compute ‘point’ state estimates.
Linear programming is then employed to obtain the upper and lower bounds of the uncertainty
interval. It is shown that the method can provide useful additional information for both metered
and nonmetered elements of the system. The effects of network parameter errors are also studied.
For illustrative purposed, the proposed method is tested using the six-bus and IEEE 30-bus
standard systems. Results show that the proposed method is an accurate and reliable tool for
estimating the uncertainty bounds in power system state estimation.

1 Introduction

The availability of an accurate picture of the system-state is
an important aspect of power system operation. While a
supervisory control and data acquisition (SCADA) system
is capable of providing operators with measured informa-
tion, a state estimator has the ability to filter the available
information creating a more accurate and complete picture
of the system conditions. The traditional objective of state
estimation is to reduce the effect of measurement errors by
utilising the redundancy available in the measurement
system. In particular, the objective is to reduce the variance
of the estimates and improve their overall accuracy. The
other major objectives of state estimation methods include:
detection of gross errors, detection of invalid topological
information and detection of model parameter errors.

If the errors in the measurements follow a known
probability distribution, then the set of feasible estimates
can also be modelled by a probability distribution function.
Unfortunately, the statistics of the observation errors are
difficult to characterise in practice. In such circumstances, it
is desirable to provide not just a single ‘optimal” estimate of
each state variable but also an uncertainty range within
which we can be assured that the ‘true’ state variable must
lie. The idea of an uncertainty range is recognisable in
engineering practice, where the accuracy of a particular
measurement is often described as (for example) plus or
minus 2%, rather than by quantifying the standard
deviation or variance.

Schweppe [1] introduced the concepts of uncertainty in
the general context of engineering analysis, estimation and
optimisation. These concepts have been extended and
developed and have been applied in a number of areas.
Uncertainty modelling in state estimation has been
considered in the context of water distribution networks.
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Bargiela and Hainsworth [2] introduced bounds on the
measurements, with an intention to increase the robustness
of the estimation. The approach has been developed by
Brdys and Chen [3], who introduced the term set bounded
state estimation (SBSE). Nagar and Powell [4] have applied
concepts from robust control theory and allowed for
uncertainty in both the parameters and the measurements.
The uncertainty is isolated with the use of a linear fractional
transformation, and the problem is formulated as a convex
semidefinite programming problem. A linear matrix in-
equalities approach is then used to solve the semidefinite
programming problem.

In conventional state estimation techniques, the accurate
knowledge of error statistics of transducers and metering
equipments is a prerequisite. However, such information
may not be precisely known, leading to less accurate
estimates. Providing estimated bounds together with the
point estimates gives additional information that can
improve the overall quality of the estimation. Knowledge
of the limiting values or bounds that apply to measured
quantities, facilitates a problem formulation that enables the
computation of bounds on state estimates. Thus, the main
theme of this paper is to model the uncertainties associated
with the measured quantities in a way that defines an
interval (range) with respect to their nominal values. The
range is governed by the tolerance of the measuring
instrument (a quantification of accuracy usually provided
by the manufacturer). By utilising appropriate mathema-
tical programming techniques, the confidence interval (or
bounds) of the state variables can be computed.

A two-step method is proposed for estimating the
uncertainty interval around the system state variables. The
first step uses weighted least systems (WLS) as a point
estimator to compute the expected values of the state
variables. A linear programming formulation is then utilised
to find the tightest possible upper and lower bounds on
these estimates. It is also shown that the method can
provide useful additional information for metered and
nonmetered elements of the network.

2 Uncertainty and state estimation

The wuncertainty is a parameter associated with the
measurement that describes the dispersion of the values
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that could reasonably be attributed to the measured
quantity [5]. This uncertainty reflects the lack of complete
knowledge of the exact value of the quantity being
measured. Theoretically, availability of complete knowledge
about the measured quantity requires an infinite amount
of information, which is naturally impossible. Phenomena
that contribute to the uncertainty are called sources
of uncertainty. According to [5], there are various
possible sources of uncertainty in a measurement, among
which:

¢ Incomplete definition of the measured quantity

¢ Inadequate realisation of the definition of the measured
quantity

¢ Nonrepresentative sampling (sample measured may not
fully represent the measured quantity)

® Incomplete knowledge of environmental conditions
e Human error in reading analogue instruments

e Approximations incorporated in the measurement
procedure

e Finite resolution of instrumentation

The uncertainty in power system state estimation is
primarily due to either measurement inaccuracy or
inaccuracies related to the network mathematical model
used. For example meter inaccuracies and calibration errors
are major sources of measurements uncertainty. Parameter
approximations in modelling of the m-equivalent (line
resistance, reactance, shunt capacitance) and the time-skew
between metered values are further sources of uncertainty in
state estimation. Unfortunately, the magnitudes of such
errors and approximations are not known, which in turn
leads to uncertainty in the estimates obtained in state
estimation.

Traditionally, the uncertainty is handled in estimation by
using probability theory. Problems arise, however, due to
the possibly invalid underlying assumptions concerning the
probabilistic model of uncertainty and nonlinearities in the
network model. As a result, the power system operator can
be faced with estimates whose accuracy cannot be robustly
assessed.

In power system state estimation, inequality constraints
have been applied in optimisation to deal with uncertainties.
In [6], inequality constraints are employed in a least
absolute values (LAV) estimator for handling uncertainty
in pseudomeasurements, since they are not measured but
are know to vary within bounded intervals. An inequality
constrained LAYV estimator based on penalty functions, was
formulated in [7] to estimate states of external systems. A
parameter-bounding model derived from bounded noise
measurements was used in [8] with a reformulated
constrianed WLS, to handle unmeasured loads in the
system. Schweppe [1] was the first to introduce the concept
of unknown-but-bounded errors for modelling uncertainty
in estimation problems. Measurements are assumed to be
inexact and have errors that are unknown but fall within a
bounded range. Hitherto, no research seems to have been
conducted on uncertainty interval analysis for power system
state estimation. This study introduces a double-sided
inequality contrained formulation to estimate the uncertai-
nity interval of the state variables. The uncertainty is
modelled via deterministic upper and lower bounds on
measurement errors, which take into account known meter
accuracies.
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3 Problem formulation

3.1 Weighted least squares
WLS is the most popular method of point estimation. For a
set of measurement equations.

z="h(x)+e¢ (1)

where: z: is the (m x 1) measurement vector; /: is a vector of
nonlinear functions that relate the states to the measure-
ments; x: is an (n X 1) state vector to be estimated; and ¢ is
an (m x 1) measurement error vector.

The measurements are usually obtained from transducers
in the electrical network. For observability, it is necessary
that m>n and that the m measurements are in locations
such that the resulting Jacobian (sensitivity matrix with
respect to the state variables) has rank n. The measurement
error vector ¢ is assumed to be zero mean, normally
distributed, with known convariance

E(e) =0 )

E(") =R (3)

where E denotes the expected value, and R is the
measurement covariance matrix. It is also assumed that
the measurement errors are uncorrelated, so that R is a
diagonal matrix. Therefore [R];=d;07, where g; is the
standard deviation of the jth measurement and ¢; is the
Kronecker delta.

The optimal state estimate vector x may be determined
by minimising the sum of weighted squares of residuals

min F(x) = [z — h(x)]"R™'[z — h(x)] (4)

(4) is linearised using a Taylor series expansion, retaining
the first two terms and ignoring higher-order terms. This
leads to a linear WLS problem having the solution.

Ax = (JTR') TR 4z (5)

where J is the Jacobian of /A(x).

Repeated linearisation and solution of (5) then solves the
nonlinear problem via the Newton—Raphson approach.
The dependence on the iteration index is implicitly assumed
for Ax, J and Az, where the current state vector is updated
at each iteration until a stopping criterion is reached.
Further details of the WLS formulation are available in
[9-15].

3.2 Uncertainty interval estimation via
linear programming (UILP)
Uncertainty intervals can be determined by the solution of a
series of appropriately formulated optimisation problems.
Each measurement, with its associated uncertainty, can be
represented by upper and lower limits. These constraint
limits define the tolerances on the measurements (i.e. the
range of values within which the true value of the measured
quantity must lie). Minimising a particular state variable of
interest, subject to all the measurement inequality con-
straints, provides the lower bound on that state variable.
Similarly, maximising the state variable, again subject to all
the measurement inequalities, provides the upper bound for
that state. In mathematical form
min x;
: (6)

subject to < h(x) <z

where 7 is the lower bound of the measurement vector and
z is the upper bound, with

Z=z—1 (7)
M=z—1" (8)
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where t° and 7~ are the transducer tolerances. The
tolerance describes the deterministic uncertainty of each
measurement. They represent the overall accuracy of the
meter and can usually be provided by the manufacturer.
Different values for the elements of positive and negative
tolerances are permissible so that a transducer can be
specified to have asymmetric accuracy if required (e.g. an
accuracy of —3% to + 5% of the nominal value). However,
without loss of generality, we will usually assume that
17 =1 =1, giving a symmetric tolerance around the
nominal value. It is assumed that the transducer tolerances
7 are known and fixed. In reality, the instrument
inaccuracies will increase as the instruments age under the
action of various processes and as the instruments may not
be recalibrated. It should be noted that measurement
recalibration is rarely carried out in a systematic manner by
utilities [16], mainly due to the fact that large numbers of
measurements exist in a power network and the time and
expertise required to check each individual transducer
would be expensive.

Equation (6) defines a nonlinear constrained optimisation
problem, which can be solved directly by a suitable
nonlinear programming algorithm such as sequential
quadratic programming [17]. However, it is known that
power system models are amenable to solution using the
Newton—Raphson approach. Consequently, an alternative
approach is to linearise (6) about a suitable point X (which
in this case can be provided by the WLS estimate) and then
a series of linear programmes are solved to obtain updates
dx; to the uncertainty bounds on the state variables. For
example, the incremental change to the lower bound for the
ith state can be computed by solving the following LP
problem:

min dx;
Ax (9)

subject to AZH < JAx < A

Similarly, the incremental change to the upper bound on

the ith state can be found by solving the LP problem
min dx;

Ax ( 10)

subjectto Az < JAx < AZ"

where J is the Jacobian of /(x) evaluated at %, and Az’ and
Az" are vectors of the incremental changes to measurement
lower and upper bounds, respectively, computed in the
following form:

Az =z — h(x) (11)
Az = 2" — h(%) (12)

Therefore by performing 27 linear programming solutions,
all the elements of the vectors dx' and dx~ can be
calculated. Once dx™ and dx~ are known, the bounds on %
are simply found as

=z 4+t (13)
X =X+dx” (14)
where X is the point estimate obtained by WLS.

The computational burden of the process arises from the
need to perform two LP solutions for every uncertainty
interval sought. Nevertheless, with the measurement
redundancy level available in power systems, the computa-
tional time is reasonable using modern hardware and
software. For large networks it is possible that the dual LP

formulation could be applied to reduce the execution time
[18-20].
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3.3 Uncertainty interval calculation for
other quantities
In addition to solving for the uncertainty ranges of the state
variables (voltage magnitudes and phase angles), it is
possible to compute the uncertainty range of other
estimated quantities (such as power flows and injections),
whether these quantities are measured or not. For example,
with a change in the objective functions of (9) and (10), the
incremental change in the lower bound of the ith
measurement could be found by solving the following LP
problem:

min j; Ax

Ax ( 1 5)

subject to Azl < JAx < A

where j; is the ith row of the Jacobian corresponding to the
ith measurement. The solution of (15) is a set of incremental
changes for all system state variables. Evaluating the
objective function at this solution, i.e. j{AX],,, provides
the incremental change in the lower bound for the ith
measurement.

Similarly, the incremental change in the upper bound of
the ith measurement is constructed from

max j;Ax
Ax (16)
subject to AZL < JAx < A
Ultimately, the uncertainty bounds are computed as
Z[M =7 +ji[Ax]max (17)
Z} = Z; + ji[Ax] (18)

Uncertainty estimation is a ‘worst-case’ analysis in the sense
that the LPs are seeking the extreme limits of uncertainty
for the quantity of interest. This property is illustrated in
Fig. 1, based on a simple example described in [21, 22]. The
sequence of LPs calculates the bounding polytope due to
uncertainty, i.e. the interior diamond shape in the Figure.
WLS estimation, on the other hand, produces an ‘average-
case’ or maximum likelihood estimate of x.

Fig. 1 Two-dimensional example of LP uncertainty estimation

The geometry of the uncertainty estimation problem
leads to the question of whether an infeasible problem
might arise (i.e. no feasible polytope exists). This cannot
occur if all the measurement uncertainties are correctly
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specified. However, if any gross measurement errors have
not been eliminated, an infeasible problem is likely to arise.
To avoid this in practice, it would be recommended that
gross error detection and elimination be performed prior to
the point estimation and uncertainty interval estimation
procedures. Alternatively, a robust estimator, such as least
median of squares or least trimmed squares [23, 24], may be
used instead of WLS for more accurate estimation of the
centre point.

bus3

bus2 —C
O—
— busﬂ
bus1
|| bus5
O—
R
bus4
[ generator (CO—
j load _+

Fig. 2 Online diagram of six-bus system

4 Implementation of case studies and results
analysis

This Section presents some typical results obtained by
applying the proposed algorithms to the six-bus test system
from [25] (shown in Fig. 2), IEEE 30-bus and IEEE 118-bus
test network data. The computation of all state variables
and some measurements will be shown to illustrate the
concepts. However, for improved computational efficiency,
only the variables of present interest to the power system
operator would need to be computed. The LP problems
have been solved by the function /inprog incorporated in the
MATLAB™ optimisation toolbox [17].

4.1 Confidence bounds analysis with UILP
Table 1 shows a comparison of simulated (from a load flow
solution) and estimated states for the six-bus network. The
measurement uncertainty has been represented as a uniform
distribution over the interval [—3%, 3%] of the nominal
value of the measurements. A WLS estimator was used to
compute the (centre point) estimated states. In the tests
presented here and in further tests the Newton—Raphson
process was found to perform reliably, with convergence
occurring within three to four iterations. This is consistent
with the behaviour of the Newton—Raphson process in
solving other types of power system state estimation
problems.

Table 1: Estimated state variables and uncertainty bounds for the six-bus network

Bus True states I-Pﬂower bound) WLs(centre point) Lpz-upper bound)
[V|(pu) Jrad |V|(pu) orad [V|(pu) orad [V|(pu) orad
1 1.0500 0 1.0417 0 1.0738 0 1.1018 0
2 1.0500 —0.0650 1.0265 —0.0908 1.0678 —0.0612 1.0908 —0.0440
3 1.0700 —0.0756 1.0248 —0.1027 1.0606 —0.0683 1.0891 —0.0560
4 0.9864 —0.0729 0.9678 —0.0865 1.0058 —0.0693 1.0321 —0.0541
5 0.9797 —0.0799 0.9395 —0.0891 0.9614 —0.0845 1.0038 —0.0664
6 1.0014 —0.0860 0.9768 —0.0900 1.0005 —0.0840 1.0411 —0.0257
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Fig. 3 Estimated states and uncertainty
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voltage phase angles, rad.s

voltage magnitudes, p.u

state variables

Fig. 4 FEstimated states and uncertainty bounds for six-bus network with parameter uncertainty

Table 2: Estimated state variables and uncertainty bounds for the IEEE 30-bus network

Bus True states LPower bound) WLS centre point) LP{pper bound)
| VI(pu) Jrad | V|(pu) orad | VI(pu) orad | V|(pu) orad

1 1.0600 0 1.0261 0 1.0783 0 1.1410 0

2 1.0430 —0.0932 1.0124 —0.1053 1.0640 —0.0926 1.1265 —0.0817

3 1.0269 —0.1328 0.9994 —0.1494 1.0472 —0.1305 1.1129 —0.1010

4 1.0194 —0.1635 0.9998 —0.1782 1.0414 —0.1611 1.1016 —0.1293

5 1.0100 —0.2467 0.9785 —0.2738 1.0361 —0.2378 1.0903 —0.2011

6 1.0138 —0.1937 0.9884 —0.2077 1.0360 —0.1910 1.0909 —0.1581

7 1.0045 —0.2247 0.9739 —0.2495 1.0311 -0.2210 1.0940 —0.1854

8 1.0100 —0.2057 0.9769 —0.2270 1.0289 —0.2051 1.0879 —0.1685

9 1.0364 —0.2507 0.9960 —0.2500 1.0566 —0.2400 1.1111 —0.2041
10 1.0256 —0.2804 0.9899 -0.2777 1.0459 -0.2737 1.1119 —0.2481
1 1.0820 —0.2507 1.0322 —0.2627 1.1135 —0.2292 1.1873 —0.1810
12 1.0340 —0.2681 0.9771 —0.2806 1.0553 —0.2577 1.1220 —0.1922
13 1.0710 —0.2681 1.0076 -0.2787 1.0943 —0.2563 1.1743 —0.1862
14 1.0191 —0.2841 0.9466 —0.3297 1.0415 —0.2825 1.0883 —0.2011
15 1.0148 —0.2856 0.9647 —0.3191 1.0437 —0.2785 1.1061 —0.2016
16 1.0228 —0.2782 0.9762 —0.2928 1.0449 —0.2691 1.1360 —0.2261
17 1.0196 —0.2836 0.9886 —0.2679 1.0443 —0.2734 1.1183 —0.2383
18 1.0062 —0.2964 0.9352 —0.3039 1.0345 —0.2809 1.1302 —0.1994
19 1.0043 —0.2994 0.9323 —0.2893 1.0220 —0.2851 1.1211 -0.2141
20 1.0089 —0.2957 0.9373 —0.2914 1.0270 —0.2791 1.1172 —0.2150
21 1.0125 —0.2884 0.9564 —0.3013 1.0264 —0.2841 1.1051 —0.2707
22 1.0128 —0.2882 0.9573 —0.3062 1.0285 —0.2860 1.1102 —0.2755
23 1.0042 —0.2921 0.9224 —0.3324 1.0289 —0.2800 1.1075 —0.2059
24 0.9987 —0.2945 0.9156 —0.3609 1.0168 —0.3049 1.1226 —0.2692
25 0.9914 —0.2855 0.9161 —0.3593 1.0213 —0.2963 1.1273 —0.2554
26 0.9732 —0.2932 0.8981 —0.4242 1.0302 —0.3264 1.1943 —0.2393
27 0.9956 —0.2752 0.9172 —0.3246 1.0269 —0.2781 1.1145 —0.2154
28 1.0099 —0.2044 0.9801 —0.2289 1.0357 —0.2045 1.0993 —0.1619
29 0.9752 —0.2979 0.9386 —0.3091 1.0384 —0.3005 1.1784 —0.1997
30 0.9633 —0.3142 0.8544 —0.3818 0.9892 —0.3184 1.0882 —0.1967

Discrepancies between the simulated and the estimated
centre point are fairly large, due to the significant noise
level (i.e. +3%, uniformly distributed). The upper
and lower uncertainty bounds of the state variables are

IEE Proc.-Gener. Transm. Distrib., Vol. 152, No. 2, March 2005

found using (9)«(12), with 1=3%. It is apparent that
the centre point estimates are within the upper and
lower uncertainty bounds, in this case as illustrated by
Fig. 3.
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Table 3:

Type (pu) Z(Iower Z(centre Z(upper
bound) point) bound)

P (injection) 1.0439 1.0824 1.0835
P (injection) 0.4536 0.4843 0.5187
Psinjection) —0.7283 —0.6851 —0.6632
Q1 (injection) —0.9623 —0.9295 —0.8972
Plinetbust to 0.2924 0.2924 0.3140
bus2)

Pline(bus2 to —0.2990 —0.2822 —0.2765
bus1)

Plinetbus1 to 0.4262 0.4441 0.4683
bus4)

Plinetbusa to —0.4581 —0.4334 —0.4160

bus2)

Further tests were undertaken to examine the effects of
parameter uncertainty in the power network parameters.
An error of +3% was introduced into the resistance,
inductance and capacitance parameters of the most heavily
loaded line (connecting bus 1 and bus 4). Figure 4 shows the
estimated states with their bounds (which are designated by
+ signs).

In the phase angle results, it is interesting to note that a
‘crossing” occurs. The estimated state d5 does not lie within
the calculated bounds. This crossing suggests that the
estimated centre point is inaccurate. The WLS process
assumes normally distributed errors (where errors of any
magnitude are considered to be possible) and can therefore
produced estimates that fall outside the uncertainty bounds.
In general, the width of the uncertainty interval, the location
of the point estimate within the uncertainty range, and the
occurrence of ‘crossing’ are examples of the useful
additional information generated by UILP.

Tests were also conducted on the IEEE 30-bus network.
In this example, + 10% parameter errors are introduced for
the most heavily loaded line. With 7= 6%, the estimated
states and bounds are shown in Table2. A ‘crossing’ is
again apparent. The state 0,7 does not lie within its bounds.

4.2 Confidence bounds analysis of other
quantities

Equations (15)—(18) may be used to find uncertainty bounds
for measured and unmeasured quantities, in addition to the
state variables. Selected estimated measurements, for the
six-bus system, are presented, with their bounds, in Table 3.

Figure 5 shows the estimated measurement, with bounds
(which are designated by + signs) for the six-bus network.
The results are sorted in descending order for clarity.

The upper and lower bounds of all measurement changes
from (11) and (12) are plotted in Fig. 6 along with the
incremental changes of measurement obtained from the
solution of the optimisation problems of (15) and (16). As
expected, the estimated incremental bounds of all measure-
ments, (i.e. solution from the optimisation problem), either
lie within or on the allowed bounds.

4.3 Implications for practical use

The availability of the upper and lower bounds on state
estimates, and other quantities of interest, can have practical
advantages for the power system operator. For critical
quantities, such as a power flow which is close to its
thermal, stability or contractual limit, the operator can gain
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Fig. 6 Measurement bounds

confidence that the true value is not exceeding the constraint
provided that the state estimate and both bounds are all
within the limit. The uncertainty range on the estimate also
gives a useful indication of the quality of the metering
configuration for the relevant part of the power system. For
example, where a voltage level often has a wide estimated
uncertainty range, this would suggest that the metering in
that area is insufficient. In rare cases in which the point state
estimate is found to lie outside the uncertainty range, a
deficiency in the system model or its parameter is clearly
indicated. This type of additional information could be very
useful during the installation or upgrading of an online state
estimator.

5 Conclusions

An analysis of uncertainty in power system state estimation
has been presented in this paper. The uncertainty is
modelled via deterministic upper and lower bounds on
measurement errors, which take into account known meter
accuracies. A conventional WLS estimator is used to obtain
point estimates of the states, and then a series of LP
solutions is used to compute the tightest possible bounds on
the states and other quantities of interest. The method offers
useful additional information to the power system operator.
By estimating bounds on the estimates one can infer the
quality of the metering configuration and determined the
proximity of estimated quantities to voltage and flow limits
with greater confidence.
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