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We discuss some motivational challenges arising from the need to model and analyse complex biological
systems at multiple scales (spatial and temporal), and present a biomodel engineering framework to
address some of these issues within the context of multiscale Systems Biology. Our methodology is based
on a structured family of Petri net classes which enables the investigation of a given system using various
modelling abstractions: qualitative, stochastic, continuous and hybrid, optionally in a spatial context. We
illustrate our approach with case studies demonstrating hierarchical flattening, treatment of space, and
hierarchical organisation of space.
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1. Motivation

BioModel Engineering. Biology is increasingly becoming an
informational science. This revolution has been driven by techno-
logical advances which have supported the development of studies
at many levels of intra- and intercellular activity. These advances
have facilitated the analysis of how the components of a biological
system interact functionally e namely the field of Systems Biology
(Hood, 2003).

At the heart of this field lies the construction of models of bio-
logical systems, see Fig. 1. These models are used for description of
acquired understanding, or analysis which should ideally be both
explanatory of biological mechanisms and predictive of the behav-
iour of the systemwhen it is perturbed by, e.g., mutations, chemical
interventions or changes in the environment. Furthermore, models
can be used to help make genetic engineering easier and more
reliable, serving as design templates for novel synthetic biological
systems e an emerging discipline known as Synthetic Biology
(Endy, 2005, Heinemann and Panke, 2006). Central to both Systems
and Synthetic Biology is BioModel Engineering (BME) which is the
science of designing, constructing and analysing computational
models of biological systems (Breitling et al., 2010).
u-cottbus.de (M. Heiner),
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Modelling means abstraction. A general discussion of the
relationships between computational modelling and abstraction
can be found in (Melham, 2013). We can vary the degree of
abstraction and the specific information abstracted away from
along each of the following dimensions.

1. Hierarchical organisation of components e like molecules,
organelles, cells, tissues, organs, organisms, i.e., the abstraction
levels of the model objects are chosen as appropriate; indeed
several levels can be mixed within one model.

2. Function e the model operations (atomic events) can be
abstracted to their essential effects and can refer to a wide
variety of events. In the most abstract case the relationship
between objects being modelled can be reduced to interactions,
e.g., between genes or proteins. More detailed descriptions can
be given at the level of, e.g., chemical reactions with precise or
abstract stoichiometries, or conformational change of a protein,
transport of a molecule, etc.

3. Granularity of description e i.e., the resolution within a partic-
ular level of abstraction, depending on the completeness of our
knowledge within one level.

4. Time e governs everything; however, we may abstract away
from time to obtain simplified qualitative models with corre-
sponding analysis, specifically if insufficient kinetic informa-
tion is available. This kind of abstraction typically yields
a conservative approximation of the behaviour, and considers
more behaviour than is actually possible under some given
timing constraints.
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Fig. 1. The role of formal models in Systems and Synthetic Biology, adapted from
(Heiner and Gilbert, 2011).
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5. Individual versus population behaviour e requiring a choice
between the stochastic versus deterministic modelling para-
digm. The latter considers the average case, smoothing out any
stochasticity. The averaged behaviour might be representative
for a population, but may ignore special behaviour triggered by
rarely occurring stochastic events.

6. Space e either hierarchical organisation of, for instance, cells in
a tissue, or measured space at different resolutions, yielding
a distance measure.

7. Shape e of, for instance, molecules; e.g., regarding protein
structure, protein folding is reduced to the different states
(conformations).

8. Volume e even if the system behaviour evolves in space, we
may abstract away from the volumes of individual molecules
and consider the number of molecules per space position
instead.

9. Observables e often we abstract away from the phenotype and
treat the underlying molecular mechanism as the read-out
(observable), see, e.g., the Drosophila wing case study briefly
discussed in Section 6. This contributes to bridging the gap
between models and observations; see Section 5 on model
checking.

10. Biosystem dynamic development e this is considered in devel-
opmental biology; however model structure in Systems
Biology is often currently assumed to be fixed.

There are two obvious consequences for sound engineering of
models.

(1) All assumptions underlying a model need to be explicitly stated.
Generally, a model and the derived conclusions are only valid
as long as the underlying assumptions are justified.

(2) Models need to be validated before they are used for behaviour
prediction. Modelling and programming have many things in
common. Both require abstract reasoning and produce
condensed descriptions of behaviour which may not always
coincide in all aspects with the intended one. Thus, modelling
should be done e as programming e with great care. Models
need to be developed step-wise with slowly increasing model
size and complexity. Each modelling step should be carefully
validated e does the model indeed behave as expected?
Deviations of expected and observed behaviour may be caused
by bugs in the model or the software tools used. Never blindly
trust numerical simulation results.

Multiscale modelling in Systems Biology is the field of solving
physical problems which have important features at multiple
scales, particularly multiple spatial and/or temporal scales. It goes
far beyond the traditional approach of modelling at just one spatial/
temporal scale. The specific computational challenges caused by
multiple scales and the state of the art of potential solutions how to
bridge the gaps are reviewed in (Qu et al., 2011).

Until now most models have been at the intracellular level, and
indeed have largely ignored locality within the cell; however there
is a need to increase specifically the spatial scope of models of
biological systems to enable descriptions at the intercellular (celle
cell), tissue, organ and evenwhole organism scales. The motivation
has come both from the increasing need for life scientists to use
computational models to facilitate the investigation and under-
standing of multicellular systems, and the greater variety of data
available at different scales.

The challenges for modellers include the development of suit-
able paradigms and associated tools to create coherent descriptions
of biological systems by integrating several spatial scales, and
methods for the simulation, analysis, and checking of the models in
order ultimately to use them to predict the behaviour of the bio-
logical system when disturbed by e.g. mutations, drugs or stress;
for an introductory illustrative example see Fig. 2 which is dis-
cussed in some more details in Section 6.

More specifically, the scenarios introduced by modelling bio-
logical systems beyond one spatial scale, which need to be
addressed, include:

1. Repetition of components e e.g. the need to describe multiple
cells each of which has a similar definition.

2. Variation of components e sets of similar components with
defined variations, e.g. mutants.

3. Organisation of components e e.g. how cells are organised into
regular or irregular patterns over spatial networks in one, two
or three dimensions.

4. Communication between components e in general communi-
cation is constrained to occur between immediate neighbours,
but this may be further constrained according to the relation-
ship between neighbours, and the position of a component
within a spatial network.

5. Mobility/Motility of components e e.g. transport of components
within a system, or actively motile cells.

6. Hierarchical organisation of componentse enabling thedescription
of (possibly repeated) components which contain repeated sub-
components; for example, cells containing several compart-
ments. This feature enables the use of abstraction regarding the
level of detail used to describe components.

7. Replication of components e e.g. cell division.
8. Deletion of components e e.g. cell death.
9. Irregular/semi-regular organisation of components e for

example a not exact honeycomb grid.
10. Dynamic grid size e for example alter size and/or topology of

grid to model development. Also required for ability to insert/
remove items.

11. Differentiation of components e for example, differentiation of
embryonic stem cells or immune cells makes a less specialised
cell more specialised.

12. Pattern formation of components e organising a number of cells
in appropriate one, two or three dimensional structures in
space and time.



Fig. 2. Planar Cell Polarity, Drosophila. (a) Wing. (b) Wing tissue with hairs. (c) Epidermal cell arrangement. (d) Inter- and intracellular signalling cartoon.
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Components could be molecules, organelles, cells, tissues,
organs, organisms.

A drawback of current modelling approaches are their limitation
to relatively small networks. Biological systems can be represented
as networks which themselves typically contain regular (network)
structures, and/or repeated occurrences of network patterns. This
organisation occurs in a hierarchical manner, reflecting the physical
and spatial organisation of the organism, from the intracellular to
the intercellular level and beyond (tissues, organs, etc.).

Although such network models can be designed using standard
modelling approaches, so far there is no dedicated support for such
structuring; it becomes impractical as the size of the networks to be
modelled increases. Besides the purely technical aspect due to the
impracticality of handling large flat networks, humans need some
hierarchy and organisation inwhat they are designing in order to be
able to conceptualise the modelled object. Thus, models should
explicitly reflect the hierarchical organisation in complex biological
systems.

2. Representation formalism e just a matter of taste?

One of the well-established design principles in engineering is
to keep everything as simple as possible. This raises the question:
Do we actually need different formalisms for different abstraction
levels and/or different scales? In the following we summarise our
criteria which a modelling formalism should ideally fulfill.

� Readability, having an intuitive representation to make model
descriptions easily comprehensible. Readability is often the key
to fault-avoidant model construction.

� Unambiguity, having a formal semantics, uniquely defining
derived descriptions required for some established analysis
techniques such as stoichiometric matrix, stochastic reaction
networks, or Ordinary Differential Equations (ODEs). Note,
however, that ODEs are not a suitable core representation
because the corresponding reaction network is only uniquely
defined under specific conditions, see (Soliman and Heiner,
2010, Heiner and Gilbert, 2011) for more detailed discussions.

� Abstraction, allowing the unambiguous representationof various
types of biological processes at different levels of abstractionwith
appropriate resolution of detail in the same model, ranging from
the conformational change of a single molecule to the macro-
scopic response of a cell, the development of a tissue, or even the
behaviour of a whole organism. (Marwan et al., 2011).

� Local context, so that an event only causes changes in its
immediate environment. This allows us to read and understand
a model by going through all its local effects, and supports
efficiency gains in some analysis algorithms, which are other-
wise not possible.

� Causality, permitting reasoning about the order of occurrence
of events in terms of “what has to happen first, before some-
thing else can happen afterwards”.
� Concurrency, an inherent property of biochemical processes,
requiring a clear distinction to be made between alternative
and concurrent behaviour, see (Heiner et al., 2004).

� Compositionality, enabling the construction of models by the
composition of smaller modules, preserving essential proper-
ties. This facilitates the establishment of module libraries and
their reuse in automated model construction. One aim here is
the use of models as designs in Synthetic Biology, which should
ultimately enable the compilation of genetic components from
design descriptions, and the automatic construction of the
desired biosystems.

� Executability,the visualisation of which allows the modeller to
better comprehend the net behaviour, and facilitates the
communication between wet lab experimentalists and dry lab
(computational) theoreticians.

� Analysability, supporting the wide range of established analysis
techniques, comprising both static and dynamic analyses
including model checking in various paradigms. Standard anal-
ysis techniques, which are commonly used in many Computer
Science approaches, need to construct the partial or full state
space (expressed as LTS or PO prefix). Complementary to these
dynamic analysis techniques, static analysis techniquesmight be
of help, which permit the decisions of general behavioural
properties without state space construction, usually.

In addition, modelling biosystems at multiple scales requires:

� Notions of space in 1, 2 and 3 dimensions (1D, 2D, 3D) e and
possibly over the 4th dimension of time (spatial models which
describe system development over time).

� Hierarchical organisation in terms of both physical and
conceptual levels.

� Hybrid descriptions ranging from individuals to populations,
and also over different time-scales.

Just as with uniscale modelling, multiscale modelling formal-
isms need to be supported by appropriate model construction,
execution and analytical techniques.

How dynamic has a model to be. Model modifications over
time may include:

� addition/subtraction of model components,
� rewiring yielding new structures,
� parameter modification (e.g. triggered by mutation),
� model translocation (model passing, nets in nets),
� reorganising the hierarchical structure, adding, removing levels;
e.g. there is re-organization on the organ level in insect devel-
opment from larva to adult, themetabolismmay change aswell.

Remark: different stages in the life cycle of an organism can
involve different sets of genes that are transcribed into proteins,
thus changing the resulting biochemical networks over time.
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Currently wewish to focus onmodelling the dynamic behaviour
of biological systems, with an emphasis on the underlying mech-
anisms, for example gene transcription networks, metabolic path-
ways and signal transduction networks. Thus we do not consider e
for the time being e systems which evolve over time and their
corresponding models, for example developmental pathways,
because of the computational challenges involved in designing,
simulating and analysing models in which the topology or kinetics
exhibit temporal changes.

3. Framework

The following framework can be realised using a variety of
modelling approaches; see (Melham, 2013) for a review of possible
candidates. We prefer to employ Petri nets because they are
a natural and established notation for describing biochemical
reaction networks both share the bipartite property: species and
reactions form two types of nodes in biochemical networks which
can be mapped onto places and transitions in Petri nets.

Petri nets can be used to perform all major modelling and
analysis approaches central to Systems and Synthetic Biology. They
may serve as an umbrella formalism integrating qualitative and
quantitative (i.e. stochastic, continuous, or hybrid) modelling and
analysis techniques; see (Heiner and Gilbert, 2011) for a fuller
treatment, (Heiner et al., 2008) for related formal definitions of the
core terminology by means of a running example from Systems
Biology, and (Gilbert et al., 2008) for an example of application to
Synthetic Biology.

In the following we present a framework, see Fig. 3, to give
a formal structure over qualitative and quantitative descriptions of
biochemical networks using Petri nets incorporating individual and
population-based scenarios in a hybrid manner. The framework
comes with associated analytical techniques including model
checking, which we focus on later.

Interaction paradigm ðIN Þ: (for the sake of readability not
included in Fig. 3) the most abstract representation of a biochem-
ical network is at the level of the relationships between the objects
being modelled i.e., their interactions. These are typically repre-
sented by undirected graphs. All other paradigms discussed below
are at a more detailed level, and include specific information about
the reactions. IN can be derived by abstraction from reaction
networks, but not vice-versa. In Fig. 3, the IN node could be placed
Fig. 3. A unifying framework integrating various abst
in the centre with a pair of opposite abstraction/extension arcs
going to all other nodes.

Qualitative paradigm ðQPNÞ: the most abstract representation
of a biochemical reaction network is qualitative and is minimally
described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities and reactions, or in Petri
net terminology places (represented as circles) and transitions
(represented as boxes), respectively. Arcs can be annotated with
stoichiometric information. The qualitative description can be
further enhanced by the abstract representation of discrete quan-
tities of species, achieved in Petri nets by the use of tokens at places.
These can represent the number of molecules or the level of
concentration of a species, or simply the presence of, e.g., a gene. A
particular arrangement of tokens over a network specifies the
current system state. The state of the system changes by the firing
of transitions. A transition can fire if all its pre-conditions are ful-
filled, i.e., its pre-places carry enough tokens. Upon firing of
a transition, tokens from all its pre-places are removed, and tokens
are added to all its post-places, each according to the corresponding
arc weights.

Fig. 4a) shows a small, but realistic Petri net as an introductory
example. The presence of one gene allows the generation of
proteins without consuming the gene (each firing of generate adds
a token to protein), while generated proteins can degrade (each
firing of degrade subtracts one token from protein). This basic
behaviour can be extended by allowing the gene to be blocked by
another protein, whichmakes a building block called gene gate; see
Fig. 4b). When genes repress each other in a circular manner, we
obtain a gene regulatory cycle e the repressilator (Blossey et al.,
2008); see Fig. 5, Fig. 6. More details regarding the definition and
semantics of Petri nets can be found in (Heiner et al., 2008).

The behaviour of such Petri nets forms a discrete state space,
which can either be captured as (1) a Labelled Transition System
(LTS) to describe the net behaviour by all (totally ordered) inter-
leaving sequences in the style of transition-labelled automata
(interleaving semantics), or as (2) a maximal branching process to
describe the net behaviour by all partially ordered transition
sequences (partial order (PO) semantics). Animating a Petri net by
sequentially firing individual transitions generates a path through
the LTS.

Both LTS and PO descriptions of behaviour can be analysed for
the purpose of model verification. If the state space is finite, this is
raction levels, adapted from (Heiner et al., 2012).



a b

Fig. 4. Introducing Petri nets. a) The system state on the right is reached after firing
a transition sequence containing generate exactly three times more than degrade. b) A
gene gate according to [14]: gene b may be blocked by protein a.
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best done using model checking techniques, where the properties
of interest are expressed by, e.g., a branching time temporal logic,
one instance of which is Computational Tree Logic (CTL) (Clarke
et al., 2001), or a linear-time logic (LTL) (Pnueli, 1977).

The standard semantics for QPN do not associate a time with
transitions or the sojourn of tokens at places, and thus these
descriptions are time-free. The qualitative analysis considers
however all possible behaviour of the system under any timing.
Thus, the QPN model itself implicitly contains all possible time-
dependent behaviours.

Timed information can be added to the qualitative description in
two ways e stochastic and continuous.

Stochastic paradigm (SPN ): preserves the discrete state, but in
addition associates an exponentially distributed firing rate (waiting
time) with each reaction. The firing rates are typically state-
dependent and specified by rate functions. All reactions, which
occur in the QPN , can still occur in the SPN , but their likelihood
depends on the probability distribution of the associated firing
rates. Thus all qualitative properties valid in theQPN are also valid
in the SPN , and vice versa. The underlying semantics is a Contin-
uous-Time Markov Chain (CTMC), and stochastic simulation
generates a randomwalk through the CTMC. For example, assigning
rates to any of our repressilator Petri nets (see Blossey et al., 2008)
for suitable parameters) generates sustained oscillation for all
proteins, with each run behaving differently.

Special behavioural properties can be expressed using, e.g.,
Continuous Stochastic Logic (CSL), a stochastic counterpart of CTL
which was originally introduced in (Aziz et al.) and extended in
(Katoen et al.), or PLTLc, a probabilistic extension of LTL with
constraints (Donaldson and Gilbert, 2008).

Continuous paradigm (CPN ): replaces the discrete values of
species in the QPN or SPN with continuous values, and hence is
not able to describe the behaviour of species at the level of indi-
vidual molecules, but only the overall behaviour via concentrations.
Timed information is introduced by the association of a particular
deterministic firing rate with each transition, permitting the
continuous model to be represented as a set of ODEs which are
typically non-linear, requiring numerical analysis methods. Unlike
Fig. 5. The repressilator (Blossey et al., 2008), Petri net for three genes in a regulatory cycle
modules. Logical nodes with identical names serve as connectors; they are multiple repres
sentation without logical nodes.
in the SPN , the concentration of a particular species in such
a model will have the same value at each point of time for repeated
computational experiments. The state space of CPN models is
continuous and linear, and can be analysed by, for example, using
Linear Temporal Logic with constraints (LTLc) e.g., (Calzone et al.,
2006).

Moving between stochastic and continuous paradigms. The
same quantitative model can be read either stochastically or
continuously, no changes being required (up to some scaling in the
rate functions for higher order reactions). In (Gilbert et al., 2007) we
discuss in more detail how the stochastic and continuous models
are mutually related by approximation. However, such a purely
syntactic translation will not always preserve the behaviour; e.g.
our stochastic repressilator will lose its oscillationwhen considered
continuously, which calls for the hybrid paradigm, or a much more
sophisticated derivation of the continuous counterpart; see
(Blossey et al., 2008) how to do it for the repressilator.

The qualitative and stochastic models consider all possible
behaviour under any timing, whereas the continuous model is
constrained by its inherent determinism to consider a subset. This
may be too restrictive when modelling biochemical systems, which
by their very nature exhibit variability in their behaviour. Thus,
moving between stochastic and continuous paradigms may come
along with counter-intuitive effects, see (Heiner and Gilbert, 2011)
for some examples.

Hybrid paradigm (HPN ): combines all features of SPN and
CPN . It is specifically useful for the description of systems which
are characterised by multiple temporal scales (extremely stiff
systems), where reactions with low rates are considered stochas-
tically, and those with high rates are considered continuously.
Another use is when stochasticity is crucial for the total system
behaviour, as it is the case for the repressilator example. To preserve
oscillationwe need to keep the (discrete) on/off switch of the genes,
while the number of proteins can be continuously approximated, if
the numbers become too high. In summary, HPN provide a trade-
off between computational costs and accuracy of the computed
results (Herajy and Heiner, 2012).

Colouring: can be applied both to interaction networks as well
as to reaction networks. Colouring of interaction networks permits
the description of repeated interactions within a spatial context
(i.e., at the most abstract level e repeated objects in space) which
can also be refined to give a notion of location.

Colouring of reaction networks yields a form of high-level Petri
nets which permit the description of similar network structures in
a concise way using colours grouped in colour sets (synonym for
discrete data types) to describe repeated elements. This allows for
the discrimination of species (molecules, metabolites, proteins,
secondary substances, genes, etc.). In addition, colours can be used
to encode locality, for example to distinguish between sub-
populations of a species in different locations (cytosol, nucleus
and so on). The colouring principle can be equally applied to
represented using logical nodes (here places, cross-hatched) to preserve gene-centred
entations of the same node used for layout clarity. See Fig. 6 for an alternative repre-



Fig. 6. Alternative representation of the Petri net in Fig. 5 by fusion of logical places
with the same name.
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qualitative, stochastic, continuous and hybrid Petri nets; we denote
the coloured counterparts by QPN C, SPN C, CPN C, and HPN C,
respectively.

Coloured Petri nets can be constructed from uncoloured Petri
nets by folding, when partitions of places and transitions are given.
These partitions define the colour sets of the coloured net. For
illustration, we fold the Petri net given in Fig. 5 and 6with ColourSet
GeneSet ¼ {a,b,c}, see Fig. 7. An attractive advantage of this repre-
sentation is its scalability; changing the number of genes involved
in the regulatory cycle just requires to adapt GeneSet appropriately.
Vice versa, coloured Petri nets with finite colour sets can be auto-
matically unfolded into uncoloured Petri nets, which then allows
the application of all of the existing powerful standard Petri net
analysis techniques. For example, unfolding of the coloured Petri
net in Fig. 7 generates the Petri net in Fig. 6 (with some fine-tuning
of the automatic layout).

Hierarchically coloured Petri nets (HCPN ): impose a hierar-
chical structure over colours to reflect the hierarchy inherent in
a system being modelled. Hierarchically structured colouring
brings, e.g., abstraction (at physical levels) over network motifs. We
can (trivially) obtain locality from colour; however the true
Fig. 7. Alternative representation of Fig. 5 and 6 by folding of similar subnets into
a coloured Petri net with ColourSet GeneSet ¼ {a,b,c}, x is a variable of type GeneSet, �x
refers to the (modulo) predecessor in GeneSet, and 1’all() specifies the initial marking
as one token of each colour in GeneSet. The number 3 in place gene gives the total
amount of tokens.
integration of hierarchy and colour brings hierarchical locality
which enables us to construct multiscale models, see (Gilbert and
Heiner, 2011) for more details, and (Gao et al., 2012) for
a detailed example, briefly discussed in Section 6.

Tools and technology. BioModel Engineering of non-trivial case
studies requires adequate tool support. We deploy a sophisticated
toolkit covering the whole reaction network framework:

� Snoopy (Rohr et al., 2010, Heiner et al., 2012) is a platform to
support the construction and animation/simulation of all the
types of Petri nets discussed above, with an automatic
conversion between them. Obviously, there may be a loss of
information in some directions (cf. arrows labelled with
abstraction in Fig. 3). The conversion between coloured and
uncoloured net classes involves user-guided folding or auto-
matic unfolding. Snoopy supports several data exchange
formats, among them to the following analysis tools in this list,
as well as SBML import/export, which opens the door to
a bunch of tools popular in Systems and Synthetic Biology.

� Charlie (Wegener et al., 2011) permits the analysis of standard
properties and techniques of Petri net theory, expanded by
explicit CTL and LTL model checking.

� Marcie (Schwarick et al., 2011) is a symbolic analysis tool of
standard Petri net properties, and CTL model checking for
QPN and CSL model checking for SPN . Exact analyses are
complemented by approximative PLTc model checking built on
fast adaptive uniformisation and distributed Gillespie
simulation.

� MC2(PLTLc) (Donaldson and Gilbert, 2008) is a Monte Carlo
Model Checker for properties written in (PLTLc). MC2(PLTLc)
can operate with stochastic/deterministic simulation output,
deterministic parameter scan output or even wet lab data.

The Petri net tools are publicly available at http://www-dssz.
informatik.tu-cottbus.de, and MC2(PLTLc) at http://www.brc.dcs.
gla.ac.uk/software/mc2/.
4. Algorithmic model construction

In this section we discuss how to obtain models of biological
systems in an algorithmic manner, as opposed to by hand, and
specifically explore the particular challenges associated with con-
structing multiscale models. Humans have great strengths in
developing conceptual models, giving meaning to models and
relating them to the behaviours of known biological systems. The
advantage of an automated approach is that it facilitates explora-
tion of model space, permitting the discovery of models of natural
systems which are unexpected or as yet unknown, for example two
organisms in a mutualistic or parasitic relationship, or of those
which do not exist in nature, which could serve as a blueprint for
the design and construction of novel synthetic biosystems. Manual
construction is a very limiting approach in that, for example, it is
very difficult to manually perform multiparameter optimisation or
to create all possible topologies even from a small model.

The general challenge in algorithmic construction is the inverse
problem e deriving information, often a model, about a system
from observations of its behaviour. There is a large body of work
regarding the construction of models of biochemical systems from
data, see e.g. (van Riel, 2006) for a review. Data can be derived from
many individual small-scale experiments (‘bottom up’ approach) or
from large high-throughput data sets (‘top down’).

There is substantial body for uniscale scenarios, but none for
multiscale. Algorithmic reconstruction ofmultiscalemodels ismore
challenging than for uniscale models because of various factors:

http://www-dssz.informatik.tu-cottbus.de
http://www-dssz.informatik.tu-cottbus.de
http://www.brc.dcs.gla.ac.uk/software/mc2/
http://www.brc.dcs.gla.ac.uk/software/mc2/
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� the target behaviours (e.g. observations) may be at a different
level to that of the part of the model that is being fitted, and
thus may be of different types (observing the orientation of
epithelial hairs in Planar Cell Polarity in Drosphila wing, but
attempting to construct the underlying intra-cellular and inter-
cellular biochemical model),

� the temporal or spatial scale of observations can be different to
that of the model e for example there may be much longer
time intervals for physiological changes at a high level
compared with the time scale at the biochemical level; in the
extreme there may be only one observation e for example the
final physiological state.

In general, there are three aspects of uniscalemodels that require
fitting during construction: (1) the model structure, i.e. the players
and their relationships, (2) concentrations of the players at least at
some initial time point, and (3) the kinetics. A modular approach to
model construction has proved to be promising at the uniscale, for
example (Wu et al., 2012) who use an evolutionary algorithm to
select and compose pre-defined building blocks from a library of
atomicmodels, andemploya global optimisation algorithm tofit the
kinetic rates in order to produce a Continuous Petri Netmodel. In the
multiscale case there may be different models for different spatial
scales, and then there is the additional challenge of fitting the
functions that interface between these models.

5. Model checking over multiscale models

Model checking is a well established technique applied to uni-
scale models and has been used for model validation, to drive
model construction and to generate predictions from models.
Additionally it can be used to perform model comparison and
model searching (Heiner and Gilbert, 2011). In this section we
discuss the challenges encountered when extending model
checking to multiple scales when space and hierarchy are involved.
Although there are many techniques for model analysis, all of
which need to be developed for multiscale models, we focus here
on model checking because it relates the observed behaviour or
desired behaviour of the target system to the behaviour of the
model. This is an essential first step because models need to be
validated before performing model based behaviour prediction of
potential perturbations to the biological system (see Section 1).

Model checking is a technique in computer science which is
used to automatically check whether a model of a system meets
a given specification, and has mostly been applied to hardware or
software systems. In order to solve the problem algorithmically,
both the model and the specification are formulated with precise
mathematical descriptions; if they are given in logic then the task is
to verify that a given logical formula is satisfied by a given structure.
Because of the temporal ordering inherent in the causal relation-
ships in the behaviour of the systems being modelled, specifica-
tions are often given in the form of temporal logic.

Analytical model checking is subject to the state-space explo-
sion, especially when using explicit state space exploration.
However, the state space of models of biological systems can be so
large or even infinite that the only effective approach is to use
simulative model checking e i.e. to check if a temporal logic
description of the specification is satisfied by the behaviour
generated from simulating the model. Simulative approaches can
be off-line, where the model is simulated for some predefined time
and then the behaviour is checked, or in-line where the simulation
and checking aremore tightly coupled. Both approaches are inexact
due to the halting problem; however an advantage of the in-line
approach is that the simulation can be terminated as soon as the
formula being checked is satisfied. Simulative model checking can
be adapted to check the behaviour of the biological system under
consideration, assuming that sufficient time series data can be
generated by experimental procedures. Given the variability
inherent in experimental data due to experimental error as well as
the possible stochastic nature of the biological system, such
behaviour checking is best performed using a description in
a probabilistic temporal logic.

In multiscale model checking we have to deal with several
different types of discontinuities. These include discontinuity in the
level of behaviour which can be observed in themodel and the level
which can be observed in the wet lab e e.g. in fly wing, model
checking considers protein time course series, while wet lab obser-
vation is hair orientation at single time pointse and discontinuity in
resolution of the time course: time course versus single time points.
Clustering of time course data in a multiscale context can require
density-based approaches and feature reduction, see e.g.,
(Maccagnola et al., 2012) who have also developed a pattern mining
approach for generating high-level classificatory descriptions of the
behaviour of the clusters in temporal logic. The challenges raised by
multiscale modelling include the introduction of a new category of
properties which have not traditionally been considered in uniscale
model checking. These include shapes and patterns in different
geometries; colour, density, location anddistances in space, all in 1, 2
or 3 dimensions; see Section 6 for related case studies.

Thus we need appropriate languages to express these kinds of
properties, and propose the development of temporal logics over
geometrical and spatial descriptions, and relationships between
them including similarities, equalities and inequalities.

6. Case studies

A recent survey (Baldan et al., 2010) has shown how Petri nets
can be applied to transcriptional, signalling, and metabolic
networks, or combinations of them, illustrating this with a rich set
of case studies. Most of the published case studies focus on the
(uniscale) molecular level; however examples at the multi-cellular
level include the signal-response behaviour of an organism
(Marwan et al., 2005), and developmental processes in multi-
cellular pattern formation (Bonzanni et al., 2009, Chen et al.,
2009, Liu, 2012).

In (Gilbert and Heiner, 2011) we go one step further and discuss
how a computational (Petri net) framework needs to be extended
to permit adequate support ofmultiscale issues. In the followingwe
briefly summarise some lessons learnt from two case studies
undertaken within this project with focus on spatial multiscale
aspects. In our current modelling approach we discretise space, and
in continuous models this corresponds to discretising partial
differential equations. See (Herajy and Schwarick, 2012) for an
example addressing temporal multiscale aspects with HPN .

Phase variation in bacterial colony growth (Gilbert and
Heiner, 2011). A common microbial stochastic mechanism is
phase variation, in which gene expression is controlled by
a reversible genetic mutation, re-arrangement, or modification.
Phase variation has traditionally been considered in the context of
‘contingency genes’ in which a sub-population is continuously
generated which is pre-adapted to repeated environmental tran-
sitions, often to immune selective changes. However recent re-
consideration suggests an important potential role in bacterial
specialisation and differentiation, and the generation of structured
bacterial populations. The diversification of mutation-mediated
phase variation is context independent, thus the process can be
observed and studied in in-vitro culture conditions and occurs
within bacterial colonies. This is the simplest culture condition and
can be used to assess basic properties of the stochastic process, such
as rate of variation (mutation rate) or contributions of differing



Fig. 9. Drosophila wing epithelial cells. (a) Fragment of wing tissue; coordinates
represent honeycomb grid position; (b) Cell with seven virtual compartments, arrows
denote inter-cellular communication with adjacent neighbouring cells.
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fitness. It also helps to establish the underlying framework for
future more complex modelling and determination of local pop-
ulation sub-structures [private communication NS].

The modelling challenge here is to design a generic spatial
model for bacterial colonial phase variation, which allows to
substantially extend the method developed in (Saunders et al.,
2003) to computationally predict rates of phase variation. Previ-
ously, phase variation has been characterised by deterministic
models, which describe synchronous growth in cell colonies
without reflecting how a colony develops in space. Our Petri nets
adopt an asynchronous modelling approach so that cells divide
individually, and explicitly consider spreading in space.

We have developed SPN C models which take into account:

� phase variation between two genotypes;
� the displacement of cells in space, with no cell division, where
the surface of the growth medium is modelled by a rectangular
grid;

� the displacement of dividing cells, where the parent remains
in-situ, and the offspring may displace by one grid position or
stay in its current location according to local cell density;

� controlled thickness and speed of spread of the colony.

We assume that the 3D colony is represented by a 2D grid with
a finite capacity on each grid position, and there is an equal
maximal height over all of the cell colony (i.e., all grid positions
have the same capacity). This model could easily be extended to
incorporate death of the bacteria, which is different to zero activity
(quiescence).

Model parameters include: grid size, mutation rates, fitness,
preference of an offspring to stay with its parent, and total number
of cells (colony size). All computational experiments are done on
the automatically unfolded Petri nets. Unfolding our coloured Petri
net for a 100 � 100 grid yields a plain Petri net with about 30,000
places and 360,000 transitions.

The analysis considers the development over time of the
proportion of the given genotype in the total population, and the
patterning into characteristic segments. This requires converting
the stochastic simulations into 2D representations, see Fig. 8, and
performing model checking over 2D shapes. The model permits the
prediction of mutation rates and fitness by counting andmeasuring
mutation segments.

Currently, our model predicts behaviour which has not been
measured so far in the wet labd the model generates a time series
description of the evolution of the patterns in cell colony (indicated
in Fig. 8), while wet lab data just give a snapshot of the final state.

The issues highlighted by this example include:

� multiple scales: individual level (highly abstract representation
of phase variation, mutation with cell division/replication of
components) to colony level,
Fig. 8. 2D representation of the development of a binary phase variation cell colony over ti
respectively.
� mobility of components,
� states (quiescent or active) of components,
� 2D pattern formation, characterised by size and shape.

Planar cell polarity in Drosophila wing (Gao et al., 2012).
Planar cell polarity (PCP) refers to the orientation of cells within the
plane of the epithelium, orthogonal to the apical-basal polarity of
the cells. This polarisation is required for many developmental
events in both vertebrates and non-vertebrates. Defects in PCP in
vertebrates are responsible for developmental abnormalities in
multiple tissues including the neural tube, the kidney and the inner
ear (reviewed in (Simons and Mlodzik, 2008)). The fruit fly
Drosophila melanogaster has been used extensively as a model to
study the signalling mechanisms underlying PCP. The adult
Drosophila wing comprises about 30,000 hexagonal cells each of
which contains a single hair pointing in an invariant distal direc-
tion. This hair comprises actin bundles and is extruded from the
membrane at the distal edge of the cell during pupal development,
at the conclusion of PCP signalling. Preceding this ultimate mani-
festation of PCP, signalling occurs such that the proteins adopt an
asymmetric localisation within each cell. At the initiation of PCP
signalling Fmi, Fz, Dsh, Vang and Pk are all present symmetrically at
the cell membrane. At the conclusion of PCP signalling Fmi is found
at both the proximal and distal cell membrane, Fz and Dsh are
found exclusively at the distal cell membrane and Vang and Pk are
found exclusively at the proximal cell membrane. The causal
mechanism for PCP has yet to be positively identified, but could be
due to an unknown and as yet un-identified secreted morphogen
signal to which the PCP proteins respond, or a biased transport
mechanism within cells.

We have created a multiscale model of PCP (Gao et al., 2011, Gao
et al., 2012) based on descriptions of the intracellular signalling
pathwaywithin cells, formation of protein complexes between cells
across the intercellular gap leading to intracellular communication,
and patterns of communication between the hexagonal epithelial
me and space. Density of the two phenotypes is represented by yellow and dark blue,



Fig. 10. Left: Image of Drosophila wing. (a) Fz- clone, (b) wild-type cells distally adjacent to clone, (c) wild-type cells far from clone. Right: Clustering result for simulation of a circle-
like Fz- clone (Gao et al., 2012).
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cells in the wing tissue. Each cell has been symmetrically divided
into six virtual compartments at the interior of the cell membrane,
and one compartment representing the interior of the cell with the
nucleus, see Fig. 9 which gives the overall model structure at the
tissue and cell level for the epidermal tissue shown in Fig. 2.

The model has been encoded in Hierarchically Coloured Petri
nets which we have considered both continuously and stochasti-
cally, where the core of the model comprises a description of the
PCP signalling network within one virtual compartment, and
colours employed to describe the relationship between adjacent
compartments in neighbouring cells. Our model uses a two-layer
hierarchy where the upper layer describes the layout of the
hexagonal cells in the epithelial tissue, and the lower layer
describes the layout of the virtual compartments within one cell.
The hierarchical mechanism is encoded by two tuples, the first of
which represents the coordinates of a cell in the tissue, and the
second of which represents the position of a virtual compartment
within the cell. Thus the central compartment of the central cell in
the fragment of wing tissue in Fig. 9 is addressed by the colour
tuples (3,2)(2,2).

Fig. 10 compares our computational results with wet lab data,
showing the influence of a patch of mutant Fz cells on neighbouring
wild-type cells.

The issues highlighted by this example include

� illustrating how colours can be used to encode both space and
hierarchy,

� computational challenges due to the fact that currently simu-
lations must be performed at the unfolded level rather than at
the coloured level: the largest model we have constructed so
far consists of 800 cells each with 7 virtual compartments,
comprising 19 places and 23 transitions as a CPN which when
unfolded yields 164,000 places (biochemical entities, each of
which is described by an ordinary differential equation) and
about a quarter million transitions (reactions); unfolding on
a Mac Quad-core 2.26 GHz Intel Xeon takes 2 min and simu-
lation takes 2 h.

� fitting the multiscale model to data, where problems are due
to (i) the lack of reliable time-series data for concentrations of
key biochemical entities due to the fact that the time period
being modelled is during the pupal stage when in is difficult
to obtain such data, (ii) data about hair orientation is at the
tissue level whereas the kinetic parameters being fitted are at
the biochemical level in the virtual compartments, and (iii)
these data are at one time point (the adult e i.e. the final
state).
7. Summary

In this paper we have presented a discussion of some challenges
arising from the need to model and analyse complex biological
systems at multiple scales, both spatial and temporal. These chal-
lenges have motivated the extension of our former biomodel
engineering framework to address some of these issues within the
context of multiscale Systems Biology.

We have based our methodology on the use of a structured
family of Petri net classes which enables the investigation of
a biological system using various modelling abstractions: qualita-
tive, stochastic, continuous and hybrid, optionally in a spatial
context. We have illustrated our approach with two major case
studies specifically demonstrating multiscale issues in a spatial
context, and have highlighted many open issues which need to be
addressed in future programmes of research.
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