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" The initial fracture toughness was proposed as crack propagation criterion for concrete.
" A FE analysis was carried out to simulate the complete fracture process in concrete.
" KR-curve which is able to consider the variation of FPZ was investigated.
" The shape of KR-curve was found to be affected by the FPZ variation and boundary effect.
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A crack propagation criterion was proposed for model I crack in concrete by using the initial fracture
toughness Kini

IC as an inherent material property. Based on this criterion, crack begins to propagate when
the difference, between the stress intensity factors caused by the applied load KP

I and that by the cohesive
stress Kr

I , exceeds Kini
IC . Finite element analyses was then carried out to calculate the complete load vs.

crack mouth opening displacement (P-CMOD) curve, the critical crack propagation length DaC and the
unstable fracture toughness Kun

IC for notched beams under three-point bending. It was found that numer-
ical results showed a good agreement with the experimental ones. Based on this crack propagation cri-
terion, crack extension resistance, in terms of stress intensity factor, KR being able to consider the
variation of fracture process zone (FPZ) was employed for describing crack propagation in concrete. KR

is composed of Kini
IC and Kr

I , which is actually equal to the driving action of crack extension. It was con-
cluded that given the elastic modulus E, the uniaxial tensile strength ft, the fracture energy GF and Kini

IC ,
the complete fracture process in concrete and the KR-curve of concrete can be calculated based on the
numerical method. Finally, discussion was made on the effects of fracture process zone, GF and specimens
geometries on KR-curve.

� 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction then obtained as the envelope of the fracture equilibrium curves
Crack extension resistance curve (R-curve) has been used as the
fracture criterion for decades. This approach based on R-curve was
first proposed by Irwin [1] to describe the crack propagation in met-
als under conditions of small-scale. Since then, it has been widely
applied to quasi-brittle materials like concrete. The R-curve, in
terms of either strain energy release rate G or stress intensity factor
(SIF) K, has already been established as a basic fracture characteris-
tics for a given specimen geometry. Bažant and Kazemi [2,3] and
Bažant and Jirásek [4] derived geometry dependent R-curve based
on the size effect law observed from fracture tests. The R-curve is
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for geometrically similar specimens but with various sizes. On the
other hand, Ouyang et al. [5] defined the R-curve as an envelope
of energy release rates with different specimen sizes but the same
initial notch length. Jenq and Shah [6] proposed the two-parameter
fracture model (TPFM) in which the R-curve is derived by assuming
that an effective traction-free critical crack is proportional to the
initial crack length. Wecharatana and Shah [7] proposed a method
to calculate R-curve which is able to consider the nonlinear effect of
fracture process zone length. Jenq and Shah [8] predicted the R-
curve using the constant KIc criterion, in which KIc was calculated
based on the measured maximum load, the initial notch length
using the formulas developed from linear elastic fracture mechan-
ics (LEFM). Elices and Planas [9] and Planas et al. [10] analyzed
the difference between cohesive materials and linear elastic ones
using R-curve, and predicted the fracture behaviors of the cohesive
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materials. Tvergaard and Hutchinson [11] utilized the highly re-
fined finite element calculations and investigated the R-curve, for
the crack growth in small-scale yielding under plane strain condi-
tion. Foote et al. [12] developed a theoretical model to calculate
the R-curve using softening stress (r)–crack opening displacement
(w) relationship in strain-softening materials.

It should be noted that the conventional R-curve can only deter-
mine the onset of crack instability. In order to describe the increase
of fracture toughness during crack propagation, a new approach
was proposed by Xu and Reinhardt [13] and Reinhardt and Xu
[14] to evaluate the crack extension resistance in terms of consid-
ering the cohesive stress acting on the fracture process zone (FPZ).
In this method, KR is obtained by combining the crack initiation
fracture toughness Kini

IC , which is an inherent material property,
with Kr

I which represents the contribution of the cohesive stress
along the fictitious crack zone. A semi-analytical method was ap-
plied to calculate KR-curve through using the curve of load vs. crack
mouth opening displacement (P-CMOD) measured from experi-
ment [13,14]. The result indicated that the KR-curve is an inherent
material property and size-independent. However, some scholars
questioned whether the KR-curve should be taken as an inherent
material property. In the study of Mai [15], the SIF superposition
method was applied to calculate KR-curve by assuming FPZ to be
a fictitious crack, and it was concluded that KR-curve is not a mate-
rial property, except for very large size specimens in which the
crack-bridging zone is much smaller than the crack length and
other dimensions. Furthermore, Hu and Wittmann [16] derived
the extension of FPZ with the conventional compliance method
in conjunction with a multi-cutting technique and proposed a
new approach to calculate the KR-curve by introducing a parameter
to consider the residual deformation. The results suggested that
the size dependency of KR-curve is due to the difference in initial
ligaments in concrete specimens. Following the studies of Xu and
Reinhardt [13] and Reinhardt and Xu [14], Kumar and Barai
[17,18] introduced the universal weight function to calculate the
values of double-K fracture parameters. The weight function ap-
proach was also used to calculate the KR-curve [19] based on cohe-
sive stress distribution during crack propagation. The size effect
was observed from specimen with different sizes, especially during
the unstable fracture stage. Furthermore, the effects of geometry
and loading condition on the KR-curve in concrete were discussed
by Kumar and Barai [20,21].

In the formula of KR-curves proposed by Xu and Reinhardt [13]
and Reinhardt and Xu [14], Kr

I is a variable which is affected by
FPZ length, and the relationship between fictitious crack opening
displacement and stress acting on it, i.e., the cohesive law. There-
fore, it is crucial to accurately determine FPZ and their associated
cohesive laws for modeling the KR-curves of concrete. Moreover,
it is noticed that the KR-curve is greatly affected by variation of
FPZ length during crack propagation. Therefore, the difference in
methods for determining FPZ length can affect the calculated re-
sults and shapes of KR-curve. Xu and Reinhardt [13] and Reinhardt
and Xu [14] studied the KR-curve and FPZ length by means of ficti-
tious crack model based on the assumption that the length of FPZ is
constant when full FPZ is developed, i.e. the crack tip opening dis-
placement (CTOD) exceeds the stress-free crack width w0 in the
softening traction-separation law. As a result, the KR-curve rises
monotonically with the increase of the ratio of the effective crack
length to the beam depth, i.e. a/D. However, many experimental
and theoretical studies have demonstrated that the FPZ length in-
creases before FPZ is fully developed and decreases after that. For
instance, Wecharatana and Shah [7] suggested that FPZ includes
both the mechanical interlock zone and the zone where micro-
cracking and other inelastic deformation occurred. The analysis in
crack propagation of cement-based composites using their method
showed that the FPZ length decreases with the increase of the crack
length in the loading descending branch. A more accurate analytical
technique was developed by Ballarini et al. [22] to predict crack
growth in cement-based composites. They also came out the same
conclusion on variation of FPZ length as Wecharatana and Shah [7].
They concluded that the crack length and the displacement were so
large that the interlocking effect decreased within the FPZ. Hu and
Wittmann [23,24] also presented a model to predict FPZ length.
Their analytical and test results both indicated that the FPZ length
increases before full FPZ develops but decreases after that. Using
the method proposed by Xu and Reinhardt [13] and Reinhardt
and Xu [14] but considering the variation of FPZ during crack prop-
agation, Xu et al. [25] calculated the KR-curve based on P-CMOD
curve obtained from experiment. Their results also revealed that
the KR-curve is size independent. It should be noted that, in their
study, Xu et al. [25] assumed fracture energy GF as 100 N/m for con-
crete irrespective of mixtures rather than this value normally being
derived from P-CMOD curve from notched beam test.

Moreover, due to sharp geometry, stress singularity may exist at
the tip of crack in concrete or composite structures. For a concrete
structure with cracks, crack propagation often occurs under service
load. Therefore, the problem of stress singularity has been investi-
gated in various studies [26,27], in which numerical methods are
usually adopted. Several different numerical methods have been
utilized to simulate crack propagation in concrete among which fi-
nite element method (FEM) is probably the most popular one. In
traditional FEM, since fine meshes are needed to minimize the
dependence of crack paths on initial mesh, re-meshing algorithm
is necessary to accommodate crack propagation [28]. In general,
re-meshing algorithm needs complex data structures to manage
mesh updating as well as a well-validated crack propagation crite-
rion. Fine crack tip meshes are also needed to represent the singu-
larity in the stress filed, which may result in high computational
cost. In order to overcome the drawbacks of re-meshing, an ex-
tended FEM [29] was developed to represent cracks by enriching
the nodes in the discretization with discontinuous functions.
Moreover, boundary element method (BEM) is a competitive alter-
native to FEM in simulating crack propagation. Combining the
advantages of both FEM and BEM, a scaled boundary finite element
method (SBFEM) was developed by Wolf and Song [30]. SBFEM has
been successfully applied to simulate the dynamic crack propaga-
tion [31] and mixed-mode automatic crack propagation [32].

The main objective of this paper is to develop a numerical
method to simulate the whole crack propagation in concrete by
considering the variation of FPZ length. It was found that, using
Kini

IC derived from experiment as the parameter to determine crack
propagation, the whole crack propagation can be simulated with-
out the need of P-CMOD curve from experiment. On the other hand,
notched concrete beams with depths D of 100, 200, and 300 mm,
respectively, and initial crack ratios a0/D of 0.2, 0.3, 0.4, and 0.6,
respectively, were tested under three-point bending and P-CMOD
curves were obtained which were then compared with the numer-
ical ones to validate the proposed numerical method. After that,
the proposed method was employed to obtain KR-curve for the
complete fracture process, which takes into account the cohesive
stress acting on FPZ. Finally, the effect of variation of FPZ length
and fracture energy on KR-curve, as well as size effect of KR-curve,
was discussed.
2. New crack propagation criterion and experimental
verification

2.1. Crack propagation criterion

In order to simulate fracture process, certain crack propagation
criterion is needed which could be energy- or SIF-based. Based on
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Fig. 1. Illustration of linear asymptotic superposition method.
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the principle of energy conservation, Xie derived the energy-based
cohesive crack propagation criterion [33] which states that crack
propagates when the strain energy release rate exceeds the energy
dissipation rate in FPZ. The criterion has been successfully utilized
to simulate crack propagation in concrete [34]. On the other hand,
SIF-based crack propagation criterions are also widely adopted
among which the crack tip stable criterion is very popular [35].
According to this criterion, when SIF caused by deriving forces ex-
ceeds the one by cohesive forces, i.e. KI P 0, crack will propagate. It
represents the competition between the crack driving forces which
attempt to open the crack and the cohesive forces which attempt
to close the crack. This criterion has been successfully used to sim-
ulate the crack propagation in reinforced concrete [36], mode-I and
mixed-mode fracture [29,37,38] and multiple cohesive crack prop-
agation [39] in concrete. It should be noted that the initial fracture
toughness of concrete should be small enough so that it can be ig-
nored when the criterion of KI P 0 is adopted. However, in early
stage of crack propagation, crack propagation length is short so
that, comparing the SIF caused by cohesive force and applied load,
the initial facture toughness may not be small enough to be ig-
nored, especially for mode-I fracture in plain concrete. Moreover,
the criterion of KI P 0 can be used to determine crack propagation
rather than crack initiation. Therefore, when using this criterion,
crack is usually assumed to initiate when the maximum principal
stress at the tip of crack exceeds uniaxial tensile strength of con-
crete [36–39].

Various experimental investigations have revealed that the
fracture process in concrete structures included three different
stages: crack initiation, stable crack propagation and unstable
crack propagation or fracture. In order to differentiate the fracture
process, the double-K fracture criterion was proposed which uti-
lizes Kini

IC and Kun
IC to describe fracture process of concrete [40,41].

Here, Kini
IC is determined based on the initial cracking load, Pini,

and the initial cracking length a0, while Kun
IC based on the measured

maximum load, Pmax, and the critical effective crack length aC.
However, it should be mentioned that aC is difficult to be accu-
rately measured from experiment. In order to circumvent this dif-
ficulty in measuring aC, a linear asymptotic superposition method
was introduced by Xu and Reinhardt [41] to take into account
the nonlinearity of P-CMOD curve based on the following
assumptions:

1. The nonlinear characteristic of the P-CMOD curve is caused by
fictitious crack extension in front of a stress-free crack.

2. An effective crack consists of an equivalent elastic stress-free
crack and equivalent elastic fictitious crack extension.

It is worth to mention that the linear asymptotic superposition
method has been verified with both numerical and experimental
results [17,18,40,41]. This method is therefore adopted in this
study. Based on it, when load increases from zero to Pini, i.e., from
Point O to Point A (see Fig. 1), there is no crack propagation and
LEFM can be used to calculate SIF at the tip of crack. At Point A,
the crack length is a0 and SIF KP

Ia at crack tip caused by the applied
load P can be obtained based on Pini and a0. At this point, the initial
fracture toughness Kini

Ia is equal to KP
Ia when a is equal to a0.

When P increases from Pini to Pb, i.e., from Point A to Point B (see
Fig. 1), crack will propagate and a fictitious crack length 4ab is
reached. Therefore, according to the linear asymptotic method,
the effective crack length now becomes ab, which is equal to
a0 +4ab. If unloading takes place at this point, load will reduce lin-
early down to zero, i.e., from Point B to Point O as shown in Fig. 1.
After that, if reloading, load will increase linearly to Pb, i.e., from
Point O to Point B along Line OB as shown in Fig. 1. In other word,
at Point B, the three-point bending beam can be regarded as a new
virgin beam with an initial crack length ab, but it should be noted
that the internal cohesive stress acting on 4ab is exactly as an
equivalent externally applied load, which presents the nonlinear
fracture characteristics of concrete.

Therefore, at Point B,

KP
Ib ¼ Kini

Ib þ Kr
Ib ð1Þ

Here, KP
Ib is the SIF at the effective crack tip caused by load Pb, Kini

Ib is
initial fracture toughness when a = ab, and Kr

Ib is the SIF at the effec-
tive crack tip caused by cohesive stress acting on 4ab.

At Point C, the peak point of P-CMOD curve, P reaches the max-
imum load, Pmax, and the crack length ac reaches the critical crack
length aC. The SIF at the effective crack tip caused by the applied
load is equal to Kun

IC .
Therefore, at Point C,

Kun
IC ¼ KP

Ic ¼ Kini
Ic þ Kr

Ic ð2Þ

At Point D, which is at the descending branch of P-CMOD curve, SIF
of KP

Id caused by the applied load Pd is equal to Kr
Id, caused by cohe-

sive stress acting on 4ad, plus the initial fracture toughness Kini
Id

when a = ad, i.e.,

KP
Id ¼ Kini

Id þ Kr
Id ð3Þ

Thus, based on the linear asymptotic superposition method, a
complete fracture process of concrete, which is a nonlinear process,
can be solved by LEFM. The P-CMOD curve of a three-point bending
beam with initial crack length a0, under monotonous loading, can
be regarded as an envelope of P-CMOD curves for a series of geo-
metrically similar three-point bending beams with various effec-
tive crack length. According to the double K-theory [40,41],
initial fracture toughness Kini

IC is an inherent material property irre-
spective of effective crack length. Therefore, the SIF at the effective
crack tip of a three-point bending notched beam can be obtained
using the following simple relationship based on linear superposi-
tion principle:

KP
I ¼ Kini

IC þ Kr
I ð4Þ

If load P and the corresponding crack length a are known, the
crack opening displacement can be calculated using FEM, and the
cohesive stress distribution can be obtained by using the cohesive
stress–crack opening relationship, r–w. Then stress intensity fac-
tor Kr

I caused by cohesive stress can be obtained, and KP
I caused

by the applied load P can be directly calculated by the quarter
point singular element approach. Therefore, considering the whole
crack propagation process as the accumulation of many new



Fig. 2. Program flow diagram for the iterative process in the numerical method.
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(b) a=aC
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Fig. 3. Different stages in fracture process from numerical analyse.

Fig. 4. Set-up of the three-point bending beam test.

Table 1
Sizes, material parameters and calculated aw0/D for B-series beams.

Specimen L � D � B
(mm)

a0/D Kini
IC

(MPa m1/2)

GF

(N/m)
Pmax

(kN)
aw0/D

B2-1 600 � 150 � 40 0.2 0.60 96 2.54
B2-2 0.59 100 2.48
B2-3 0.62 92 2.61
Avg. 0.60 96 2.54 0.77
B3-1 600 � 150 � 40 0.3 0.65 100 2.39
B3-2 0.63 105 2.04
B3-3 0.53 88 1.89
Avg. 0.60 98 2.11 0.82
B4-1 600 � 150 � 40 0.4 0.58 85 1.29
B4-2 0.61 100 1.51
Avg. 0.60 92.5 1.40 0.85
B6-1 600 � 150 � 40 0.6 0.60 105 0.77
B6-2 0.62 120 0.89
B6-3 0.58 100 0.77
Avg. 0.60 108 0.81 0.92

Table 2
Sizes, material parameters and calculated aw0/D for L-series specimens.

Specimen L � D � B
(mm)

a0/D GF

(N/m)
Kini

IC

(MPa m1/2)

Pmax

(kN)
aw0/D

L1-1 400 � 100 � 100 0.4 104 0.52 2.73
L1-2 90 0.52 2.81
Avg. 97 0.52 2.77 0.87
L2-1 800 � 200 � 100 0.4 155 0.71 5.15
L2-2 151 0.62 5.27
Avg. 153 0.67 5.21 0.85
L3-1 1200 � 300 � 100 0.4 123 0.78 7.31
L3-2 146 0.75 7.72
L3-3 153 0.75 6.46
Avg. 141 0.76 7.16 0.81
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micro-cracking initiations, for each crack length increment Da,
load will reach the critical value which makes crack propagate.
Each crack propagation process includes crack initiation and crack
propagation. Kini

IC is the index for estimating crack initiation which
is the crack propagation criterion proposed in this paper. Generally,
the crack propagation criterion can be described as follows:

KP
I � Kr

I < Kini
IC ; crack does not propagate ð5Þ
KP
I � Kr

I ¼ Kini
IC ; crack is in the critical state ð6Þ

KP
I � Kr

I > Kini
IC ; crack propagates ð7Þ

The above crack propagation criterion is adopted to simulate
the whole fracture process in the proposed numerical method re-
ported in this study using an iterative process which is illustrated
by the program flow diagram shown in Fig. 2. The following steps
are included in the iterative numerical process:

1. Calculate Kini
IC based on a0 and Pini, denoted as P(1) = Pini, from

experiment.
2. Establish FEM model for three-point bending beam with crack

length ai,j = a(j � 1) + Da (i = 1,2. . ., j = 2,3,. . .). Here Da is a
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specified increment of crack length. i represents the load incre-
ment step during the iteration analyses in which the crack
length keeps no change. j represents the crack length increment
step during the iteration analyses.

3. Apply load Pi,j to the notched beam and calculate cohesive stress
ri,j. Calculate KP

I and Kr
I by adjusting load Pi,j until the Eq. (6) is

satisfied. When KP
I � Kr

I < Kini
IC , load should be increased with a

load incensement DP and cohesive stress ri,j should be recalcu-
lated based on the displacement caused by Pi,j + DP. When
KP

I � Kr
I > Kini

IC , load should be decreased with a load incense-
ment DP and cohesive stress ri,j should be recalculated based
on the displacement caused by Pi,j � DP. Once KP

I � Kr
I = Kini

IC ,
the adjustment of the applied load will terminate and the
adjusted load at the final step will be the actual load.

4. Repeat steps 2–3 for the next crack propagation. The iterative
process terminates when the crack tip is closed to the boundary
of beam or the value of the corresponding applied load becomes
a negative value.

It can be seen from Fig. 2 that the applied load P(j) and the
corresponding crack propagation length a(j) can be obtained in
the (j)th steps. In the same step, the fracture parameters, such as
KP

I (j), Kr
I ðjÞ and CMOD(j), are also obtained. The numerical method

with the iterative process was applied to analyze the B-, L-, H-, and
P-series notched beams under three-point bending and their whole
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fracture processes were obtained. A typical example from numeri-
cal analyses is shown in Fig. 3 which illustrates the evolution of the
fracture process of the L3-series specimen (see in Table 2).

2.2. Experimental verification

In order to validate of the proposed method, two series of con-
crete beams, with different a0/D (denoted as B-series) and sizes
(denoted as L-series), where D is the depth of the notched beam,
were tested under three-point bending and the corresponding
P-CMOD curves were obtained. The set-up of three-point bending
notched beam test is schematically illustrated in Fig. 4. On the
other hand, P-CMOD curves were also obtained using the proposed
numerical method in this study, through finite element analysis,
with the crack propagation criterion mathematically described by
Eqs. (5)–(7). The bilinear constitutive law for r–w, proposed by
Peterson [42], was utilized to determine the cohesive stress acting
on FPZ.

In this study, singular element was used to calculate SIF at the
tip of crack. Because high stress gradients exist in the region
around crack tip, special attention should be paid in that region.
Therefore, a circle was set at the tip of crack, in which the crack
tip point is the center of the circle and the crack propagation length
Da is the radius of the circle. The first row of elements around the
crack tip had a radius of Da/6, and the mid-side nodes were placed
P
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at the quarter points, i.e. had a radius of Da/24. In order to solve SIF
at crack tip accurately, a crack propagation length Da of (1–2%) D
was used in this study.

For B-series specimens, the span L, depth D and width B were
kept constant as 600 mm, 150 mm and 40 mm, respectively, but
initial crack ratio a0/D varied from 0.2 to 0.6 (see Table 1). The
concrete was made of aggregate with the maximal size of 8 mm
and had the mechanical properties of the uniaxial tensile strength
ft = 2.4 MPa, elastic modulus E = 28GPa, and Poisson’s ratio v = 0.2.
For L-series specimens, span-to-depth ratio L/D and initial crack ra-
tio a0/D were kept constant as 4.0 and 0.4, respectively, but the
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depth D varied from 100 mm to 300 (see Table 2). The concrete was
made of aggregate with the maximal size of 10 mm and had the
mechanical properties as ft = 2.3 MPa, E = 24GPa, and v = 0.2. In or-
der to measure the initial load, four stain gauges were attached
vertically in front of the precast notch on the both sides of speci-
men, and the distance of two strain gauges was 10 mm. When
crack initiates and stars to propagate, the measured value of the
strain gauge will decrease suddenly due to the fracture energy re-
lease. Therefore, the initial cracking load can be obtained according
to the variation of the strain at the tip of precast notch. Initial frac-
ture toughness can be calculated based on the initial crack length
and initial load [40]. Table 1 shows the average results of different
series.

The derived fracture parameters from experiments are pre-
sented in Tables 1 and 2. The complete P-CMOD curves obtained
from both experiment and numerical simulation are presented in
Figs. 5 and 6. In Tables 1 and 2, aw0 is the crack length correspond-
ing to the cohesive stress when the initial crack tip decreases to
zero. It can be seen that the P-CMOD curves obtained from numer-
ical simulation agree well with those from experiment suggesting
that the proposed numerical method, together with the crack prop-
agation criterion, in this paper can be used for simulating the com-
plete fracture process in concrete.
3. Crack extension curve of concrete

As aforementioned, the crack extension resistance can be ex-
pressed in terms of either strain energy release rate G or stress
0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a
0+

a σ
) /

D

D=100mm
D=200mm
D=300mm

a/D

Fig. 8. Variation of fracture process zone for L-series beams.
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intensity factor K. Irwin [1] proposed an energy-based R-curve
which is formulated as the following equation:

G ¼ CRðDaÞ ð8Þ

where CR is the crack growth resistance, i.e. total work of fracture
per unit area of crack propagation. Later on, the crack extension
resistance in terms of stress intensity factor, which has been widely
applied in practice, was introduced which is stated in Eq. (9).

KR ¼ KP
I ðP;DaÞ ð9Þ

G can be calculated from G = K2/E0 according to the elastic frac-
ture mechanics. Under plane strain and plane stress conditions, E0

is equal to E/(1 � m2) and E, respectively. Here, E is the elastic mod-
ulus and m is the Poisson’s ratio.

Resistance curve, i.e., R-curve, can be presented if the stress
intensity factors caused by P and Da are obtained during the crack
propagation process.

About the definition of KR-curve, Xu and Reinhardt [13] and
Reinhardt and Xu [14] claimed that Eq. (9) gave the stress intensity
factors for different Da, but not KR-curve considering crack propa-
gation in concrete, because material parameters relevant to con-
crete properties were not included in this equation. Therefore, a
new KR-curve was proposed by them [13,14] in which the KR-curve
was determined by combining the crack initiation toughness Kini

IC

which is an inherent material property of concrete, with the contri-
bution due to the cohesive stress Kr

I determined by ft and a along
the fictitious crack zone during the fracture process. The KR is for-
mulated as follows:

KRðDaÞ ¼ Kini
IC þ Kr

I ð10Þ

The crack propagation criterion is written as follows:

KP
I ðP;DaÞ � Kr

I ¼ Kini
IC ð11Þ

Therefore, from Eqs. (10) and (11), the following can be derived:

KP
I ðP;DaÞ ¼ KRðDaÞ ð12Þ

According to the crack propagation criterion, the applied load is the
driving action that makes crack propagate by overcoming the resis-
tance, i.e. the stress intensity factor caused by driving force is equal
to the crack extension resistance. From Eq. (12), KR-curve can be ob-
tained once the load and the related crack length are determined.
Therefore, determining the load for different crack propagation
length is a key issue, in order to obtain KR-curve, which can be
achieved by using the proposed numerical method in this study
combined with the proposed crack propagation criterion. For in-
stance, the complete KR-curves of L-series specimens obtained
through numerical analyses are presented in Fig. 7a–c, and the var-
iation of FPZ with respect to specimen height is shown in Fig. 8.
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s zone in the fracture process.
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Fig. 10. KR-curves for B-series beams.
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Table 3
Sizes and calculated Pini, Pmax, and aw0/D for H-series beams.

Specimen L � D � B (mm) aw0/D Pini (kN) Pmax (kN)

H200 800 � 200 � 200 0.72 10.00 15.12
H300 1200 � 300 � 200 0.67 12.20 20.11
H500 2000 � 500 � 200 0.61 15.80 27.87
H700 2800 � 700 � 200 0.57 18.70 34.19
H900 3600 � 900 � 200 0.54 21.20 39.82
H1000 4000 � 1000 � 200 0.53 22.30 40.61
H1200 4800 � 1200 � 200 0.50 24.50 45.18
H1500 6000 � 1500 � 200 0.47 27.30 51.51
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Here, ar is the crack length acting on the cohesive stress, i.e. FPZ
length.
4. The features of KR-curve
4.1. Effects of FPZ on KR-curve

Due to the effect of cohesive stress on fictitious crack zone, the
crack extension resistance in concrete increases with the increase
of the fictitious crack zone during crack propagation process. To
evaluate the effects of FPZ on KR-curve, the complete fracture pro-
cess in concrete are divided into four stages as shown in Fig. 7.

At the first stage, a is between a0 and critical crack length aC. Be-
fore the applied load reaches Pini, there is no crack extension. The
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FPZ length is equal to zero and KR is equal to the initial toughness.
After that, a stable crack extension is first reached and the FPZ
length will increase with the crack propagation. Thus, the effective
crack length is equal to the sum of the initial crack length and the
effective crack extension, while the crack extension resistance in-
creases due to the increase of the FPZ length. When the applied
load reaches Pmax, KR is equal to Kun

IC , and unstable crack propaga-
tion is thus initiated.

At the second stage, a is between aC and aw0, the CTOD continues
to increase up to the crack opening w0 at zero stress, the effective
crack length reaches aw0 and the cohesive stress at the initial crack
tip decreases to zero. In this case, the FPZ is fully developed and its
length reaches the maximum value. For L-series specimens (see Ta-
ble 2), when the FPZ is fully developed, aw0/D is equal to 0.87, 0.85
and 0.81, respectively, for L1-, L2-, and L3-series specimens. At this
stage, as the crack propagates, the KR-curve ascends sharply.
Table 4
Material parameters and numerical results of Pmax and aw0/D for P-series beams.

Specimen L � D � B (mm) a0 (mm) E (GPa) fcu (MPa) GF (N/m) aw0/D Kini
IC (MPa m1/2) Pini (kN) Pmax (kN)

Exp. Num.

P30 800 � 200 � 200 80 29.6 30.9 71.4 0.844 0.47 4.83 7.65 7.99
P40 32.6 45.4 88.1 0.838 0.60 6.38 9.76 10.02
P50 34.3 52.6 95.9 0.809 0.69 7.60 11.07 12.42
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At the third stage, aw0 < a0 < 0.93D, when the CTOD exceeds aw0,
a cohesive stress-free zone is formed in front of the initial crack tip.
In this case, the effective crack consists of the initial crack, newly
formed stress-free crack and FPZ. The variation of fracture process
zone for L-series beams are shown in Fig. 8. Here, the sum of a0 and
newly formed stress-free crack length is denoted as ar=0. Then, the
variation of FPZ, after full FPZ is developed, becomes a key factor
that affects KR value. Compared with the second stage, the rising
tendency of KR-curve is not significant.

After that, there is a noteworthy phenomenon that the KR-
curves for specimens with different sizes exhibit rapid rising when
a/D > 0.93. Therefore, at this fourth stage, i.e., when a/D > 0.93, the
boundary effect is very significant, which is related to a/D rather
than the ligament length. In the tests conducted in this research,
the a/D corresponding to the initiation of boundary effect is 0.93.
It can be seen from the results shown in Fig. 7 that the plateau is
longer for specimens with greater size. In summary, for three-point
bending beams in this test, the shape of KR-curve is affected by the
FPZ variation when a < 0.93D but greatly by boundary effect when
a > 0.93D. The FPZ variation during crack propagation is shown in
Fig. 9.

The KR-curves for B-series specimens are presented in Fig. 10.
The variation of fracture process zone for B-series beams are
shown in Fig. 11. It can be seen that the plateau is not significant
owing to shorter ligament length. The aw0/D is 0.77, 0.82, 0.85
and 0.92 when a0/D is 0.2, 0.3, 0.4 and 0.6, respectively. Therefore,
the third stage is shorter for greater a0/D. When a0/D = 0.6, aw0/D is
so closed to 0.93 that the plateau in KR-curve disappears. For this
case, the KR-curve demonstrates continuous rise without a plateau.

4.2. Effect of the geometry on KR-curve

The size effects on KR-curve have been discussed by many
researchers [6–8]. Although R-curve is defined differently by differ-
ent researchers, it has been generally accepted that R-curve are
both size-dependent and geometry-dependent. However, Xu and
Reinhardt [13] concluded that KR-curve is independent on speci-
men size or the initial crack ratio, i.e., a0/D, based on the assump-
tion that the FPZ length keeps constant after FPZ is fully developed.
After that, using the same method but considering a varying full
FPZ length, Xu et al. [25] investigated the KR-curve and got the
same conclusion as Xu and Reinhardt [13]. On the other hand, Ku-
mar and Barai [19] derived KR-curve using weight function method
and found that the size effect on KR-curve is more prominent dur-
ing the crack unstable propagation stage. Therefore, further study
is necessary on the size effect on KR-curve due to inconsistent find-
ings reported. The FPZ length may need to be considered as varied
after it is fully developed.

In order to investigate the size effect on KR-curve, H-series
three-point bending beams with initial crack ratio a0/D = 0.3 and
the section depth varied from 200 mm to 1500 mm were analyzed
by finite element analysis in which the following material param-
eters were adopted for concrete, ft = 3.25 MPa, GF = 100 N/m,
Kini

IC ¼ 0:7, and E = 30.5GPa. The aw0/D obtained through numerical
analyses are listed in Table 3.

It can be seen from Fig 12a that the KR-curves for specimens
with different heights demonstrates different tendency, and curves
meet approximately when a/D is about 0.57. The value of KR for
smaller beams is less than those for larger beams, when a/D is less
than 0.57; but it become greater for larger size beams, when a/D is
greater than 0.57 which can be explained by the difference in the
FPZ distribution during crack propagation in beams with different
depths as shown in Fig 12b. With the same a/D, the FPZ length in
smaller beams is less than that in larger ones, and KR is thus rea-
sonably lower because of the shorter integration range at this early
fracture stage when the developed FPZ length is short. With the
decreasing of the beam depth, the value of aw0/D increases. There-
fore, the FPZ length is larger in beams with smaller size and KR is
greater because of longer integration range at this late fracture
stage when the developed FPZ is long. Moreover, the full FPZ is
developed for most specimens when a/D are between 0.5 and
0.6. It may be the reason why the KR-curves meet at a point, where
a/D is about 0.57.

4.3. Effects of the GF on KR-curve

The material parameters of P-series beams under three-point
bending derived from experiment are listed in Table 4, among
which GF of the beams are 71.4 N/m, 88.1 N/m and 95.9 N/m,
respectively. Fig. 13 shows various KR, P-CMOD and FPZ curves ob-
tained from numerical analyses for the P-series beams. With the
increase of GF, the cohesive effect along FPZ is intensified. There-
fore, the KR-curve clearly demonstrates the rising tendency (see
Fig. 13b) and the value of aw0/D decreases (see Table 4)
correspondingly.
5. Conclusions

In this study, the initial fracture toughness Kini
IC was adopted as

the fracture propagation criterion for simulating crack propagation
process in concrete. Based on this criterion, a new numerical meth-
od for calculating KR-curve, which consists of the contributions of
cohesive stress along the FPZ and initiation toughness of concrete,
was proposed. Subsequently, the FPZ variation was examined and
its effect on KR-curve is investigated for the complete fracture pro-
cess. Finally, the influence of several key fracture parameters on
the KR-curve was discussed. The following conclusions can be
drawn:

(a) Given the elastic modulus E, the uniaxial tensile strength ft,
the energy release rate GF and the initial fracture toughness
Kini

IC , the complete crack propagation process and the crack
extension resistance KR-curve of concrete can be simulated
accurately using the proposed numerical method.

(b) Based on the crack propagation criterion, applied load over-
comes resistance and makes crack extend during each
micro-crack propagation step, i.e., the KR � Da curve is actu-
ally equated to the stress intensity factor caused by the
applied load P plots related to Da.

(c) The shape of KR-curve is affected by both the variation of FPZ
and specimen boundary. The rising of KR-curve is significant
before the FPZ reaches its full length. After that, the KR-curve
will achieve a plateau with the FPZ shrinks. Ultimately,
when a/D rises to around 0.93 for the beams in this research,
the KR-curve exhibits a rapid rise due to boundary effect.

(d) The KR-curve tends to be different for three-point bending
beams with depth from 200 mm to 1500 mm, which
depends on the fracture ligament length of specimen. The
KR-curves meet at a point when a/D is around 0.57, and at
that time the full FPZ has developed in most specimens.
The value of KR for smaller size beams is less than that for
larger size beams when a/D is less than 0.57, but it becomes
greater for larger size beams when a/D is greater than 0.57.
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