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Vesicular trafficking is critical for the function of bone cells,

exemplified by bone diseases such as osteopetrosis, which

frequently results from defects in this process. Recent work has

further dissected the role of the endolysosomal system in both

bone formation by osteoblasts and bone resorption by

osteoclasts. This pathway also plays an important role in the

communication between these and other cells in bone, through

trafficking and degradation of growth factors and their

receptors, and microvesicle release. In addition, a crucial role

for autophagy in bone remodelling and bone disease is

beginning to emerge. These insights into the molecular control

of bone remodelling raise the possibility of developing novel

therapeutics for bone diseases designed to target specific

aspects of this process.
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Introduction
Vesicular trafficking is at the basis of cellular life; it

governs cell communication via secretion and uptake of

signalling molecules, enzymes and adhesion molecules.

Furthermore, the identity of intracellular organelles is

dependent on vesicular trafficking. Seminal work by

Rothman, Schekman and others beginning in the 1980s

has led to the elucidation of the mechanisms underlying

vesicular transport [1]. Vesicles bud from the membrane

of a donor compartment (e.g. the trans-Golgi network)

and are subsequently transported to a different, destina-

tion compartment (e.g. the plasma membrane), where
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membrane fusion occurs. Vesicular budding at the donor

membrane is controlled by small GTPases mainly

belonging to the ADP ribosylation factor (ARF) family

[2]. ARFs recruit coat proteins, which select cargo

proteins and shape the membrane into a bud [3]. At

the target membrane, vesicles dock and cargo is delivered

through membrane fusion, mediated by small membrane

proteins associated with the vesicular membrane (v-

SNARE) and the target membrane (t-SNARE) [4]. In

addition to these proteins, the Rab family of small

GTPases are master regulators of vesicular trafficking,

with important roles in cargo selection, vesicle budding,

cytoskeletal transport, and docking at the target mem-

brane [5,6].

In bone, certain diseases have highlighted the importance

of vesicular trafficking in bone cells. For example, most

autosomal recessive cases of the bone disease osteope-

trosis result from defects in endolysosomal trafficking in

osteoclasts (Box 1; [7]). In osteoblasts, mutations in genes

that regulate ER to Golgi traffic account for the skeletal

defect in observed in patients with cranio-lenticulo-

sutural dysplasia [8] and gerodermia osteodysplastica

[9]. In addition, genetic disruption of post-translational

modification of Rab GTPases impairs both osteoblast and

osteoclast function [10].

Osteoblasts
Transport from the ER and ER stress in osteoblasts

Patients with cranio-lenticulo-sutural dysplasia have a

mutation in one of the COPII coat subunits (sec23A)

that regulates budding of collagen-containing vesicles

from the endoplasmic reticulum [8]. Fibroblasts from

patients with cranio-lenticulo-sutural dysplasia show an

extended ER and reduced collagen production. A similar

picture is observed in fibroblasts from mice lacking

BBF2H7 (box B-binding factor-2 human homolog on

chromosome 7). BBF2H7 belongs to a family of ER

localised transmembrane transcription factors that are

transported to the Golgi complex under ER stress [11].

In the Golgi, cleavage by the Golgi resident proteases S1P

(site-1 protease) and S2P (site-2 protease) also known as

SKI-1 (subtilisin kexin isozyme-1 and 2) liberates the N-

terminal basic leuzine zipper transcription factor domain

that then translocates to the nucleus (Figure 1). BBF2H7

is highly expressed in chondrocytes and sec23A is a

transcriptional target of BBF2H7, explaining the similar

phenotype observed in cranio-lenticulo-sutural dysplasia

and BBF2H7�/� mice. BBF2H7 is not expressed in

osteoblasts but ER stress activates a similar system,

involving OASIS (old astrocyte specifically induced sub-

stance) [12]. OASIS gene transcription is induced by bone
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Box 1 Vesicular trafficking defects in osteopetrosis

The genetic bone disease osteopetrosis is associated with high bone

density due to defective resorption by osteoclasts. Over recent years

it has become clear that the mutations that cause osteoclast-rich

osteopetrosis (i.e. in which osteoclasts form normally, but their

resorptive activity is impaired) all impair trafficking and/or fusion of

lysosome-related organelles to the ruffled border [7]. The most

common osteopetrosis-causing mutations are in the a3 subunit of

the V-ATPase and the two subunits of the ClC-7 chloride antiporter,

suggesting that the osteoclast defect in these cases results from

impaired lysosomal acidification. However, osteoclasts from patients

bearing these mutations completely lack ruffled borders, indicative of

a defect in lysosomal trafficking. More recently, truncating mutations

in Plekhm1 have been identified as a cause of osteopetrosis, with an

identical osteoclast phenotype in vitro to the a3 and ClC-7

mutations. Plekhm1 is recruited to cathepsin K-positive lysosomes in

osteoclasts by GTP-bound Rab7, and is therefore likely to be a Rab7

effector; the mutant form of Plekhm1 cannot be recruited to these

vesicles and remains cytoplasmic. Finally, mutations in sorting nexin

10 (SNX10) also cause osteopetrosis. Although the function of

SNX10 in osteoclasts remains unclear, SNX proteins are known to

function in endosomal sorting and signalling, thus linking these cases

mechanistically to the other causes of osteopetrosis [69].
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morphogenetic protein 2 (BMP2) downstream of Runx2

activation [13] and collagen type I is a direct transcriptional

target of OASIS. The importance of OASIS and ER stress

in bone formation is further highlighted by the phenotype

of OASIS�/�mice that suffer from severe osteopenia akin

to human osteogenesis imperfecta (OI) [13].

ER stress is induced by a number of factors such as ER-

calcium depletion, oxidative stress, hypoglycaemia and

expression of mutated proteins [14]. However, in chon-

drocytes and osteoblasts this system is activated by

differentiation and involves BBF2H7 and OASIS respect-

ively. Interestingly, expression of the ER chaperone BIP

(immunoglobulin heavy-chain binding protein) is

reduced in osteoblasts of osteoporosis patients and a

selective inducer of BIP prevents bone loss in a murine

osteoporosis model [15], indicating that regulation of ER

stress plays an important role in bone formation.

Activation of transcription factors by transport from the ER

to the Golgi was first described for SREBP (Sterol-Regu-

latory Element-Binding Protein), whose translocation
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depends on a clever system of protein–protein interactions

involving the COPII coat (for review see [16]). It will be

interesting to see if similar interactions between OASIS

and other ER resident proteins facilitate COPII coat

binding and are involved in collagen secretion in osteo-

blasts.

RANKL and collagen secretion

The endosomal/lysosomal compartments of cells are very

plastic, receiving material from both the extracellular

environment via endocytosis as well as newly synthesised

material for regulated exocytosis. The endosome/lyso-

some thus functions as both a degradative and a secretory

compartment. In osteoblasts the secretory function of this

compartment appears to be important for the secretion of

both receptor activator for NF-kB-ligand (RANKL) and

collagen.

RANKL is the most important factor in the crosstalk

between cells of the osteoblast lineage and osteoclasts,

and the ratio between RANKL and osteoprotegerin (OPG)

is crucial for bone homeostasis. RANKL is secreted/pre-

sented by osteoblastic cells and the interaction between

RANKL and its receptor RANK on pre-osteoclasts initiates

osteoclast differentiation and maturation. OPG has been

identified as a decoy receptor for RANKL thereby redu-

cing the amount of RANKL available for stimulation of

pre-osteoblasts. Interestingly, in osteoblasts and osteocytes

the majority of RANKL is not directly routed from the

Golgi apparatus to the plasma membrane but is stored

before secretion in a lysosomal compartment [17,18��]
(Figure 1). Trafficking to the lysosomes is dependent on

OPG, which then maintains RANKL in this compartment

until secretion is promoted by RANK/RANKL interaction

at the plasma membrane [17]. Therefore regulation of bone

remodelling by OPG occurs through modulation of intra-

cellular trafficking as well as extracellular binding of

RANKL.

The importance of secretory lysosomes in bone homeo-

stasis has been highlighted by the bone phenotype (osteo-

penia/increased bone volume respectively) of two mouse

strains, synaptotagmin VII�/� and jinx (loss of function

mutation in Munc 13-4) mice [19,20]. Both synaptotag-

min VII and Munc 13-4 are components of the docking

and fusion machinery necessary for lysosome and multi-

vesicular body (MVB) secretion. Munc 13-4 is an effector

of Rab27, a small GTPase that regulates secretory lyso-

some release [21], whereas synaptotagmin VII modulates

the fusion event itself [22]. The differences in the mouse

phenotypes are likely due to the specific functions these

proteins play in osteoblasts and osteoclasts. The role of

Rab27 appears to be restricted to osteoblasts, where it

may regulate plasma membrane expression of RANKL

[19], which could explain the jinx mouse phenotype.

Rab27 also appears to regulate collagen secretion most

likely through a Munc 13-4-independent mechanism
www.sciencedirect.com 
[23]. By contrast synaptotagmin VII is essential for both

osteoblast and osteoclast function, due to the requirement

for lysosome secretion in both these cell types [20]. In

osteoclasts, trafficking of these lysosomes is under the

control of Rab7 rather than Rab27.

Microvesicle release

Endosomes mature into lysosomes via MVBs, which

contain numerous small intra-luminal vesicles [24].

Similar to lysosomes, under certain circumstances MVBs

can fuse with the plasma membrane, resulting in the

extracellular release of these 40–100 nm microvesicles,

which are then termed exosomes. Alternatively, micro-

vesicles can form directly from the plasma membrane [25]

(Figure 1). In osteoblasts, a type of microvesicle known as

a matrix vesicle is crucial for mineralisation of bone [26]

and the release of intracellular calcium [27�]. The import-

ance of the actin cytoskeleton in matrix vesicle release has

recently been highlighted by several studies [28,29]. In

recent years it has become clear that microvesicles are also

important for cell to cell communication, as they contain

RNAs, including microRNAs, DNA and enzymes [30].

They can act locally or at distant sites as they are released

into body fluids, such as blood, saliva and urine. At target

cells they bind to receptors or are taken up by endocy-

tosis, the released components then altering gene expres-

sion. Furthermore, microvesicles can also release

nucleotides, which work as autocrine/paracrine signalling

molecules via purinergic receptors [31] and the purinergic

P2X7 receptor itself has been shown to induce micro-

vesicle shedding in a number of cell types [32]. In bone, it

has recently been shown that monocytes use exosomes to

stimulate osteogenic gene expression in mesenchymal

stem cells [33�]. Importantly, bone marrow-mesenchymal

stem cells (BM-MSC) communicate with multiple myel-

oma (MM) cells via exosomes; exosomes derived from

normal BM-MSC inhibit the growth of MM cells whereas

MM BM-MSC derived exosomes promote it [34��].

Endocytosis regulates differential signalling in

osteoblasts

Steady state levels of a number of proteins, especially

cytokine and growth factor receptors, are controlled by

selective internalisation. Endocytosed proteins first reach

the endosome where cargo sorting takes place; interna-

lised proteins may then recycle back to the plasma

membrane or are delivered to the lysosome for degra-

dation (Figure 1). This selective internalisation fine-tunes

receptor signalling [35]. A striking example of this mech-

anism is the parathyroid hormone/parathyroid hormone

related protein (PTH/PTHrP) receptor type I (PTH1R).

PTH regulates whole body calcium homeostasis whereas

PTHrP is a paracrine factor that has an anabolic effect on

bone by controlling osteoblast differentiation and pro-

liferation. Both proteins bind to the same receptor

(PTH1R) but elicit different responses. PTH binding

to the receptor triggers endocytosis and a sustained cAMP
Current Opinion in Pharmacology 2014, 16:7–14
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production whereas PTHrP rapidly dissociates from the

receptor so that only a transient cAMP increase is induced

at the plasma membrane [36]. The two ligands thus

stabilise different conformations of the receptor leading

to changes in signal strength, which is dependent on

receptor endocytosis and sustained signalling on the

endosome. This extended signalling after internalisation

might explain why bone anabolic effects are seen with

intermittent PTH treatment only, whereas continued

PTH treatment results in bone loss [37,38]. Another

example of signal modulation by selective internalisation

is the recently described interaction between transform-

ing growth factor (TGF)-b type II receptor and PTH1R.

TGF-b is a local factor deposited in the bone matrix that

plays an important role in bone maintenance [39]. It is

activated by bone resorbing osteoclasts and attenuates

further bone resorption by impairing osteoclastogenesis.

TGF-b promotes bone formation through chemotactic

attraction of osteoblasts and their precursors, whose pro-

liferation and differentiation is stimulated. TGF-b inter-

acts with a large number other growth factors and

hormones, one of which is PTH. In response to PTH,

PTH1R forms a complex with TGF-b type II receptor,

one of the three TGF-b receptors. Subsequent phos-

phorylation of PTH1R by the constitutively active

TGF-b type II receptor triggers formation of an endocytic

complex [40��]. Both receptors are removed from the

plasma membrane and signalling is attenuated. Inter-

action between PTH1R and TGF-b type II receptor is

reduced by TGF-b binding to its receptor so that endo-

cytosis rates modulate signalling strength of both path-

ways.

Osteoclasts
Vesicular trafficking to the ruffled border

Here we focus on vesicular trafficking to the ruffled

border, the resorptive organelle of the osteoclast; other

trafficking routes in osteoclasts have been reviewed else-

where [41,42]. The ruffled border forms as a result of

extensive vesicular fusion within the area bounded by the

actin-rich sealing zone, where the osteoclast adheres to

the bone matrix (Figure 2). This process creates a huge

surface area for the continuing delivery of acid and

proteases responsible for degrading type I collagen, prin-

cipally cathepsin K, to the resorption lacuna. Trafficking

to this domain occurs through at least two independent

pathways, a Rab7-regulated lysosomal pathway and a

Rab3D-regulated non-lysosomal pathway [41]

(Figure 2). An effector of Rab7 in osteoclasts, Plekhm1,

is recruited to the secretory lysosomes by Rab7 and plays

a crucial role in their trafficking to the ruffled border [43].

The function of this protein appears to be largely

restricted to osteoclasts, since mutations in the gene

encoding this protein are responsible for rare cases of

osteopetrosis (see Box 1). Rab3D, which is known to

regulate exocytosis in cells with high secretory require-

ments, localises to a subpopulation of post-TGN vesicles
Current Opinion in Pharmacology 2014, 16:7–14 
in osteoclasts, rather than lysosomes, and appears to

regulate the trafficking of these vesicles to the ruffled

border [44].

Both these types of vesicles are trafficked to the plus end

of microtubules at the ruffled border, that is, the same

orientation as the plasma membrane of other cell types

[45]. However, it has become apparent that the dynein–
dynactin motor complex, which regulates trafficking of

vesicles towards microtubule minus ends, is essential for

targeting of both vesicular populations to the ruffled

border. Tctex-1, one of many different light chains of

the dynein complex, interacts with GTP-bound Rab3D,

and RNA interference studies have implicated it in the

trafficking of Rab3D-containing vesicles in osteoclasts

[46]. In addition, trafficking of cathepsin K-containing

lysosomes to the RB is prevented by disruption of the

dynein–dynactin complex, presumably involving a differ-

ent dynein light chain that has yet to be identified [45].

The dynein motor adapter Lissencephaly-1 (LIS1) plays

a role in this process; LIS1 binds to dynein in osteoclasts

and also interacts with Plekhm1 [47], thereby potentially

linking the dynein motor to lysosomes via Plekhm1 and

Rab7 in osteoclasts, shedding light on the role of Plekhm1

in lysosomal trafficking (Figure 2, inset). Decreasing LIS1

expression causes perinuclear accumulation of lysosomes,

and impairs cathepsin K secretion [47]. Although it seems

counterintuitive that a minus-end motor is essential for

trafficking to the plus-end ruffled border, dynein is known

to be able to act as a molecular anchor at the plus ends of

microtubules [48], and may therefore tether secretory

lysosomes here before membrane fusion [45].

The signalling pathways that stimulate secretion of lyso-

somes in osteoclasts are not well understood. However, it

has recently been demonstrated that osteoclast-specific

impairment of the class IA phosphatidylinositide 3-kinase

(PI3K) by deletion of the p85 regulatory subunit results in

an osteopetrotic (high bone mass) phenotype due to

defective ruffled border formation and secretion of cath-

epsin K [49]. The sealing zone remains intact, supporting

a direct role in lysosomal trafficking, most likely through

activation of Akt [49]. Moreover, an isoform of protein

kinase C that is highly expressed in osteoclasts, PKCd,

also plays a role in lysosomal trafficking [50]. PKCd

phosphorylates the actin bundling protein MARCKS,

displacing it from the membrane and impairing its actin

binding ability, resulting in a local loss of actin filaments,

which enables fusion of cathepsin K-containing lyso-

somes at the membrane [51�]. Interestingly, trafficking

of the V-ATPase and formation of the ruffled border are

unaffected by PKCd deficiency, suggesting that cathepsin

K and the V-ATPase may reach the ruffled border through

distinct trafficking mechanisms [51�], which could also

include polarised mRNA transport [52,53]. In support of

this model, cathepsin K has been localised to F-actin free

regions of the ruffled border, distinct from those occupied
www.sciencedirect.com
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Figure 2
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Schematic overview of trafficking pathways to the ruffled border in osteoclasts. Cathepsin K is trafficked in ‘secretory lysosomes’, whereas V-ATPase

can also traffic to the ruffled border through an independent pathway, most likely a cathepsin D-positive lysosomal compartment, but also the Rab3D-

positive ‘secretory vesicles’. Both secretory lysosomes and secretory vesicles are trafficked on the microtubules towards plus ends at the ruffled

border (inset). The dynein motor complex is crucial for this process, possibly by tethering the cargo at the plus ends before fusion. The molecular

interactions here, however, are different; for rab3D-expressing vesicles involving the dynein light chain Tctex1, and for Rab7-expressing lysosomes the

adapter LIS1, possibly through binding to Plekhm1 (inset). Fusion at the ruffled border is poorly understood, but in the case of the lysosomal

compartment involves synaptotagmin VII and most likely LC3.
by the V-ATPase [54]. Furthermore, disruption of dynein

does not impair acidification of the resorption lacuna [45]

suggesting that it is not involved in V-ATPase trafficking.

Further support for the existence of two distinct lysoso-

mal subpopulations in osteoclasts is provided by a mouse

model with defects in the mannose-6-phosphate targeting

pathway [55]. Secretory lysosomes containing cathepsin K

and TRAP are dependent on the conventional mannose-

6-phosphate targeting pathway, whereas a distinct popu-

lation of cathepsin D-positive lysosomes are formed

through a mannose-6-phosphate-independent pathway

and likely carry out general lysosomal functions within

the osteoclast [55]. However, it is possible that these

vesicles may also fuse with the plasma membrane (and
www.sciencedirect.com 
potentially also with secretory lysosomes), which could

represent the means by which V-ATPase is able to traffic

to the RB independently of cathepsin K, although cath-

epsin D has not been shown to localise to the ruffled

border [51�]. In mannose-6-phosphate defective osteo-

clasts, cathepsin K is mistargeted and constitutively

secreted from the TGN; this trafficking route is likely

to be the Rab3D-regulated pathway that has been shown

to be important for RB formation [45], although evidence

for this is currently lacking.

Autophagy and bone
Autophagy is the vesicular trafficking process by which

cells degrade and recycle misfolded proteins/damaged

organelles; this recycling process is also crucial for survival
Current Opinion in Pharmacology 2014, 16:7–14
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under stressful conditions such as nutrient starvation [56].

It begins with de novo formation of double-membraned

autophagosomes around the cargo selected for degra-

dation, which then fuse with lysosomes to form the

autolysosome, thereby enabling degradation of cargo to

occur. The importance of autophagy in bone cells is only

just becoming clear. Autophagy-related proteins, in-

cluding lipidated Atg8/LC3 (which is frequently used

as a marker of autophagy), are essential for bone resorp-

tion by osteoclasts, but this may be through a non-autop-

hagic role for LC3 in controlling the fusion of secretory

lysosomes at the ruffled border [57�] (Figure 2). This

would help to explain the finding that levels of lipidated

LC3 increase during differentiation, apparently indepen-

dently from levels of autophagy [58]. In support of this, it

has recently become clear that autophagy-related proteins

possess a range of non-autophagic roles in many other cell

types, including participation in exocytotic processes [59].

In addition, it has been suggested that the pathogenesis of

Paget’s disease of bone (PBD) may be at least partly due

to alterations in autophagy. PDB is a late-onset disorder

characterised by focal areas of increased bone turnover

containing enlarged, hyperactive osteoclasts. The disease

has a strong genetic predisposition and has been associ-

ated with mutations in the ubiquitin-binding domain of

p62 (SQSTM1), a protein that plays a crucial role in the

recruitment to autophagosomes of material to be

degraded. These mutations result in the formation of

intracellular aggregates that are clearly visible by electron

microscopy, possibly due to defective autophagic clear-

ance. However, how such disturbances may contribute to

the pathogenesis of the disease remain unclear [60].

Furthermore, defects in autophagy have been detected

in a mouse model of a disease with a similar bone

phenotype, inclusion body myopathy associated with

PDB and frontotemporal dementia (IBMPFD), which

is caused by mutations in valosin-containing protein

(VCP). However, osteoclasts from these mice have yet

to be studied [61].

Recent work has linked the age-related decline in bone

mass to alterations in autophagy in osteocytes [62��].
Impairment of autophagy in osteocytes by conditional

deletion of the autophagy gene Atg7 decreased bone mass

in 6-month-old mice. This was associated with decreased

osteoclast and osteoblast number, reduced bone for-

mation rate, and increased oxidative stress, alterations

that are all characteristic of changes in ageing mice. The

mechanism underlying these changes remains unclear,

but this raises the possibility that stimulating autophagy

in osteocytes may be able to reverse age-related bone loss.

Vesicle trafficking pathways as
pharmacological targets
Bisphosphonates, which are currently the most widely

used class of drugs for the treatment of osteoporosis and
Current Opinion in Pharmacology 2014, 16:7–14 
other disease associated with excessive bone resorption,

disrupt osteoclast-mediated bone resorption by inhibiting

the function of Rab GTPases, thereby impairing vesicular

trafficking, as well as impairing other small GTPase-de-

pendent processes [63]. Interestingly, bisphosphonates

may have additional effects on vesicular trafficking in

osteoblasts. In Oasis�/� mice, which are characterised by

osteopenia due to defective type I collagen secretion,

bisphosphonates inhibit osteoclastic resorption and the

resulting low bone turnover reduces osteoblastic ER

expansion contributing to the observed increase in bone

volume [64]. Modulators of ER stress themselves have

shown potential as treatment options in osteoporosis [15].

The highly osteoclast-specific nature of osteopetrosis-

causing mutations has identified the proteins encoded

by these genes as promising novel anti-resorptive targets.

One potential advantage of this approach is that it would

result in increased numbers of inactive osteoclasts, and

consequently increased bone formation as a result of the

coupling process, whereby osteoclasts (active or inactive)

are able to promote the activity of osteoblasts [65]. Other

potential targets include the class IA PI3K, which plays a

role in formation of the ruffled border. Established inhibi-

tors of the p100b and p100d catalytic subunits of this

enzyme, TGX-221 and GS-9820, respectively, have

recently been shown to inhibit osteoclast activity in vitro,

but with differing effects on cytoskeletal organisation

[66].

Finally, microvesicles have therapeutic relevance as they

have been shown to not only be of prognostic value but

have potential as gene therapeutic and drug delivery tools

[67]. Furthermore, they might hold the clue to the osteo-

clast derived coupling factor that regulates osteoblast

activity possibly through the stimulation of canopy cells

that are situated above the osteoclast in vivo [68].

In conclusion, significant advances in our understanding

of the role of vesicular trafficking in bone homeostasis

have been made in recent years, identifying a plethora of

possible drug targets. It remains to be seen how many

novel drugs that target these pathways are ultimately

translated into clinical use for bone diseases.
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