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Abstract

This paper develops a Bayesian framework for Tobit quantile regression. Our approach
is organized around a likelihood function that is based on the asymmetric Laplace dis-
tribution, a choice that turns out to be natural in this context. We discuss families
of prior distribution on the quantile regression vector that lead to proper posterior
distributions with finite moments. We show how the posterior distribution can be
sampled and summarized by Markov chain Monte Carlo methods. A method for com-
paring alternative quantile regression models is also developed and illustrated. The
techniques are illustrated with both simulated and real data. In particular, in an em-
pirical comparison, our approach out-performed two other common classical estimators.
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1 Introduction

This paper is concerned with the following problem. Suppose that y∗ and y are random
variables connected by the censoring relationship

y = max
{
y0, y∗

}
,

where y0 is a known censoring point, and that we are given a sample of independent
observations y = (y1, ..., yn) and associated covariates x = (x1, ..., xn), where yi =
max

{
y0

i , y
∗
i

}
and xi is a k vector. The objective is to model and estimate the θth

conditional quantile function of y given the sample (y,x), for 0 < θ < 1. Following
Powell (1986) and Buchinsky and Hahn (1998), we assume that for the θth quantile,
the partially latent y∗i is generated according to the model

y∗i = x′iβθ + εθi
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where the θth conditional quantile of εθi, denoted quantθ(εθi|xi), is zero. The study of
this important and interesting “Tobit quantile regression” problem has been taken up
by Powell (1986), Hahn (1995), Buchinsky and Hahn (1998) and Bilias et al. (2000),
amongst others, and has led to a body of frequentist parametric and semiparametric
methods for estimating the conditional quantile function. The purpose of this paper
is to describe the first Bayesian approach for estimating a Tobit quantile regression
model, extending and complementing the method developed by Chib (1992) for the
standard Tobit model.

Our approach to this problem relies on the use of the asymmetric Laplace distri-
bution as the distribution of the error εθi. As we show in Section 2, this choice is
quite natural in the context of the quantile regression problem. For given families of
prior distributions on the quantile regression parameter βθ, we provide conditions un-
der which the posterior distribution is proper. We show how appropriate Markov chain
Monte Carlo (MCMC) methods can be used to simulate and summarize the posterior
distribution (Tierney, 1994). Chib and Greenberg (1995) provide an excellent tutorial
on Metropolis-Hastings algorithm. The approach of Chib (1995) for Gibbs output, as
extended by Chib and Jeliazkov (2001) for Metropolis-Hastings chains, is also used to
estimate the marginal likelihood of our model. This leads to a Bayesian framework for
comparing alternative Tobit quantile regression models.

The rest of the paper is organized as follows. Assuming a Bayesian structure, in
Section 2 we present details of the likelihood and prior distributions that we consider.
We show that this choice leads to proper posteriors with finite moments. In Section
3 we outline the MCMC scheme that we adopt to perform the necessary Bayesian
computations. We then present a series of simulation studies that illustrate the imple-
mentation of the proposed approach. The marginal likelihood which allows Bayesian
Tobit model selection is derived in Section 4. The methods are applied to a real data
set in Section 5. Section 6 provides additional discussion.

2 Inferential framework

Powell’s (1986) estimator for the population parameter βθ, as well as the alternative
estimators proposed by Buchinsky and Hahn (1998) and Bilias et al. (2000), are based
on the check (or loss) function ρθ(λ) = {θ− I(λ < 0)}λ, where I is the usual indicator
function. An intuitive estimator for the Tobit quantile regression model is given by

β̂θ = arg min
β

n∑

i=1

ρθ(yi −max{y0
i , x′iβ}). (1)

Buchinsky and Hahn (1998) pointed out that the objective function (1) is not
convex in β with the result that obtaining a global minimizer can be difficult. Instead,
Buchinsky and Hahn (1998) noted that x′iβθ is the θ∗th conditional quantile of yi if
max{y0

i , x′iβθ} is the θth conditional quantile of y∗i given xi, where θ∗ ≡ {h0(xi) −
(1− θ)}/h0(xi) in which h0(x) ≡ Pr[y∗i > y0

i |xi = x], so that the parameter βθ can be
estimated via β̂θ∗ = arg minβ

∑n
i=1 ρθ∗(yi − x′iβ). However, since h0(x) and therefore

θ∗ are unknown, a first stage estimation for h0(.) and therefore θ∗ has to be performed
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before estimating βθ. Further, the asymptotic covariance matrices of both the Powell
and the Buchinsky and Hahn estimators, which depend on the error densities of εθ, are
therefore difficult to estimate reliably. In fact, bootstrap procedure was first proposed
to improve the reliability of Powell estimation by Hahn (1995) and Buchinsky (1995)
who provided theoretical justification and simulation evidence respectively. Then Bilias
et al. (2000) proposed a modified bootstrap procedure to increase the reliability of
Buchinsky and Hahn estimators. Our proposed Bayesian inference no longer has this
lack of convexity problem and can provide credible limits using a posterior sample
straightway.

To introduce the Bayesian framework for the Tobit censoring model, that is, to
derive a parametric distribution based likelihood for any posterior inference, let us recall
the asymmetric Laplace distributions discussed in Yu and Zhang (2005). A random
variable U is said to follow the simplest form of an asymmetric Laplace distribution if
its probability density is given by

fθ(u) = θ(1− θ) exp{−ρθ(u)}. (2)

When θ = 1/2, (2) reduces to exp(−|u|/2)/4, which is the density function of a stan-
dard symmetric Laplace distribution. For all other values of θ, the density in (2)
is asymmetric. The θth quantile of this distribution is zero. That is, for any ran-
dom variable Y , if qθ(Y ) is the θth quantile of Y , then qθ(Y ) is the θth quantile of
qθ(Y ) + U . Hence introducing a location parameter µ into the density (2) so that it
becomes fθ(u) = θ(1 − θ) exp{−ρθ(u − µ)}, means that estimating the θth quantile
of Y reduces to estimating the location parameter of U . Empirical studies based on
different distributions such as normal, Gamma and Cauchy for Y , and simulating (2)
using ξ

θ − η
1−θ , where ξ and η are independent exponential distribution with mean 1,

have confirm this link.

For the Tobit quantile regression model we observe yi instead of y∗i , where yi =
max{y0

i , y∗i }. If x′iβθ is the θth quantile of y∗i , then q(yi) ≡ max{y0
i , x′iβθ} is the θth

quantile of yi, so the θth quantile of qθ(yi) + U . Hence a parametric distribution based
likelihood function in terms of parameter β and known censoring points y0

i is given by

L(y|β) = θn(1− θ)n exp

{
−

n∑

i=1

ρθ(yi −max{y0
i , x

′
iβ})

}
. (3)

The posterior distribution π(β|y) of β = βθ given y can be obtained using Bayes
theorem as

π(β|y) ∝ L(y|β) π(β), (4)

where π(β) is the prior distribution of βθ.

This approach does not require us to use a Dirichlet process for the prior, as
Kottas and Gelfand (2001) did. Actually, this posterior distribution only involves
the Tobit quantile regression model parameter βθ which is generally assumed to be a
p + 1-dimensional vector.
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2.1 Some key results

Although a standard conjugate prior distribution is not available for the Tobit quantile
regression formulation, MCMC methods may be used to draw samples from the pos-
terior distributions. This, principal, allows us to use virtually any prior distribution.
However, we should select priors that yields proper posteriors.

In this section we show that we can choose the prior π(β) from a class of known
distributions, in order to get proper posteriors.

The likelihood L(y|β) in (3) is not continuous on the whole real line, but has a
finite or a countably infinite set of discontinuities, thus is Riemann integrable.

First, the posterior is proper if and only if

0 <

∫

Rp+1
π(β|y)dβ < ∞, (5)

or, equivalently, if and only if,

0 <

∫

Rp+1
L(y|β) π(β) dβ < ∞.

Moreover, we require that all posterior moment exist. That is,

E

[
(

p∏

j=0

|βj |rj )|y
]

< ∞, (6)

where (r0, . . . , rp) denotes the order of the moments of β = (β0, . . . , βp).

We now establish a bound for the integral
∫
Rp+1

∏p
j=0 |βj |rj L(y|β) π(β) dβ that

allows us to obtain proper posterior moments.

Lemma 1: Let the function g(t) = exp(−|t|), and f(t) = θ(1−θ) exp(−t[θ− I(t < 0)]),
then f(t) has upper bound g(h1(θ)t) and lower bound g(h2(θ)t).

Proof: Write f(t) as a mixture form of g:

f(t) = θ(1− θ) {exp(−θt) I(t ≥ 0) + exp((1− θ)|t|) I(t < 0)}

= θ(1− θ) {g(θt) I(t ≥ 0) + g((1− θ)t) I(t < 0)} .

Note that g(t) = g(|t|) is a decreasing function of t or |t|, and so for θ ≤ 1
2 , g((1−θ)t) =

g((1 − θ)t) I(t ≥ 0) + g((1 − θ)t) I(t < 0) < g(θt) I(t ≥ 0) + g((1 − θ)t) I(t < 0) ≤
g(θt) I(t ≥ 0)+g(θt) I(t < 0) = g(θt). Hence f(t) has upper bound g(h1(θ)t) and lower
bound g(h2(θ)t). A similar argument establishes the same result for θ > 1

2 .

Lemma 2: For any constant a > 0 and m > p,

∫ p∏

k=0

|βk|rk

m∏

i=1

exp(−a|yi − x′iβ|) dβ < ∞.
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Proof: Without loss of generality, we can take p = 1, x′iβ = β0 + β1x1i,

∫
R2 |β0|r0 |β1|r1 exp(−a

m∑

i=1

|yi − x′iβ|)dβ0dβ1 (7)

≤
∫

R2
|β0|r0 exp(−a|β0 + x11β1 − y1|) |β1|r1 exp(−a|β0 + x12β1 − y2|)dβ0dβ1.

Note that since the double-integration
∫
R2 |U |r0 exp(−|U +V −c1|)|V |r1 exp(−|U +V −

c2|) dUdV is finite for any constants c1, c2, r0 ≥ 0 and r1 ≥ 0, the integral (7) is finite.
Hence Lemma 2 is proved.

Theorem 1 below establishes that in the absence of any realistic prior information
we could legitimately use an improper uniform prior distribution for all the components
of β. This choice may be appealing as the resulting posterior distribution is proportional
to the likelihood surface.

Theorem 1: Assume that the prior for β is improper and uniform, that is, π(β) ∝ 1,
then all posterior moments of β exist., i.e., equation (6) holds.

Proof: We need to prove
∫
Rp+1

∏p
j=0 |βj |rj exp

{−∑n
i=1 ρθ(yi −max{y0

i , x
′
iβ})

}
dβ

is finite. Note that
∑n

i=1 ρθ(yi−max{y0
i , x

′
iβ}) =

∑
i∈C ρθ(yi− x′iβ) +

∑
i/∈C ρθ(yi− y0

i ),
where the set C = {i : x′iβ > y0

i }. Hence, it suffices to prove that∫ ∏p
j=0 |βj |rj exp {−∑

i∈C ρθ(yi − x′iβ)} dβ is finite. According to Lemma 1, this is
true if and only if

∫
Rp+1

∏p
j=0 |βj |rj g(h(θ)

∑
i∈C(yi − x′iβ))dβ is finite, and this is true

according to Lemma 2. where we omit the subscript on h for notational simplicity.

Noting that any terms like exp(−b|β − c|) adding to the inside of the integral
product of lemma 2, Lemma 2 still holds for any constant b > 0 and c. Theorems 2
and 3 below provide that the existence of posterior and posterior moments based on
double-exponential and normal priors.

Theorem 2: When the elements of β are assumed prior independent, and each
π(βi) ∝ exp(− |βi−µi|

λi
), a double-exponential with fixed µi and λi > 0, all posterior

moments of β exist.

Theorem 3: Assume that the prior for β is multivariate normal N(µ,Σ) with fixed
µ and Σ, then all posterior moments of β exist.

In particular, when the elements of β are assumed a prior independent and uni-
variate normal, all posterior moments of β exist.

3 Simulation studies

We have found it simplifies the algorithm to assume zero to be the fixed censoring
points by a simple transformation of any non-zero censoring points. To see this, let
Ỹi = Yi − y0

i , X̃i = (Xi, y
0
i ), and β̃ = (β′,−1)′ Then the Tobit θth quantile regression

of Ỹi given X̃i reduces to max{X ′
iβ, y0

i } − y0
i =max{X̃i

′
β̃, 0}.

We proceed by adopting an MCMC scheme that constructs a Markov chain with
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equilibrium distribution the posterior π(β|y); in fact, our approach is similar to the
MCMC algorithm for frequentist problems described by Chernozhukov and Hong (2003).
After running the Markov chain for a certain burn-in period so that it can reach equi-
librium, one obtains samples from π(β|y).

We describe our approach to Bayesian Tobit quantile regression through a simu-
lation study that was considered by Bilias et al. (2000). They took p = 2, so that
βθ = (β0, β1, β2) , and generate data according to

y = max{β0 + β1x1 + β2x2 + ε, 0},
where x1 is a Bernoulli random variable taking -1 and 1 each with probability 1/2
and x2 is a standard normal random variable. They set (β0, β1, β2) = (1, 1, 1) and used
three different distributions for ε. These are the standard normal distribution N(0, 1), a
heteroscedastic normal (1+x2)N(0, 1) and a normal mixture 0.75N(0, 1)+0.25N(0, 4).
The censoring level is approximately 30% for all designs.

We take the Tobit θth quantile regression of y given x = (x1, x2) to be given by
max{β0 + β1x1 + β2x2, 0}.

We first chose independent improper uniform priors for the components of βθ in
all the experiments in accordance with Theorem 2. We simulated realizations from
the posterior distribution using the MH algorithm. In particular, the parameters were
updated using a random-walk Metropolis algorithm with a Gaussian proposal density
centred at the current parameter value. In all the examples, time series plots indicated
that the Markov chain converged very rapidly, usually within the first few iterations.
However, in every case we adopted a burn-in of 3000 iterations and then collected a
sample of 2000 values of each of the elements of βθ = (β0, β1, β2).

For θ=0.05, 0.5 and 0.95, we estimated θth quantiles using posterior means. Figures
1, 2 and 3 show the posterior histograms of βθ for the above three error models to-
gether with the true parameter values. The true parameter values of βθ were obtained
according to the true θth quantile regression of y in the model which is denoted as
qθ(y) = max{β0+β1x1+β2x2+qθ(ε), 0}. For example, when ε follows the heteroscedas-
tic normal (1+x2)N(0, 1), qθ(y) = max{(β0+Φ−1(θ))+β1x1+(β2+Φ−1(θ))x2, 0}, so the
true parameter values for this model are β0 = 1+Φ−1(θ), β1 = 1, and β2 = 1+Φ−1(θ),
in which Φ−1(θ) is the θth quantile of N(0, 1). Table 1 compares the posterior means
with the true values of βθ and also gives standard deviations and 95% credible intervals
under each of three error models. As expected, the proposed Bayesian inference works
well. For example, all the absolute biases for estimating βθ turn out to be in the range
[0.02, 0.17]. The empirical coverage probabilities based on 1000 0.95-level confidence in-
tervals for the regression coefficient β lies in the range of (0.936, 0.959). The posterior
histograms of parameters βθ in Figures 1, 2 and 3 also support this conclusions.

We repeated the above analysis using a multivariate normal prior in accordance
with Theorem 4. For simplicity, we used independent normal priors here. In general, the
mean vector and the covariance matrix of the multivariate normal prior distribution can
been estimated using a simple “plug-in” or “initial estimation” rule. That is, we use the
uncensored observations in the data set to perform an ordinary quantile regression, and
then we “plugged-in” the parameter and covariance matrix estimates from this fitting
to the prior distribution. Just as with the independent uniform prior, our experience
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was that this method is very successful in terms of speed of convergence of the MCMC
algorithm. Table 2 presents results analogous to those in Table 1 for this normal prior.
Except for β1 for the heterosedastic model with θ = 0.95 and 0.05, all absolute biases
for estimating βθ are in the range [0.01, 0.27].

We also checked our methodology with the double-exponential prior discussed in
Theorem 3. We found only small differences in the inferences obtained compared with
those when the independent normal prior was used.

3.1 Empirical comparison

Buchinsky and Hahn (1998) performed Monte Carlo experiments to compare their
estimator with the one proposed by Powell (1986). One of models they used was given
by

y = max{−0.75, y∗}
and

y∗ = 1 + x1 + 0.5x2 + ε,

where the regressors in xi were each drawn from a standard normal distribution and
the error term has multiplicative heteroskedasticity obtained by taking ε = ξ v(x) with
ξ ∼ N(0, 25) and v(x) = 1+0.5(x1+x2

1+x2+x2
2). For estimating the median regression

for this model, Table 3 summaries the biases, root mean square errors (RMSE) and
95% credible intervals for β0 and β1 obtained from the following three approaches:
BH method (Buchinsky and Hahn, 1998), Powell’s estimator (Power, 1986) and the
proposed Bayesian method with uniform prior. Power’s estimator is carried via an
iterative linear programming algorithm suggested by Buchinsky (1994). BH’s estimator
involes in kernel estimation of h0(x) ≡= Pr[y∗i > y0

i |xi = x] = EI(y∗i > y0
i )|xi = x],

which is a specific case of standard regression mean smooth. The values relating to
BH and Powell were also reported in Table 1 of Buchinsky and Hahn (1998). In
particular, the BH method used log-likelihood cross-validated bandwidth selection for
kernel estimation of θ∗, and the 95% confidence intervals for both BH and Powell
estimators are based on their asymptotic normality theory. The results from Bayesian
inference are based on a burn-in of 1000 iterations and then 3000 sample values.

Clearly, the proposed Bayesian method outperformed the BH and Powell methods.
It yields considerably lower biases, lower mean square errors and much more precise
credible intervals. S-PLUS code to implement the method with this comparison is
available from the authors.

3.2 Inference with scale parameter

One may be interested in introducing a scale parameter into the likelihood function
L(y|β) of Section 2 for the proposed Bayesian inference. Suppose σ > 0 is the scale
parameter, it is natural to have the alternative likelihood function as

L(y|β, σ) =
θn(1− θ)n

σn
exp

(
−

n∑

i=1

ρθ(
yi −max{y0

i , x′iβ}
σ

)
)

.
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The corresponding posterior distribution π(β, σ|y) can be written as

π(β, σ|y) ∝ L(y|β, σ) π(β, σ),

where π(β, σ) is the prior distribution of (βθ, σ) for a particular θ. As what interests us
is the regression parameter β, and σ is what is referred to as a nuisance parameter, we
may integrate out σ and investigate the marginal posterior π(β|y) only. For example,
we have considered a “reference” prior π(β, σ) ∝ 1

σ , which gives that

π(β|y) ∝
( n∑

i=1

ρθ(yi −max{y0
i , x′iβ}

)−n

,

or

log π(β|y) ∝ −n log
n∑

i=1

ρθ(yi −max{y0
i , x′iβ}).

Implementing MCMC algorithm on this posterior form, we have found that the simu-
lation results in this section are more or less same as those obtained using the posterior
density (4).

4 Marginal likelihood and Bayes factors

We now discuss Tobit quantile regression model choice under the proposed Bayesian
setting. The issue of model choice can be dealt with by calculating Bayes factors. For
this, the marginal likelihood, which is the normalizing constant of the posterior den-
sity, is required. The calculation of the marginal likelihood has attracted considerable
interest in the recent MCMC literature. In particular, Chib (1995) and Chib and Jeli-
azkov (2001) have developed a simple approach for estimating the marginal likelihood
using the output from the Gibbs sample and the MH algorithm respectively. Under
our proposed Bayesian Tobit inference, their approach can be simplified further.

We start our discussion by considering the problem of comparing a collection of
models {M1, ..., ML} that reflect competing hypotheses about the regression form.
Under model Mk, suppose that the Tobit θth quantile model is given by

y|Mk = max{y0
(k), x′(k)βθ(k) + εθ(k)},

then the marginal likelihood arising from estimating βθ(k) is defined as

m(y|Mk) =
∫

L(y|Mk, βθ(k)) π(βθ(k)|Mk)dβθ(k),

which is the normalizing constant of the posterior density.

Our estimation of m(y|Mk) is based on the work of Chib (1995). In particular, we
use the relationship

log m(y|Mk) = log L(y|Mk, β
∗
θ(k)) + log π(β∗θ(k)|Mk)− log π(β∗θ(k)|y, Mk),

from which the marginal likelihood can be estimated by finding an estimate of the
posterior ordinate π(β∗θ(k)|y, Mk). We denote this estimate as π̂(β∗θ(k)|y,Mk). For
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estimate efficiency, βθ(k) = β∗θ(k) is generally taken to be a point of high density in the
support of posterior density. On substituting the latter estimate in log m(y|Mk), we
get

log m̂(y|Mk) = n log(θ(1− θ))−
∑

i

ρθ(yi −max{y0
i(k), x′i(k)β

∗
θ(k)})

+ log π(β∗θ(k)|Mk)− log π̂(β∗θ(k)|y,Mk), (8)

in which the first term n log(θ(1− θ)) is constant and the sum is over all data points.

Once the posterior ordinate is estimated, we can estimate the Bayes factor of any
two models Mk and Ml by

B̂kl = exp{log m̂(y|Mk)− log m̂(y|Ml)}.

Now we discuss a simulation-consistent estimate of π̂(β∗θ(k)|y,Mk) for an improper
prior and proper prior respectively.

Following equation (7) of Chib and Jeliazkov (2001) and even using an improper
prior, we can obtain simulation-consistent estimate of the posterior ordinate as

π̂(β∗|y) =
G−1 ∑G

g=1 α(β(g), β∗) q(β(g), β∗)

J−1
∑J

j=1 α(β∗, β(j))
,

in which
α(β, β∗) = min{1,

π(β∗)
π(β)

L∗(β∗, β)},

and

L∗(β∗, β) = exp{−
∑

i

(
ρθ(yi−max{y0

i(k), x′i(k)β
∗
θ(k)})−ρθ(yi−max{y0

i(k), x′i(k)βθ(k)})
)
}.

Where {β(j)} are samples drawn from q(β∗, β) and {β(g)} are samples drawn from the
posterior distribution.

However, the estimate can be simplified further if a proper prior is used. In this
case, noting that q(β∗,β)

q(β,β∗) = 1 for our simple random walk proposal density and dropping
the dependency on Mk for notational simplicity, we obtain the posterior ordinate as

π̂(β∗|y) =
∫

α(β, β∗)π(β|y)dβ∫
α∗(β∗, β)π(β)dβ

,

in which
α∗(β∗, β) = min{ 1

π(β)
,

1
π(β∗)

L∗(β, β∗)}.

From this it follows that

π̂(β∗|y) =
E[α(β, β∗)]
E[α∗(β∗, β)]

,
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where the expectation in the numerator is over the posterior distribution π(β|y) and
the expectation in denominator is over the prior π(β). This implies that a simulation-
consistent estimate of the posterior ordinate is given by

π̂(β∗|y) =
G−1 ∑G

g=1 α(β(g), β∗)

J−1
∑J

j=1 α∗(β∗, β(j))
,

where {β(j)} are samples drawn from a proper prior distribution and {β(g)} are samples
drawn from the posterior distribution.

5 Illustrative example

To illustrate the applications of the proposed methods to model fitting and selection,
we made a analysis of the data set on women’s labor force participation of Mroz (1987).
Part of interests in the analysis of this data is in investigating the relationship between
women’s working hours and years of education and experience. In the data, Hours is
the number of hours the wife worked outside the household in a given year, YEd is
the years of education, and YExp is the years of work experience. If the wife was not
working for pay, her hours worked will be left censored at zero. Of the 753 observations,
325 are censored. Therefore the censoring ratio is 43%.

In the SAS/STAT User’s Guide (1999), a small part with size 17 of the data is
used to illustrate censored mean regression model with the LIFEREG Procedure in
SAS/STAT. The procedure was used to fit a linear regression with normal model error
assumption. However, the observations on Hours are left skewed and far from normal.
We re-visited this analysis by considering the median regression and the 95% quantile
regression and used all 753 observations. We still assume that the θth conditional
quantile of women’s working hours depends on the YEd and YExp through the following
linear equation

qθ(x) = max{0, β0(θ) + β1(θ)YEd + β2(θ)YExp}. (9)

We employ the Bayesian Tobit quantile regression with censored point y0 = 0 and
uniform prior for the estimation.

The output {β(g)} is obtained by running the sampler for 5000 cycles after a burn-
in of 2000. Our results are summarized in Table 4. The positive values for the estimates
of coefficients β1(θ) and β(θ) of YEd and YExp clearly show that both education and
experience are important for women’s working for pay.

Based on equation (8), we got value -225.3684 as the estimate of the logarithm of
the marginal likelihood for the model, by taking β∗ =

∑
g β(g)/3000 based on the last

3000 samples of the output {β(g)}.

One may introduce a quadratic term for Yexp in the model (9) and fit the underlying
quantile regression by

qθ(x) = max{0, β0(θ) + β1(θ)YEd + β2(θ)YExp + β3(θ)Y 2
Exp}. (10)
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However, we have the estimate -283.1418 of the logarithm of the marginal likelihood
for the second model. Hence we see that there is not gain in introducing extra term for
modelling underlying linear quantile regression.

6 Discussion

We have described a complete Bayesian approach for Tobit quantile regression mod-
elling. This approach avoids the need to solve a non-convex minimization problem and
a density estimation problem. We employ MCMC methodology to produce a sample
from the posterior distribution, which we use to estimate such quantities as the pos-
terior mean, marginal probability density functions, posterior correlations, standard
deviations and credible intervals.

We also remark that a Bayesian semiparametric Tobit quantile regression approach
based on the setting of Kottas and Gelfand (2001) could also be developed for inference
in this case. In the semi-parametric approach, one could use a Dirichlet process as a
prior. Instead of the likelihood function L(y|β), one can use a flexible family of zero
median error distributions p(.; α, γ) = 1

γ f( .
γ ;α)1(−∞,0)(.) + γf(.γ;α)1(0,∞)(.), which is

a kernel mixture of the distribution f(.; α) that is unimodal and symmetric around 0.
According to Kottas and Gelfand (2001), α > 0 is an arbitrary one-dimensional scale
parameter and γ > 0 is a skewed parameter. Any member of this family with γ 6= 1 is
a skewed distribution, with the type and amount skewness depending on the value of
γ.

If we choose a split asymmetric Laplace density (2) for the kernel mixture, p(u; α, σ) =
fθ( u

ασ )I(u < 0) + fθ( u
α/σ )I(u > 0), a fully Bayesian hierarchical structure is given by

yi|β, αi, σ ∼ p(yi −max{y0
i , x

′
iβ}; αi, σ), i = 1, ..., n,

in which
β ∼ Np+1(µ,Σ),

αi ∼ DP (νG0),

and
σ ∼ Gamma(a, b),

where DP stands for Dirichlet process, and the basic distribution G0 is taken to be an
IGamma(s, t), with mean t/(s− 1) if s > 1.

Richardson (1999) mentioned that popular forms of priors tend to be those which
have parameters that can be set straightforwardly and which lead to posteriors with
a relatively immediate form. In this sense, the proposed approach is preferable to
Bayesian semiparametric methods.

Our sampling scheme was performed on the whole parameter vector in one block.
In applications when the dimension of is large, it may be difficult to construct a single
block Metropolis-Hastings algorithm that converges rapidly to the target density. In
such cases, it is helpful to break up the variate space into smaller blocks and to then
construct a Markov chain with these smaller blocks. Suppose, for illustration, that the
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regression vector parameter β is split into two vector blocks (β(1), β(2)). The general
rule for block choice is that sets of parameters that are highly correlated should be
treated as one block when applying the multiple-block Metropolis-Hastings algorithm.
Then, for each block, let

q1(β(1), β(1)∗|β(2)), q2(β(2), β(2)∗|β(1)),

denote the corresponding proposal density. Here each proposal density is allowed to
depend on the data and the current value of the remaining block. Also define (by
analogy with the single-block case)

α(β(1), β(1)∗|β(2)) = min

{
1,

π(β(1)∗|β(2)) q1(β(1)∗, β(1)|β(2))
π(β(1)|β(2)) q1(β(1), β(1)∗|β(2))

}
,

and

α(β(2), β(2)∗|β(1)) = min

{
1,

π(β(2)∗|β(1)) q2(β(2)∗, β(2)|β(1))
π(β(2)|β(1)) q2(β(2), β(2)∗|β(1))

}
,

as the acceptance probability for block β(k) (k = 1, 2) conditioned on the other block.
The conditional densities π(β(1)|β(2)) and π(β(2)|β(1)) that appear in these functions
are called the full conditional densities. By Bayes theorem each is proportional to the
joint density. For example,

π(β(1)|β(2)) ∝ π(β(1), β(2))

and, therefore, the acceptance probabilities in α(β(1), β(1)∗|β(2)) and α(β(2), β(2)∗|β(1))
can be expressed equivalently in terms of the kernel of the joint posterior density because
the normalizing constant of the full conditional density (the norming constant in the
latter expression) cancels in forming the ratio. With these inputs, one sweep of the
multiple-block Metropolis-Hastings algorithm is completed by updating each block, say
sequentially in fixed order, using a Metropolis-Hastings step with the above acceptance
probabilities, given the current value of the other block. For further details see Chib
and Greenberg (1995).
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Table 1. True parameter values (T.V.) and their posterior means,
standard deviations (S.D.) and 95% credible intervals. A uniform prior was adopted.

Normal Heteroscedastic Mixture

θ β0 β1 β2 β0 β1 β2 β0 β1 β2

T.V. -0.65 1 1 -0.65 1 -0.65 -1.10 1 1
Mean -0.61 0.99 1.08 -0.66 1.05 -0.58 -1.00 1.09 0.98

0.05 S.D. 0.49 0.87 0.32 0.60 0.77 0.26 0.54 0.82 0.28
2.5% -1.16 -0.43 0.30 -2.53 -0.66 -1.15 -2.26 -0.54 0.50
97.5% -0.05 2.32 1.72 0.24 2.45 0.01 -0.11 2.70 1.62

T.V. 1 1 1 1 1 1 1 1 1
Mean 1.00 0.98 1.02 0.95 1.04 0.97 1.16 0.94 1.03

0.5 S.D. 0.25 0.39 0.15 0.22 0.29 0.16 0.24 0.29 0.15
2.5% 0.52 0.21 0.72 0.37 0.44 0.61 0.60 0.29 0.73
97.5% 1.53 1.67 1.30 1.34 1.67 1.30 1.63 1.50 1.31

T.V. 2.65 1 1 2.65 1 2.65 3.10 1 1
Mean 2.78 1.17 1.17 2.65 0.84 2.62 3.15 1.12 1.07

0.95 S.D. 0.79 1.04 0.43 0.54 1.22 0.31 0.80 1.05 0.43
2.5% 1.64 -1.23 0.46 1.85 -1.70 1.91 1.89 -1.20 0.34
97.5% 4.17 2.62 2.30 3.98 3.20 3.54 4.89 3.15 2.15
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Table 2. True parameter values (T.V.) and their posterior means,
standard deviations (S.D.) and 95% credible intervals. A normal prior was adapted.

Normal Heteroscedastic Mixture

θ β0 β1 β2 β0 β1 β2 β0 β1 β2

T.V. -0.65 1 1 -0.65 1 -0.65 -1.10 1 1
0.05 Mean -0.80 1.14 1.02 -0.830 0.74 -0.77 -1.05 1.19 0.81

S.D. 0.42 0.58 0.27 0.62 0.93 0.32 0.53 0.664 0.32
2.5% -1.75 0.06 0.41 -2.20 -0.1.01 -1.44 -2.09 -0.11 0.17
97.5% -0.12 2.34 1.49 0.10 2.81 -0.06 -0.04 2.45 1.39

T.V. 1 1 1 1 1 1 1 1 1
0.5 Mean 0.90 1.27 0.94 0.95 0.97 1.11 1.01 0.86 0.82

S.D. 0.26 0.29 0.16 0.23 0.28 0.15 0.30 0.37 0.17
2.5% 0.50 0.67 0.59 0.45 0.43 0.86 0.44 0.19 0.48
97.5% 1.38 1.60 1.23 1.34 1.57 1.41 1.63 1.06 1.15

T.V. 2.65 1 1 2.65 1 2.65 3.10 1 1
0.95 Mean 2.78 1.17 1.17 3.00 0.89 2.09 3.09 0.87 0.95

S.D. 0.79 1.04 0.43 0.55 0.63 0.27 0.45 0.65 0.23
2.5% 1.64 -1.23 0.46 2.70 -0.53 1.22 2.39 -0.54 0.44
97.5% 4.17 2.62 2.30 4.79 2.11 2.58 4.06 1.94 1.35
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Table 3. Bias, root mean square errors (RMSE) and 95% credible intervals for the
parameters β0 and β1 of the median regression. Samples were generated from the

model considered by Buchinsky and Hahn (1998). Three approaches were used: BH
method (Buchinsky and Hahn, 1998), Powell estimator (Powell, 1986) and the

proposed bayesian method with uniform prior.

β0 β1

Sample size BH Powell Bayes BH Powell Bayes

100 Bias 0.14 -0.08 -0.08 0.31 0.33 0.30
RMSE 2.88 4.11 1.414 2.16 2.85 1.416
2.5% -4.49 -6.00 0.07 -3.13 -4.55 0.13
97.5% 6.76 9.40 2.20 5.65 7.41 2.65

400 Bias 0.20 0.19 -0.18 -0.06 -0.45 -0.06
RMSE 0.58 0.68 0.39 0.61 0.66 0.22
2.5% -0.85 -0.83 0.12 -0.82 -1.12 0.13
97.5% 4.41 4.31 2.13 2.24 2.36 1.77

600 Bias 0.18 0.20 -0.17 -0.06 -0.47 -0.06
RMSE 0.48 0.49 0.39 0.50 0.57 0.35
2.5% -1.33 -0.14 0.21 -0.37 -0.89 0.13
97.5% 4.67 3.42 1.99 2.09 1.89 1.48

Table 4. βθ and their posterior means, standard deviations (S.D.) and 95% confident
intervals under a uniform prior for the Mroz data

θ = 0.5 θ = 0.95

β0 β1 β2 β0 β1 β2

Mean -731.43 39.78 67.04 1331.94 30.46 34.72
S.D. 8.57 0.59 0.34 9.09 0.62 0.41
2.5% -746.13 38.60 66.58 1310.22 29.41 34.15
97.5% -715.91 40.94 67.80 1347.68 31.59 35.79
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Fig. 1. Normal error model: Posterior histograms of the quantile regression parameters
βθ = (β0, β1, β2) for θ = 0.05, 5 and 0.95 together with the true parameter values
indicated by the bold vertical line
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Fig. 2. Heteroscedastic normal error model: Posterior histograms of the quantile
regression parameters βθ = (β0, β1, β2) for θ = 0.05, 0.5 and 0.95 together with the true
parameter values indicated by the bold vertical line
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Fig. 3. Mixture normal error model: Posterior histograms of the quantile regression
parameters βθ = (β0, β1, β2) for θ = 0.05, 0.5 and 0.95 together with the true parameter
values indicated by the bold vertical line
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