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Abstract. Hypereutectic Al-Si based alloys are gaining popularity for applications where a 
combination of light weight and high wear resistance is required. The high wear resistance 
arising from the hard primary Si particles comes at the price of extremely poor machine tool 
life. To minimize machining problems while exploiting outstanding wear resistance, the 
primary Si particles must be controlled to a uniform small size and uniform spatial distribution. 
The current industrial means of refining primary Si chemically by the addition of phosphorous 
suffers from a number of problems. In the present paper an alternative, physical means of 
refining primary Si by intensive shearing of the melt prior to casting is investigated. 
Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the 
resulting microstructures have been studied using microscopy and quantitative image analysis. 
Primary Si particles were finer, more compact in shape and more numerous with increasing 
cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of 
primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation 
is discussed. 

1. Introduction 
Manufacturers are increasingly interested in hypereutectic Al-Si alloys for applications where a 
combination of light weight and high wear resistance is required such as liner-less engine blocks, 
pistons and pumps [1]. 

To meet the strict ‘ultra-mild wear regime’ operating targets of automotive engine applications and 
to minimise excessive machine tool wear, the load bearing primary Si phase must be present as fine, 
well dispersed particles. This refinement is currently achieved by enhanced heterogeneous nucleation 
on AlP particles that result from the addition of ~50 ppm phosphorous to the alloy before casting. 
However the use of P presents a number of potential problems: 
• With prolonged contact time AlP particles agglomerate, float to the melt surface and become 

incorporated in the dross. This is exacerbated by the agitation due to fluxing and degassing 
treatments. P must therefore be added after such treatments, potentially leading to reintroduction 
of hydrogen and deleterious oxide films. 

• P is most effectively added in the form of Cu-P, Al-Cu-P or Al-Fe-P master alloys, possibly 
leading to incorporation of impurities. 

• Refinement of primary Si with P is not compatible with the common practice of modification of 
eutectic Si with Sr or Na. 
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Research on binary hypereutectic Al-Si alloys has shown that additions of rare earth elements are a 
potential chemical alternative to refinement of primary Si with P, and indeed may have the advantage 
of producing modified Al-Si eutectic simultaneously [2,3]. However the refinement of primary Si 
appears to be only moderate. Furthermore it is not clear that the refinement evident in binary alloys 
will translate to commercial multi-component alloys. For instance a group at Shanghai Jiaotong 
University found that the addition of La to Al-17wt%Si and Al-25wt%Si resulted in both refinement 
of primary Si and eutectic modification [3] whereas similar addition to A390 alloy resulted in neither 
[4]. 

Physical approaches to the refinement of primary Si, including ultrasound [5,6], electromagnetic 
stirring [7] and electromagnetic vibration [8] have been attempted with limited success. Treatments are 
localised within the melt and take of the order of ten minutes even within very small quantities of 
liquid. 

Over the past decade BCAST at Brunel University has developed the Melt Conditioning by 
Advanced Shearing Technology (MCAST) in which a liquid alloy is subject to very high shear and 
intense turbulence within a pair of corotating, fully intermeshing screws [9]. It has been shown that 
application of MCAST prior to casting can lead to uniform refinement of solid solution grain 
structures [10] and primary intermetallic phases [11]. The research described in this paper investigates 
the potential for primary Si refinement in hypereutectic Al-Si alloys using MCAST. 

 
2. Experimental 
Batches of Al-15wt%Si alloy were produced by melting together commercial purity Al and 
Al-50wt%Si master alloy at 800 °C in a clay-bonded graphite crucible in an electric resistance furnace. 
The alloy was cooled to a pouring temperature of 640 °C prior to casting using each of three 
techniques to achieve cooling rates over a range of three orders of magnitude: (i) using the Aluminium 
Association TP-1 test mould (TP-1), (ii) into the 13 mm diameter cavity of a graphite mould (GR) and 
(iii) by cold chamber high pressure diecasting (HPDC), with cooling rates of ~3.5 Ks-1, ~10 Ks-1 and 
>100 Ks-1 respectively. HPDC was carried out in a 280 t clamping force machine (LK Machinery Co. 
Ltd., Hong Kong) to produce samples of the form of round tensile test bars with a gauge diameter of 
6.5 mm. 

Samples were cast with and without the application of intensive shear to the melt prior to casting. 
The high shear was achieved using the twin-screw MCAST device. The shear process was carried out 
at 640 °C at a speed of 500 rpm (equivalent to a shear rate of approx. 530 s-1) for 60 s. 

Both sets of experiments were repeated with the addition of 50 ppm P to the melt to (i) allow a 
comparison between the chemical refinement process with P and the physical refinement process of 
melt shearing, and (ii) assess the combined effect of melt shearing and P. 

Specimens for microstructural characterisation were sectioned and polished using standard 
techniques and were observed using a Zeiss Axioskop 2MAT light microscope and using Zeiss 
Axiovision quantitative image analysis software. The size, shape, number density and volume fraction 
of primary Si particles were quantified. Primary Si particle size was measured as an equivalent circular 
diameter. As the primary Si particles were reasonably well dispersed throughout the cross section of 
the samples, it was reasonable to assume that the volume fraction of primary Si was equal to the area 
fraction measured from the 2-dimensional section in microscope. The shape of the primary Si particles 
was quantified in terms of a shape factor, S=4πA/P2, where A and P are the area and perimeter of each 
particle on the plane of the polished surface respectively. S has a value of one for perfectly round 
particles, and decreases as the particles become more irregular in shape.  
 
3. Results 
Figure 1 shows the micorstructures of Al-15wt%Si TP-1, GR and HPDC samples cast without 
intensive melt shearing, with intensive melt shearing, and with the addition of 50 ppm P (unsheared). 
The primary Si in the Al-15wt%Si TP-1 sample without shearing (figure 1(a)) was course and 
irregular. As the cooling rate increased (figures 1(d) for GR & 1(g) for HPDC) the primary Si particles 
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(a) 

became more compact and refined. It is clear from figure 1 that the application of melt shearing led to 
more compact and refined primary Si. The effect of melt shearing was very significant in the TP-1 
samples (compare figure 1(b) with figure 1(a)), and less significant but still apparent in the GR 
samples (compare figure 1(e) with figure 1(d)). It is difficult to discern from the light micrographs of 
figures 1(g) and (h) whether melt shearing had any effect on the size of primary Si particles. It could 
also be observed that the eutectic was also refined with increasing cooling rate and by the application 
of melt shearing. 

( (c

( (f) 

( (i) 

b) ) 

 
(d) e) 

 
(g) h) 

Figure 1. Light micrographs of Al-15wt%Si cast without (a,d,g) and with (b,e,h) intensive melt 
shearing, and Al-15wt%Si with 50 ppm P added (c,f,i): (a-c) TP-1, (d-f) GR and (g-i) HPDC. 

 

Figure 1(c),(f)&(i) show the microstructures of TP-1, GR and HPDC samples of Al-15wt%Si with 
50ppm P added, cast without intensive melt shearing, i.e. the conventional primary Si refinement 
process. As expected, the addition of P led to refined primary Si with a compact morphology (compare 
figure 1(c),(f)&(i) with figure 1(a),(d)&(g)), with the degree of refinement becoming less significant 
with increasing cooling rate. The primary Si of the samples cast with intensive melt shearing was 
refined at least as well as that cast with the conventional P addition (compare figure 1(b),(e)&(h) with 
figure 1(c),(f)&(i)). When the alloy was cast with both the addition of P and intensive melt shearing, 
little further refinement was observed (micrographs not shown). 

Figure 2 shows the results of quantitative image analysis of polished sections of TP-1, GR and 
HPDC samples of Al-15wt%Si with and without added P, each cast with and without intensive melt 
shearing using MCAST. Figure 2(a) confirms that the primary Si particle size decreased with 
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increasing cooling rate irrespective of whether the melt was sheared prior to casting or whether P was 
added. For each cooling rate: (i) the primary Si was coarsest in the unsheared alloy without P, (ii) 
adding P led to refinement of the primary Si, (iii) melt shearing led to greater refinement of primary Si 

(a) (b) 

(c) (d) 

fraction. 
Figure 2. Results of quantitative image analysis of primary Si in cast Al-15wt%Si: (a) particle size, 
(b) shape factor, (c) number density NA and (d) volume 
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than the conventional process of adding P without shearing, and (iv) adding P in addition to melt 
shearing provided only marginal further refinement. 

Figure 2(b) shows how the shape of the primary Si particles varied with cooling rate and melt 
treatment.  The shape factor increased, i.e. the particles became more compact, with increasing cooling 
rate. For each cooling rate: (i) the primary Si was most irregular in shape in the unsheared alloy 
without P, (ii) the shape factor increased with the addition of P, (iii) melt shearing led to more compact 
particles than the conventional process of adding P without shearing, and (iv) adding P in addition to 
melt shearing provided only a marginal further increase in shape factor. 
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Figure 2(c) shows that the number density, NA, of primary Si particles increased with increasing 
cooling rate. For each cooling rate: (i) NA was lowest in the unsheared alloy without P, (ii) NA 
increased with the addition of P, (iii) melt shearing led to a higher value of NA than the conventional 
pro

owever the application of melt shearing resulted in a significantly greater volume fraction 
f primary Si, e.g. from 2.2% to 3.7% in the TP-1 samples and from 2.4% to 4.5% in the HPDC 

lt temperature is insufficiently high, the melt dwells for too long in the 
sho

N  is a reflection of the ease with which nucleation takes place. It can be 
con

e the fold acts as an oxide bifilm and hence the 
enh

dominant oxide in Mg bearing Al alloys, grows on Si 
ith the a-axes of the two unit cells parallel, and again three lattice spacings of Si match with two 

lattice spacings of the oxide to within 1% [19]. 
 

cess of adding P without shearing, and (iv) adding P in addition to melt shearing provided only a 
small further increase in NA. 

Figure 2(d) shows the variation in volume fraction of primary Si with cooling rate and melt 
treatment. The volume fraction of primary Si increased slightly with increasing cooling rate, e.g. from 
2.2% in the TP-1 sample to 2.4% in the HPDC sample for the unsheared alloy without P. The addition 
of P led to a marginal increase in volume fraction of primary Si, e.g. from 2.2% to 2.5% in the TP-1 
samples. H
o
samples. 
 
4. Discussion 
The results in figures 1&2 show that with increased cooling rate the primary Si in cast Al-15wt%Si 
becomes more compact and more refined. This finding is not surprising and echoes those of a number 
of previous investigations [12-15]. Indeed it is noted that cooling rate alone can be sufficient for 
primary Si refinement in high pressure diecasting although in practice P additions are frequently used 
for complete control (if the me

t sleeve and/or the flow prior to die filling is too slow then coarse primary Si may form before the 
melt enters the die cavity) [1]. 

Figures 1&2 also show that primary Si is finer and more compact when the melt undergoes 
intensive melt shearing than when the conventional process of adding 50 ppm P is used. In addition, 
and importantly, the number density of primary Si particles is greater with melt shearing than on the 
addition of P. The value of A

cluded then that intensive melt shearing leads to enhanced nucleation of primary Si compared with 
conventional P refinement. 

It has been shown that intensive shearing in the MCAST unit disrupts oxide films included in the 
melt and distributes them as well dispersed sub-micron scale oxide particles [9]. Furthermore it has 
been shown that these dispersed oxide particles act as efficient heterogeneous nucleants for a number 
of phases including Al and Mg solid solutions and primary intermetallic particles [10,11]. Figure 3 
shows the microstructure of a region containing an entrained oxide film in a sample produced in the 
present work. It shows that primary Si particles form in close association with such entrained oxides. 
Similar association between Si particles and oxide films has been observed by Campbell [16,17]. 
Enhanced formation of Si particles also occurs at folds or laps in castings, e.g. figure 18 in [1]. Such 
folds inevitably have oxide at their surfaces and henc

anced formation of Si at folds provides further evidence of the association of primary Si with 
entrained oxide. 

A combination of (i) a significant increase in number density of primary Si particles with the 
application of intensive melt shearing, (ii) past evidence that MCAST leads to distribution of oxide 
films as well dispersed discrete particles, and (iii) the observed association of enhanced Si formation 
on oxide, leads to the conclusion that intensive melt shearing causes enhanced nucleation of primary 
Si on well dispersed oxide particles. Although this conclusion has yet to be confirmed by direct 
observation of primary Si/oxide interfaces, epitaxial growth of oxides on Si in the semiconductor 
industry provides support. For instance Υ-Al2O3 grows on Si with an orientation relationship of the 
form Si(111)//Al2O3(222), Si[220]//Al2O3[440] [18]. The lattice mismatch over a single unit cell is 
>30%, but the mismatch decreases to 2-3% for the matching of two Υ-Al2O3 cells to three Si cells 
[18]. Similarly Mg2Al2O4, which is also the pre
w
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Figure 3. Evidence of the association of primary 
Si with oxide films. 

 
5. Conclusions 
An Al-15wt%Si alloy has been cast at a number of cooling rates, with and without an addition of 50 
ppm P, and with and without the application of intensive melt shearing prior to solidification: (i) 
Intensive melt shearing led to greater refinement of the primary Si particles than the common practice 
of refining with P; (ii) Intensive melt shearing resulted in a greater number density of primary Si 
particles than that achieved by adding P, suggesting that melt shearing provides a means of enhanced 
nucleation; (iii) This enhanced nucleation is likely to be due to the distribution of oxide films as well 
dispersed, discrete, nanoscale oxide particles which act as potent/efficient heterogeneous substrates. 
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