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Abstract. Oxides, in liquid aluminium alloys, can cause severe difficulties during casting, 

contribute to the formation of cast defects and degrade the mechanical properties of cast 

components. In this paper, microstructural characteristics of naturally occurring oxides in the 

melts of commercial purity aluminium and Al-Mg binary alloys have been investigated. They 

are characterised by densely populated oxide particles within liquid oxide films. With intensive 

shearing, the particle agglomerates are dispersed into uniformly distributed individual particles. 

It was found that with intensive melt shearing, grain refinement of α-Al can be achieved by the 

dispersed oxide particles. The smaller lattice misfit between the oxide particles and the α-Al 

phase is characterised by a well defined crystallographic orientation relationship. And the 

mechanisms of grain refinement are discussed.  

1. Introduction 

Oxides are always present in liquid aluminium alloys and as more and more aluminium alloys are 

being recycled all over the world, more oxides can be accumulated, which presents an increasing 

challenge for the aluminium industry in terms of potential increased processing cost and decreased 

product quality [1, 2]. The presence of oxides affects casting process and causes degradation of 

mechanical properties of the final cast components and extensive efforts have been made to remove 

oxides from liquid aluminium alloys [3-5]. Recently, using melt conditioning by advanced shear 

technology (MCAST), it has been demonstrated that the naturally occurring oxides can be dispersed 

into uniformly distributed particles and therefore be less harmful to processing and resultant 

mechanical properties [6]. Moreover, it was found that the dispersed oxides can act as heterogeneous 

nucleation sites and a refined as-cast microstructure can be achieved [7-10]. In aluminium alloys, γ-

Al2O3 and α-Al2O3 are naturally occurring oxides depending on melting temperature and other 

conditions [11]. In AlMg alloys, either MgAl2O4 or MgO can be present in alloy melts, depending on 

the magnesium content, melting temperature and time at the melting temperature [12]. Both MgAl2O4 

and α-Al have a face-centred cubic (fcc) crystal structure, which could potentially enhance the 

heterogeneous nucleation of the fcc α-Al phase to achieve refined microstructures. The objective of 

the present study was to investigate the feasibility of grain refinement through enhanced 

heterogeneous nucleation on the oxides in commercial purity aluminium (denoted CP Al) containing 

99.86wt.%Al and Al-Mg binary alloys, by examination of the morphological evolution, the 
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crystallographic characteristics and the distribution of oxides with intensive melt shearing. The 

mechanisms of the enhanced heterogeneous nucleation on oxides are also discussed. 

 

2. Experimental  

In order to investigate the oxides naturally formed in the melts of CP Al and Al-Mg binary alloys, the 

oxides were concentrated by means of a pressure filtration technique. Pressure filtration has been 

shown to be an effective means to collect oxides and other inclusions to facilitate further 

investigations [7-9, 13]. For the cases without shearing, the oxides were concentrated after isothermal 

holding at 700
o
C for 4 h and for those with shearing, the melts were sheared at 700

o
C for 60 s and then 

immediately pressure filtered. The metallographic sample for scanning electron microscopy (SEM) 

investigation was prepared by standard metallographic technique and the samples were examined 

using a Zeiss Supera 35 FEG microscope, also equipped with an EDS facility, operated at an 

accelerating voltage of 5-15 kV. For crystallographic orientation relationship determination, samples 

for transmission electron microscopy (TEM) were cut from the filtered samples of Al-0.7Mg alloy by 

punching 3 mm diameter discs from just above the ceramic filter used for pressure filtration, where the 

highest volume fraction of oxides had been collected. The discs were then mechanically thinned down 

to 70 µm and then ion beam thinned using a Gatan precision ion polishing system (PIPS) at an energy 

of 5.0 kV and an incident angle of 4~6°. TEM examination was performed using a JEOL 2000FX 

microscope equipped with EDS facility at an accelerating voltage of 200 kV.  
     The standard TP-1 test was adopted to cast samples for grain size assessment. The melting 

temperature was 750oC. After homogenisation for 1h, the alloy melt at 750oC was poured into the 

MCAST unit for intensive shearing. After being sheared for 60 s, the melt was directly cast into the 

TP-1 mould, which had been preheated at 350
o
C for 2 h. In all cases, the shearing temperature was set 

at 700oC, the rotation speed was 500 rpm and the shearing time was 60 s. For the cases without 

shearing, the alloy melts were air cooled from 750 to 700oC before casting into the TP-1 mould. 

 
3. Results 

Due to the high affinity of aluminium for oxygen, oxide films are readily formed on the surface of 

liquid aluminium when it is exposed to an atmosphere containing oxygen. The crystal structure of the 

oxide formed in CP Al at 700
o
C has been identified by XRD analysis [14]. At 700

o
C, the dominant 

oxide formed in the CP Al melt are thin films of γ-Al2O3 (figure 1a). More detailed observation reveals 

that the oxide films of γ-Al2O3 consist of platelet-like particles. Figure 1b shows the dispersed γ-Al2O3 

oxide particles after shearing at 700oC.  

(a)

 

500nm

(b)

 

Figure 1. SEM micrographs of γ-Al2O3 in the CP Al samples collected by pressure filtration technique 

at 700oC, showing (a) oxide films in the non-sheared sample; (b) dispersed platelet-like oxide particles 

in the sheared sample.  
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     Figure 2a shows the typical morphology of the oxides formed in the Al-0.7Mg alloy without melt 

shearing. The MgAl2O4 oxide formed in this alloy is in the form of oxide films, which have dense 

populations of MgAl2O4 particles within the oxide films. However, the MgAl2O4 particles in the Al-

5Mg alloy are more discrete and no continuous oxide films are found (figure 2b). The MgAl2O4 

particles in the Al-Mg alloys with a high Mg content (e.g. 5wt.%Mg) are dispersed naturally, even 

without the intensive melt shearing. 

1µm2µm

(a) (b)

 

Figure 2. SEM micrographs of MgAl2O4 in the Al-Mg alloys at 700oC with different magnesium 

contents without shearing, showing: (a) oxide films in the Al-0.7Mg alloy; (b) naturally dispersed 

MgAl2O4 particles in the Al-5Mg alloy.  

    TEM examination confirmed that the MgAl2O4 particles have {111} planes as their naturally 

exposed surface. More importantly, figure 3 provides the evidence of a cube-on-cube orientation 

relationship (OR) between the MgAl2O4 and the α-Al phases. The identified orientation relationship is:  

 (111)[110] MgAl2O4 // (111) [110] α-Al                (1) 

This is very much as expected since both the MgAl2O4 and the α-Al phases have the same crystal 

structure and closely matched atomic spacings along the close packed directions on the close packed 

planes.  
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Figure 3. A bright field TEM micrograph and two SAD patterns showing the cube-on-cube 

crystallographic orientation relationship between the MgAl2O4 and α-Al phases. (a) A bright field 

TEM image showing the interface between MgAl2O4/α-Al; (b) SAD pattern with [001] zone axis; (c) 

indexed [001] pattern; (d) SAD pattern with [310] zone axis and (e) indexed [310] pattern. 
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     The dispersed oxide particles developed by intensive melt shearing are expected to act as 

heterogeneous nucleation sites of the α-Al phase. The influence of intensive shearing on the grain 

refinement of the α-Al was investigated for the TP-1 samples of CP Al at 680
o
C. The macrographs of 

the longitudinal sections of the TP-1 samples are shown in Figure 4. The non-sheared sample exhibits 

a coarse columnar structure (figure 4a); in contrast, the sheared sample obtained at the same 

temperature, has a fine equiaxed grain structure (figure 4b).       

(a) (b)10mm
 

Figure 4. Macrographs of the TP-1 samples of CP Al showing the grain refinement of intensive melt 

shearing at 680
o
C: (a) coarse columnar grains of the non-sheared sample; (b) fine equiaxed grains of 

the sheared sample. 

     Figure 5 compares the grain structures of the Al-0.7Mg alloy samples obtained with and without 

intensive melt shearing, based on the longitudinal sections of the TP-1 samples. Without shearing, the 

Al-0.7Mg alloy, has a coarse columnar structure (figure 5a); whereas, after shearing, the grain 

structure was changed to a fine equiaxed structure (figure 5b). The grain size measurements for the 

TP-1 samples of both the CP Al and Al-0.7Mg alloys are compared in figure 6. With intensive melt 

shearing, the grain size of the CP Al was decreased from 1100 µm without shearing to 379 µm with 

shearing; for the Al-0.7Mg alloy, the grain size was decreased from 569 µm without shearing down to 

221 µm with shearing. This clearly demonstrates that the grain size of both CP Al and Al-0.7Mg alloy 

can be refined by intensive melt shearing. 

10mm

 

Figure 5. Macrographs of the TP-1 samples of Al-0.7Mg alloy showing the grain refinement of 

intensive melt shearing at 700
o
C: (a) coarse columnar grains of the non-sheared sample; (b) fine 

equiaxed grains of the sheared sample. 
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Figure 6. Comparisons of grain sizes of the TP-1 

samples of CP Al and Al-0.7Mg alloys, showing 

the grain refining effects of intensive melt 

shearing. 

 

4. Discussion 

Oxide films naturally formed in liquid aluminium alloys consist of linear continuous films densely 

populated with oxide particles (figure 1a and figure 2a). With intensive melt shearing, these films can 

be dispersed so that individual oxide particles are uniformly distributed throughout the entire volume 

of liquid alloys (figure 1b). Alternatively, at an increased magnesium content, the continuous films are 

naturally dispersed (figure 2b). 

     TEM investigations have confirmed the availability of the close packed planes as the exposed 

surface of the naturally occurring MgAl2O4 oxides in Al-Mg alloys. The availability of the close 

packed planes in the naturally occurring oxides of γ-Al2O3 in CP Al has also been identified [14]. 

Table 1 compares the calculated lattice misfit between the oxides and the α-Al phase in aluminium 

alloys on particular crystallographic planes (close packed planes) and directions. It is generally 

accepted that a necessary condition for a solid particle to be a potent heterogeneous nucleation site is 

the formation of a low energy interface between the solid nucleating particle and the nucleated phase, 

i.e., a coherent or at least a semicoherent interface with a small lattice misfit along the interface. This 

means the existence of a specific crystalline orientation relationship (OR) between the potent 

nucleating particle and the nucleated solid phase [13]. From Table 1, the smaller lattice misfit (f0) 

between the oxides and the α-Al phase implies a high potency of the oxide particles, either MgAl2O4 

or γ-Al2O3, as nucleation sites of the α-Al phase. 

      

Table 1. Calculated lattice misfit (f0) between the oxides and the α-Al phase at 660oC. 

 

Interface 

S/N 

Crystal structure & Lattice 

parameters, nm 

OR: 

(hkl)[uvw]
N
// 

(hkl)[uvw]
S
 

dS, 

nm 

dN 

nm 

f
0
 

(%)
 

      

      

MgAl2O4/α-

Al 

S: fcc, a=0.81263, 

N: fcc, a=0.41212 

(111)[110]// 

(111)[110] 

0.57462 2×0.29141 1.41 

      

γ-Al2O3/α-Al S:fcc, a=0.79634, 

N: fcc, a=0.41212 

(111)[110]// 

(111)[110] 

0.56310 2×0.29141 3.38 

    

     To achieve grain refinement of the α-Al phase by enhanced heterogeneous nucleation on 

inoculants, spatially dispersed grain refiner particles with high nucleation potency throughout the bulk 

melt are necessary and either settling or agglomeration behaviour of the grain refiner particles should 

be avoided. In other words, the existence of potent nucleating agents may not necessarily lead to grain 
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refinement in the solidified microstructure. In line with the free growth model, for effective grain 

refinement of a given alloy composition, the potent nucleating particles need to have a sufficient 

number density and a favourable particle size and size distribution [15]. The theoretical modelling by 

Men et al. using the free growth model revealed quantitatively that intensive melt shearing can 

effectively disperse oxide particles formed on continuous oxide films into more individual particles in 

the alloy melt, resulting in an increase in the oxide particle density by three orders of magnitude [8]. In 

the present work, dispersed oxide particles by intensive melt shearing provided a sufficient density of 

individual oxide particles to enhance the heterogeneous nucleation of the α-Al phase in both CP Al 

and Al-0.7Mg alloy. 

 

5. Conclusions 

(1) The oxide naturally occurring in liquid CP Al is γ-Al2O3. The oxide formed in Al-Mg alloys is 

MgAl2O4. Dense populations of these oxide particles are formed within the continuous liquid 

oxide films or clusters.  

(2) The small lattice misfit between the naturally occurring oxides and the α-Al phase on close 

packed crystallographic planes and directions means that the oxides formed in liquid 

aluminium alloys are potent nucleation sites for the α-Al phase. 

(3) Intensive melt shearing disperses oxide particles within oxide films or clusters into individual 

oxide particles uniformly distributed throughout the entire volume of liquid Al alloys. 

(4) Intensive melt shearing enhances the heterogeneous nucleation of the α-Al phase on the 

dispersed oxide particles through the increased number density of the individual oxide 

particles and therefore refines the grains of the α-Al phase. 
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