

Solving Cardinality Constrained Portfolio Optimisation Problem

Using Genetic Algorithms and Ant Colony Optimisation

Yibo Li

A thesis submitted for the degree of Doctor of Philosophy

School of Information Systems, Computing and Mathematics,

Brunel University

2015

i

Abstract

In this thesis we consider solution approaches for the index tacking problem, in

which we aim to reproduces the performance of a market index without purchasing

all of the stocks that constitute the index. We solve the problem using three different

solution approaches: Mixed Integer Programming (MIP), Genetic Algorithms (GAs),

and Ant-colony Optimization (ACO) Algorithm by limiting the number of stocks

that can be held. Each index is also assigned with different cardinalities to examine

the change to the solution values.

All of the solution approaches are tested by considering eight market indices. The

smallest data set only consists of 31 stocks whereas the largest data set includes over

2000 stocks. The computational results from the MIP are used as the benchmark to

measure the performance of the other solution approaches. The Computational

results are presented for different solution approaches and conclusions are given.

Finally, we implement post analysis and investigate the best tracking portfolios

achieved from the three solution approaches. We summarise the findings of the

investigation, and in turn, we further improve some of the algorithms.

As the formulations of these problems are mixed-integer linear programs, we use the

solver ‘Cplex’ to solve the problems. All of the programming is coded in AMPL.

ii

Acknowledgement

First, I would like to thank my supervisor Dr. Cormac Lucas for his excellent

guidance, constant support, and great inspiration through my Ph.D. studies. It was

great pleasure to work with him. I would also like to thank my parents and other

family members, without their help and support none of these would have been

possible. I am very lucky to have all of you stand by my side and I am very grateful

for all the things you have done for me.

I would like to thank all the staff in the Mathematics Department for their excellent

work. Finally, I would also like to thank my Ph.D. colleagues and friends: Cristiano,

Xiang, Antonio, Zhenghong, Longhui, Martin, Fei and many others.

iii

Table of Contents

Abstract i

Acknowledgement ii

Table of Contents iii

List of Figures v

List of Tables vii

1. Introduction ... 1

1.1 Introduction .. 1

1.2 Thesis Structure ... 5

2. Literature Review .. 7

2.1 History of Portfolio Theory ... 7

2.1.1 Mean-Variance Model .. 7

2.1.2 Capital Asset Pricing Model ... 11

2.1.3 Factor Model ... 12

2.2 Index Tracking ... 14

2.2.1 Genetic Algorithm... 14

2.2.2 Other Approaches ... 19

2.3 Summary .. 22

3. Mixed Integer Programming ... 24

3.1 Introduction .. 24

3.2 Research Comparisons ... 25

3.3 Formulation .. 28

3.4 Computational Results ... 30

4. Genetic Algorithms ... 32

4.1 Introduction .. 32

4.2 Application for Index Tracking ... 33

iv

4.3 The Inverse Triangle Genetic Algorithm ... 38

4.3.1 Introduction ... 38

4.3.2 Formulation ... 39

4.3.3 Simulation ... 40

4.3.4 Computational Results .. 46

4.4 Roulette Genetic Algorithms ... 49

4.4.1 Schema Theorem... 49

4.4.2 Application .. 53

4.4.3 Investigation of population size .. 62

4.4.4 Enhancement ... 65

4.4.5 Computational Results .. 66

5. Ant Colony Optimization .. 69

5.1 Introduction .. 69

5.2 Application ... 73

5.3 Parameters Investigation .. 82

5.4 Computational Results ... 90

6. Post Analysis ... 93

6.1 Tracking Portfolios Investigation .. 93

6.1.1 Investigation Method .. 93

6.1.2 Investigation Findings ... 98

6.1.3 Further Application ... 100

6.1.4 Computational Results .. 101

6.2 Out-of-sample Performance ... 104

7. Conclusion .. 113

7.1 Summary .. 113

7.2 Contribution to Knowledge .. 115

7.3 Future Ideas and Directions ... 116

Reference .. 118

v

List of Figures

Figure 1.1: Percentage of active managers outperforming their benchmark over rolling five-

year periods ·· 3

Figure 1.2: Percentage of active managers outperforming their benchmark during bull/bear

cycles ··· 3

Figure 2.1: The efficient frontier ··· 9

Figure 2.2: The capital market line ··· 9

Figure 4.1: Crossover ··34

Figure 4.2: Deformed offspring ···34

Figure 4.3: Semi-optimization approach ···35

Figure 4.4: Fitness landscape ··36

Figure 4.5: Traditional mutation ···36

Figure 4.6: Inverse triangle evolution ···38

Figure 4.7: Evolution with redundant duplicates ··44

Figure 4.8: Transformed evolution ···44

Figure 4.9: Portfolio illustration ··54

Figure 4.10: Computing time comparison for f12, f15, and f18 ···65

Figure 4.11: Roulette wheel ··66

Figure 5.1: Construction graph ···70

Figure 5.2: Double bridge experiment ··71

Figure 5.3: Additional experiment ··72

Figure 5.4: Enlargement method ··77

Figure 5.5: Mutation of ACO ···79

Figure 5.6: Extended double bridge experiment ··85

Figure 5.7: The results of the extended double bridge experiment ·······································86

Figure 6.1: The return of Hang Seng index and its stocks ···94

Figure 6.2: Half deterministic and half probabilistic searching ··100

Figure 6.3: Hang Seng, K=10 ···105

Figure 6.4: Hang Seng, K=15 ···105

Figure 6.5: DAX, K=10 ··106

Figure 6.6: DAX, K=15 ··106

vi

Figure 6.7: DAX, K=20 ··107

Figure 6.8: FTSE, K=10 ···107

Figure 6.9: FTSE, K=15 ···108

Figure 6.10: FTSE, K=20 ···108

Figure 6.11: S&P, K=10 ··109

Figure 6.12: S&P, K=15 ··109

Figure 6.13: S&P, K=20 ··110

Figure 6.14: Nikkei, K=10 ··110

Figure 6.15: Nikkei, K=15 ··111

Figure 6.16: Nikkei, K=20 ··111

Figure 6.17: Nikkei, K=25 ··112

vii

List of Tables

Table 3-1: BMC’s MIP data sets ··27

Table 3-2: MIP data sets of our research ··27

Table 3-3: Computational results of MIP ··31

Table 4-1: IT-GA simulation ···41

Table 4-2: Initial population size for each index ···46

Table 4-3: Computing results of MIP, IT-GA, and EIT-GA for the first five indices ·················47

Table 4-4: Computational results of EIT-GA and MIP for the larger indices ···························48

Table 4-5 (a): Semi-crossover operator simulation – portfolio processing ····························56

Table 4-6 (a): Semi-optimization operator simulation – portfolio processing ·······················59

Table 4-7: Initial population size under different frequencies ···62

Table 4-8: Computational results of R-GA for smaller size indices under different input

frequencies ···63

Table 4-9: Average Tracking Error ···64

Table 4-10: EIT-GA vs ER-GA ···67

Table 5-1: Simulation ··76

Table 5-2: Attraction table before amplification ··77

Table 5-3: Attraction table after amplification ···77

Table 5-4: Stopping criteria illustration ··81

Table 5-5: Colony size for each index under different frequencies ··83

Table 5-6: Computational results under different input frequencies ·····································84

Table 5-7: Computational results under different evaporation rates ····································87

Table 5-8: ER-GA vs ACO ···91

Table 6-1: Close stocks of the Hang Seng index ··96

Table 6-2: Optimal portfolio of the Hang Seng index with K=10 and K=15 ····························97

Table 6-3: Tracking portfolios investigation ···98

Table 6-4: Results comparison for GA ···102

Table 6-5: Results comparison for ACO ··103

1

Chapter 1

1 .Introduction

1.1 Introduction

Fund managers are often hired to control a large amount of money which is invested

in various securities and other assets such as: real estate. The investor can be

categorized into two groups: institutions and private investors. Fund managers

usually provide investment management services that include financial statement

analysis, asset/stock selection, and direction of management plans and ongoing

monitoring of investments. The aim for fund managers is to make capital growth and

income over the short-term or the long-term. The basic investment strategies adopted

by fund managers can be broadly classified into two types: active management and

passive management.

 Active management

For active management, the fund managers have more confidence in their

own ability to estimate cash flows, growth rates, and discount rates. Based on

these estimates, they value assets and determine whether an asset is fairly

valued. In an actively managed portfolio, assets that are undervalued, or have

a chance of offering above-normal returns, will have a higher weight than

that in the index, whereas other assets will have a zero weight, or even

2

negative weight if short selling is permitted. This style of investing is called

active management, and the portfolios are referred to as active portfolios.

Most open-end mutual funds and hedge funds practice active management,

and most analysts believe that active investment can provide capital growth.

Active management often has high fixed cost (payments to the management

team) and its high frequency of trading often incurs high transaction costs. If

the market performs well these fees will be offset by the returns.

 Passive management

This is based on the assumption of an efficient market. If the markets are

efficient, the price in the market is an unbiased estimate of all future

discounted cash flows. In other words, the price aggregates and reflects all

information that is publicly available, and investors cannot expect to earn a

return that is greater than the required rate of return for that asset. So there is

no way to outperform the market. In that case, a simple and convenient

approach to investing is to rely on the prices set by the market. Portfolios that

are based on the assumption of unbiased market prices are referred to as

passive portfolios. Passive portfolios most commonly replicate and track

market indices, which are passively constructed on the basis of market prices

and market capitalizations. Examples of market indices are the FTSE 100, the

Nikkei 225, and the S&P 500. Passive portfolios based on market indices are

called index funds and generally have low running costs because no

significant effort is expended in valuing securities that are included in an

index. By comparison, passive management has lower fixed costs and lower

transaction costs, but once the market falls it will inevitably affect the index

fund.

Historical evidence reveals that active fund managers averagely underperform their

corresponding benchmarks. Researchers also found that some of the best active fund

managers did perform reasonably well in some periods, but most of them failed to

carry their success over a long-term period. The following two figures show the

evidence found by researchers from ‘Vanguard’ (Charles Thomas, Peter Westaway

and Todd Schlanger, n.d.):

3

Figure 1.1: Percentage of active managers outperforming their benchmark over rolling
five-year periods

Figure 1.2: Percentage of active managers outperforming their benchmark during
bull/bear cycles

4

The research shows that active managers failed to provide any consistency in either

bull or bear markets, and the majority tend to underperform their benchmarks over

time. Because of that, both in the USA and in Europe, passive management has been

receiving a much higher profile recently. Index-Tracking is a method of passive

portfolio management that attempts to track a single given index, such as the FTSE-

100 or the S&P 500. The simplest way to reproduce an index is to purchase all of its

constituents assigning the same weights as given in the index. This approach can

achieve a perfect match. However, it has many disadvantages: certain stocks may

only contribute a tiny proportion to the whole index thus reconstruction of the index

may require rebalancing of all stocks which incurs high transaction costs.

Furthermore stocks of small companies may be illiquid which also entails relatively

high transaction costs (Beasley, J.E., Meade, N. and Chang. T.J., 2003). Due to these

disadvantages, fund managers usually use a subset of the stocks in the index,

subsequently introducing a tracking-error, which can be illustrated on a graph

showing the gap between the tracking portfolio and the index. The problem, then, is

concerned with the selection of a tracking portfolio that best matches the

performance of the market whilst avoiding a too diversified portfolio.

Generally, there are four mathematical techniques used for solving portfolio

optimization problem, which are Quadratic Programming, Nonlinear Programming,

Mixed Integer Programming and Meta-Heuristic Methods. In this paper, we focus

on the last two solution approaches. First, we introduce the Mixed Integer

Programming approach. When we use MIP to solve the portfolio optimization

problem, it can produce optimal solutions. However, the MIP approach is often time-

consuming. Particularly, as the size of the data set becomes larger, the computation

time increases fast, and there is a possibility that the computer cannot solve the

problem due to the limitation in capacity, in which case we often set a time limitation

to get the best results that we can achieve. In this research, we use the results from

MIP to serve as the benchmarks to measure the performance of our heuristic

methods. Broadly, we present two heuristic methods, Genetic Algorithms and Any-

colony Optimization. The aim of using heuristic methods for the Index Tracking is to

shorten the computing time while maintain a considerably high quality of the

solutions. The results from the heuristic methods do not necessarily have to be

optimal but usually we want them to be better than the corresponding results

5

(solution quality or computing time) from MIP. In many cases, the optimal solution

is unknown. Additionally, we implement post analysis and out-of-sample tests on the

results of some selected indices. The work presented in this thesis does not consider

transaction costs and the revision of an existing tracking portfolio. However, we can

easily achieve these simply by adding the transaction costs back into the formulation.

For convenience, we use ‘tracking portfolio’ to represents the stocks chosen to hold

to track an index.

1.2 Thesis Structure

This thesis consists of seven chapters. In Chapter 2, we present a literature survey

related to portfolio optimization and index tracking problems, where we consider the

Markowitz model, CAPM, Factor models, Genetic algorithms and other works done

by previous researchers.

In Chapter 3, we detail the MIP solution approach. Section 3.1 will present an

introduction based on the solution approaches used to solve the Index Tracking

problem in our research. In section 3.2, we review a Mixed Integer Programming

solution approach developed by BMC (Beasley, J.E., Meade, N. and Chang. T.J.,

2003). We compare their work with ours and list the major differences between the

two approaches. In section 3.3, we present the formulation of our MIP solution

approach. In section 3.4, we use the MIP approach to solve eight market indices

(Hang Seng, DAX, FTSE, S&P, Nikkei, S&P-500, Russell-2000, and Russell-3000)

by explicitly limiting the number of stocks that can be selected in a tracking portfolio

and the computing time. The computing results of the MIP are given at the end of the

section.

In Chapter 4, the details of genetic algorithms are discussed. In section 4.1, we

briefly introduce GAs from three aspects: initial population, crossover and

reproduction, and mutation. In section 4.2, we present a basic algorithm called the

Inverse Triangle GA (IT-GA) and give enhancements to the basic algorithm by

removing the duplicates and adding the stopping criteria. The new algorithm is

named the Enhanced Inverse Triangle GA (EIT-GA). We use the EIT-GA to solve

6

the eight market indices and compare the computing results with those of MIP. In the

end of the section, we illustrate the disadvantage of the EIT-GA and justify why it is

necessary to develop another GA approach. In section 4.3, we first introduce the

foundation theory of GAs: Schema Theorem. Based on the theory, we present the

Roulette GA (R-GA). We run it with several different data sets and find reliable

relations amongst the cardinality, the population size, and the index size.

Consequently, we improve the R-GA and use the enhanced algorithm to solve the

eight market indices. Concluding the section, we compare the computational results

with those of EIT-GA and give conclusions on both of the solution approaches.

In Chapter 5, we present the Ant-colony Optimization solution approach. In section

5.1, we give an introduction to the ACO approach. Section 5.2 details the three steps

of the ACO algorithm: Construct Ants Solutions, Update Pheromones and Daemon

Actions. In section 5.3, we build an ACO algorithm to solve the index tracking

problem following the three steps. In addition, we present our mutation method and

stopping criteria. In section 5.4, we carry out investigations on two parameters,

colony size and evaporation rate. The findings are also shown at the end of the

section. In section 5.5, we enable the artificial ants to have more searching powers

and run the algorithm on the eight market indices. In section 5.6, we compare the

computational results with those of ER-GA and give conclusions on the approach.

In Chapter 6, we present the post analysis. In section 6.1, we investigate the stocks of

the tracking portfolios of the first five indices. We discover three things which we

refer to as, the close stock effect, the combination effect, and the inheritance effect.

Particularly, we use the inheritance effect to improve the ER-GA and the ACO. In

section 6.2, we present the out-of-sample performance of the first five indices from

time [51, 60] and the conclusion is also given at the end of the section.

7

Chapter 2

2 .Literature Review

2.1 History of Portfolio Theory

2.1.1 Mean-Variance Model

Modern Portfolio theory, fathered by Harry Markowitz, is a theory that aims to

maximize the portfolio expected return for a given amount of portfolio risk or

minimize risk for a given level of expected return, by choosing the proportions of

assets to hold in the portfolio. Markowitz introduced a mean-variance model, also

known as the Markowitz Model, in his pioneering article in 1952 (Markowitz, 1952)

and subsequent book published in 1959 (Markowitz, 1959). Based on the risk-return

characteristics of portfolios, his model attempts to select the most efficient portfolios

of the given securities. Before developing the model, Markowitz made several

assumptions concerning the investment market and investors’ behaviours. The key

assumptions can be summarized as follows:

1. Markets are perfectly efficient.

2. Investors seek to maximize their expected return.

3. All investors have the same expected single period investment horizon.

8

4. All investors are risk-adverse, that is they will only accept greater risk if they

are compensated with a higher expected return.

5. Investors base their investment decisions on the risk-return characteristic.

Other assumptions are listed below:

1. No taxes or transaction costs are involved

2. Investors can buy any security of any size

3. Investors can lend or borrow any amount of money at the risk free rate

4. The correlations between assets are always fixed and constant

5. The return on assets are normally distributed

The Markowitz model is defined as follows:

Consider a portfolio that consists of 𝑛 securities 1 … 𝑛. Each security is weighted on

a percentage basis by 𝜔1 … 𝜔𝑛where the sum of the weights equals one. Let 𝜇𝑖 be the

expected return of security 𝑖. Then the expected return of the portfolio is given by the

following equation:

μ𝑝 = ∑ 𝜔𝑖μ𝑖

𝑛

𝑖=1

If 𝜎𝑖 is the standard deviation of security 𝑖, then the risk of the portfolio can be

defined as below:

σ2 = ∑ ∑ 𝜔𝑖

𝑗𝑖

𝜔𝑗σ𝑖𝑗

Where 𝜎𝑖𝑗 is the covariance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ securities, given as:

σ𝑖𝑗 = σ𝑖σ𝑗ρ𝑖𝑗

Where 𝜌𝑖𝑗 is the correlation between the 𝑖𝑡ℎ and 𝑗𝑡ℎ securities, whose value is

between -1 and 1. The Mean-Variance Model assumes that investors prefer a

portfolio with higher return and lower risk. A portfolio that gives maximum return

for a given risk, or a minimum risk for a given return is an efficient portfolio.

9

Figure 2.1: The efficient frontier

In figure 2.1 above, the shaded area PQWP includes a subset of all the possible

portfolios that can be invested in. The curve PQW is called the Efficient Frontier.

The portfolios that fall on the curve are called Efficient Portfolios as all portfolios on

the curve have the maximum return for a given risk or the minimum risk for a given

return. The Efficient Frontier is the same for all investors, as it is assumed all

investors want maximum return with the lowest possible risk and they are risk

averse. The tangent line to the Efficient Frontier is called the Capital Market Line, as

shown below.

Figure 2.2: The capital market line

10

The line R1PX is the Capital Market Line (CML) that represents the trade-off of risk

and return in the capital market. It means that an investor will take higher risk if the

return of the portfolio is higher. The tangent point P represents the Market Portfolio,

which is known as the most efficient, and diversified portfolio. It consists of all

shares in the capital market. This is the ultimate aim for all investors. The capital

market consists of risky and risk-free securities and the CML is the optimal

combination of them. The Capital Market Line states that the return of a portfolio is

the risk-free rate plus a risk premium. The equation is shown below:

𝐸𝑅𝑝 = 𝑟𝑓 + (𝐸𝑅𝑚 – 𝑟𝑓) 𝜎𝑝/ 𝜎𝑚

𝐸𝑅𝑝 The expected return of the portfolio

𝐸𝑅𝑚 The expected return on the market portfolio

𝑟𝑓 The risk-free rate

𝜎𝑚 The standard deviation of the market portfolio

𝜎𝑝 The standard deviation of the portfolio

When the risk-free rate is introduced, investors can choose any portfolio on the CML

by lending or borrowing at the risk free rate. The portfolio that an investor will

choose depends on their preference to risk. In the above figure, the portfolios on the

section from R1 to P represent the Lending Portfolio. In this section, an investor will

lend at the risk-free rate. The portfolios on the section beyond P represent the

Borrowing Portfolio, where an investor can borrow money at the risk-free rate and

invest in the market portfolio P (Markowitz, 1991). The Mean-Variance model is a

very important model for portfolio optimization, yet it also has many disadvantages.

Primarily, it requires an investor to obtain many data, such as the variance of returns,

the covariance of returns, the correlation between two securities and estimates of

returns for all securities.

11

2.1.2 Capital Asset Pricing Model

Building on the work of Markowitz on modern portfolio theory, Sharpe (Sharpe,

1964), Treynor (Treynor, 1961), Lintner (Lintner, 1965) and Mossin (Mossin, 1966)

introduced the Capital Asset Pricing Model (CAPM) independently. The model aims

to predict the expected return of a risky asset. It describes the expected return of a

single risk-asset as consisting of two parts: the risk-free rate and a risk-premium. The

CAPM model assumes:

 Investors have the same expectations

 Investors can borrow or lend any amounts at the risk-free rate

 The market is in equilibrium at all times

The CAPM model for a given asset is given by:

𝐸𝑅𝑖 = 𝑟𝑓 + 𝛽𝑖(𝐸𝑅𝑚 − 𝑟𝑓)

𝐸𝑅𝑖 The expected return of the risky asset

𝑟𝑓 The risk-free rate

𝛽𝑖 Represents the systematic risk (non-diversified risk) of an

asset, which is represented by:

𝛽𝑖 = 𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑚)/𝑉𝑎𝑟(𝑟𝑚)

𝐸𝑅𝑚 The expected return of the market

𝐸𝑅𝑚 − 𝑟𝑓 The market risk premium

The CAPM is restricted both theoretically and practically. Theoretically, CAPM is a

single factor model, where except for systematic risk, no other investment

characteristics are considered for estimating returns. In addition, it is a single period

model that does not involve multi-period implications so that it can lead to

suboptimal investment decisions. For practical limitations, they often arise in

implementing the model. According to CAPM, the market portfolio includes all

assets, which means that it may involve some assets that are not available for

12

investment. Richard Roll noted that one reason the CAPM is not testable is that the

true market portfolio is unobservable (Roll, 1977). Other issues are the estimation of

beta risk and the assumption of homogeneity in investor expectations. For the first

one, it requires long historical returns in order to give the estimation. In addition, by

using a different period for estimation may result in different estimates of beta. For

the latter one, without the assumption there will be many optimal risky portfolios

and countless security market lines. Obviously, investors can process the same

information but arrive at different optimal risky portfolios. Another important issue

is that the empirical support for the CAPM is weak. It often gives poor predictions of

returns. Because of the limitations of the CAPM, several models have been proposed

to address some of the problems. Due to numerous numbers of the models, we only

introduce two typical ones in the following.

2.1.3 Factor Model

2.1.3.1 APT

The Arbitrage Pricing Model (APT) is based on the same principle as CAPM but it

expands the number of risk factors. It was proposed by Stephen Ross (Ross, 1976).

Similar to CAPM, APT proposes a linear relationship between expected return and

risk. The Model is shown below:

𝐸𝑅𝑝 = 𝑟𝑓 + 𝜆1𝛽𝑝,1 + ⋯ + 𝜆𝑘𝛽𝑝,𝑘

𝐸𝑅𝑝 The expected return of the portfolio

𝑟𝑓 The risk-free rate

𝜆𝑗 The risk premium for factor 𝑗

𝛽𝑝,𝑗 The sensitivity of the portfolio to factor 𝑗

𝑘 The number of risk factors

13

Although the APT model is superior to CAPM, however, in practice the CAPM is

preferred to APT. As the APT does not specify any of the risk factors and it is very

difficult to identify them and estimate their corresponding betas [also see (Rudd,

1980), (Haugen, R.A. and Baker, N.L., 1990), (Wilmott, 1998), (Larsen Jr., G.A. and

Resnick, B.G., 1998), (Alexander, 2001), and (Elton, E., 2007)].

2.1.3.2 Carhart Model

Based on the analysis of the relationship between past returns and a variety of

different factors, Fama and French (Fama, E. F., and French, K. R., 1992)addressed

three factors to explain asset returns. These three factors are relative book-to-market

value, relative size and beta of asset. Carhart (Carhart, 1997) added one more factor,

relative past stock returns, to the model. So the new model can be written as follows:

𝐸𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑈𝑀𝐷𝑈𝑀𝐷𝑡

𝐸𝑅𝑖 The return on an asset in excess of the one-month T-bill

return

𝑀𝐾𝑇 The excess return on market portfolio

𝑆𝑀𝐵 The difference in returns between small-capitalization stocks

and large-capitalization stocks

𝐻𝑀𝐿 The difference in returns between high-book-to-market stocks

and low-book-to-market stocks

𝑈𝑀𝐷 The difference in returns of the prior year’s winners and

losers

This factor model has been proved that it can give much better predictions on asset

returns than CAPM does. It is extensively used in estimating returns for U.S stocks

and has worked well for several years.

14

2.2 Index Tracking

2.2.1 Genetic Algorithm

Shapcott (Shapcott, 1992) solved the index tracking problem by using genetic

algorithms and quadratic programming techniques. He used the genetic algorithm to

generate the subsets of companies and quadratic programming to find the proportion

that should be invested in each member company. In his project, he used a random

assorting recombination (RAR) operator, which assigns weights according to the

importance of the assortment. Results were presented for tracking portfolios made up

of 20 assets from the FTSE100. He found that the use of RAR and RPL/Framework

led to a flexible genetic algorithm, which performed significantly better than random

search.

BMC (Beasley, J.E., Meade, N. and Chang. T.J., 2003) formulate a problem with

constraints on transaction costs and the number of stocks held in a tracking portfolio,

with the aim of tackling index tracking when transaction costs exist. Their approach

involved a population heuristic (PH) and reduction tests to diminish the search space.

They conducted experiments for five data sets (Hang Seng, DAX 100, FTSE 100,

S&P 100 and Nikkei 225) drawn from major world markets. In their experiments,

they cut the observation period into two parts: in-sample and out-of-sample. In the

first part, they used the genetic algorithm to construct a tracking portfolio, and then

they measured the tracking error associated with this tracking portfolio out-of-

sample. In their GA model, the fitness of individuals was evaluated with respect to

the objective function. Highly fit individuals were given opportunities to reproduce

by the crossover operator, with other highly fit individuals. The mutation occurs after

the crossover by altering the genes in the string. The algorithm repeats its cycle until

a satisfactory solution is found. The average computing time for all of the five data

sets was approximately 15.2 minutes. Moreover, they also considered the tracking

errors associated with systematic revision and set 7 decision points for each of the

data sets, where the tracking portfolio is revised. Computational results show that

their work is very solid in tackling the index tracking problem.

15

Orito, Yamamoto and Yamazaki (Orito, Y., Tamamoto, H. and Yamazaki, G., 2003)

adopt the coefficient of determination (CDP) as the measure of fitness between the

total return and increasing rates of the stock price index in the market. They aim to

find a simple method to select companies from the market. The selection method

consists of two steps. The first step uses a heuristic approach to select 𝑁 companies

from the market, and the second step uses genetic algorithm to choose stocks to form

the tracking portfolio. Before running the experiments, parameter investigations

were implemented in order to set the crossover rate and the mutation rate (𝑃𝑐, 𝑃𝑚).

They tested several combinations and concluded that the best pair was (0.9, 0.05).

Furthermore, the algorithm was set to stop after reaching the maximum generations

otherwise it goes back to crossover. Then they applied the algorithm on four data

sets. The largest data set contained 1356 stocks and the smallest data set contained

457 stocks. Results show that the largest problems solved took 170 hours and 240

hours on a Pentium III (500 MHz), when the maximum generations were set to 2000

and 3000 respectively. The results show that the method produces a near optimal

solution of selecting 𝑛 companies from all of the companies in the market.

Especially, the method works well when the increasing rate of stock price index over

a period can be viewed as a linear time series data.

Jeurissen and Van Den Berg (Jeurissen, R. and Van Den Berg, J., 2005) use a hybrid

genetic algorithm to approach the index tracking problem. In this case, the tracking

error was taken to be the measure of fitness, where tracking error was defined as the

variance of the difference between the returns of the tracking portfolio and the index.

Weights for each stock in the tracking portfolio were assigned according to a genetic

algorithm. Their GA approach used a Tournament Selection, where it runs a

tournament among a few individuals and selects the winner, a two point crossover

operator to ensure that the number of stocks in the tracking portfolios remain the

same, and a reverse mutation operator. They also found the best parameters for the

initial population, the number of generations, the crossover probability, and the

mutation rate, which are 20, 100, and (1, 0) / (0, 1) respectively. Their research find

that the performance of the tracking portfolio found is much better than that of

randomly selected portfolios and that of low capitalized portfolios which can be

derived from the AEX-index.

16

Lee, Kim and Min (Lee, J.Y., Kim, T.Y. and Min, S., 2005) construct a priority

function for each stock and by applying these functions in a simple heuristic, the

suitable stocks for the tracking portfolio are chosen. The priority function consists of

the weighted sum of trading volume, market capitalization and beta (volatility). Once

the stocks have been selected, the associated weights are then determined using a

genetic algorithm. In the process of GA, the crossover rate runs from 0.5 to 0.8 and

the mutation rate runs from 0.05 to 0.06, the best parameters are not presented. The

GA is automatically stopped when there is no improvement over the 1% at the last

5000 trials. Empirical tests were carried out using the Korean KOPSI 200 index. The

results strongly suggest that GA process has outstanding advantages over the

conventional portfolio mechanism.

Chang, Yang, and Chang (Tun-Jen Chang, Sang-Chin Yang, Kuang-Jung Chang,

2009) introduced a heuristic approach to portfolio optimization problems in different

risk measures, semi-variance, mean absolute deviation and variance with skewness

by employing genetic algorithm (GA) and compares its performance to a mean–

variance model in cardinality constrained efficient frontier. They set the initial

population size to 100, and parents are selected by binary tournament. In the

tournament, two pools of individuals are generated, each consisting of two

individuals randomly drawn from the population. The individuals with the best

fitness, one taken from each of the two tournament pools, are chosen to be parents.

Then they use a uniform crossover, where the mutual assets are inherited by the child

and non-mutual assets have an equal chance of being inherited by the child, to

produce new offspring. Mutation is also implemented after the crossover by

randomly changing assets of the individuals. The algorithm is stopped when the

number of iterations reaches 500. For each iteration, the heuristic evaluates exactly

1000𝑁 (𝑁 is the number of the stocks in an index) solutions. Empirical tests were

carried out using the daily historical data collected from the Hang Seng, FTSE and

S&P 100 with price data of 33, 93 and 99 assets respectively. They also assigned the

tracking portfolios with different cardinalities, initially set to 10 and incremented by

10 each time. Computational results are presented by drawing the efficient frontier of

each case. The results show that the investors should include only one third of total

assets into the portfolio which outperforms than those contained more assets.

17

Lin and Liu (Chang-Chun Lin, Yi-Ting Liu., 2008) presented three models based on

the Markowitz’ model to solve the portfolio selection problems by limiting the

transaction cost. They used genetic algorithms to obtain the solutions. Their GA

began by generating the initial population and evaluating their fitness with respect to

different fitness functions. Then they found the best and the worst individuals. The

best individual would be protected and the worst one would be replaced by fitter

offspring which is generated by crossover and mutation. An empirical study was

carried out using the Taiwanese mutual fund data from the year 1997 to 2000 and

monthly rates of return were used instead of weekly ones. They used four data sets,

which contained 129, 160, 197, and 204 numbers of funds respectively. In the

experiments, the crossover and mutation rate were set to 1 and 0.05, respectively.

The algorithms would be stopped after 5000 iterations. Computational results show

that the proposed method is valid for the portfolio optimization problem.

Soam, Leon, and Iba (Soam, Palafox, and Iba, 2012) applied the genetic algorithm to

the portfolio optimization problem, in which they introduced a new ‘greedy

coordinate ascent mutation operator’ to fine tune the weights of the assets in the

portfolios. In their GA work, they first randomly generate the initial population, and

then they applied a Deterministic Tournament Selection (DTS) to select the

individuals for breeding, as they found that the DTS worked well with small subsets

of the population. In the breeding process, they used a K-point crossover technique

which randomly chooses K-points in the strings of the parents, and then by

alternatively copying elements from the two parents to produce the offspring. The

mutation process proceeds instantly after the crossover, which contains two steps. In

the first step, they randomly altered the gene values, and in the second step, they

altered one particular gene while keeping all the other genes fixed. They used Dow

Jones Industrial Average and NASDAQ100, which includes 30 and 100 assets

respectively. For the parameters, the number of generations was set to 200 (stopping

criteria) and both of the mutation rate and the crossover rate were 0.2. The results

achieved by the simulations are very motivating, which show that the portfolio not

only performs better than the index and the simple GA, but it also solves the problem

of the availability of assets with insignificant weights.

Lin and Gen (Lin, C.M. and Gen, M., 2007) proposed the multistage decision-based

genetic algorithm for the multi-objective portfolio optimization problem. In their

18

approach, a random keys-based encoding method was used to generate the initial

population, a simple crossover operator was used for producing the offspring, and

the insertion mutation method was used to alter the value of the genes. They

employed a roulette wheel for the selection. For the parameters, they set the

population size to 100, the maximum generation to 1000 (stopping criteria), the

crossover probability to 0.7, and the mutation rate to 0.5. The empirical tests were

carried out by using 40 sample companies’ data from the Taiwan stock market,

which show the effectiveness of the proposed algorithm is validated for solving

portfolio optimization problem.

Pandari, Azar, and Shavazi (Pandari, A.R., Azar, A., and Shavazi, A.R., 2012)

employed the genetic algorithm to form the best portfolio in 50 supreme Tehran

Stock Exchange companies. The initial population size was 150 and the maximum

generation was set to 250 generations. In the reproduction process, all of the 50

individuals would produce 3 new offspring and only the fittest amongst the three was

transferred into the next generation. Furthermore, they set the mutation rate to 0.01,

and used the reverse crossover operator to produce offspring, but the crossover rate

was not given. The computing results of the GA were compared with those of a

Markowitz model. Their study shows that GA model works better than Markowitz’s

model for selecting stock portfolio. By using this model, one can take into account

different dimensions of the reality of the issue, and as a result, achieve more actual

responses

Lai, Yu, Wang, and Zhou (Lai, K. K., Yu, L., Wang, S. Y. and Zhou, C. X., 2006)

proposed a double-stage genetic optimization algorithm for portfolio selection. In the

initial stage, they employed a genetic algorithm to identify good assets in the market,

which is measured by the Return on Capital Employed (ROCE), Price-Earnings

(P/E), Earnings per Share (EPS), and Liquidity ratios. In the second stage, they used

a GA to decide the asset allocation which is based on Markowitz’s theory. In their

GA approach, the initial generation was created by encoding four input variables,

each of them representing the corresponding ratio performance. Additionally, a

simple crossover and roulette wheel was used for the reproduction process.

However, they did not specify the crossover rate. The mutation was executed by

simply altering the values of genes (0 or 1). The mutation rate was set to 0.005. The

data used in their study was obtained from the Shanghai Stock Exchange. Simulation

19

was completed with 100 randomly selected stocks. Experimental results reveal that

the proposed double-stage genetic optimization algorithm for portfolio selection

provides a very feasible and useful tool to assist the investors in planning their

investment strategy and constructing their portfolio

2.2.2 Other Approaches

Chen and Kwon (Chen, C. and Kwon, H. R., 2012) developed a robust portfolio

selection model for index tracking. They used the binary integer program to

maximize the similarity between the selected assets and the target index. In their

model, they considered the transaction costs and used a computationally tractable

robust framework to protect against the worst-case realizations of potential

estimation errors and other deviations. They used the S&P 100 for the out-of-sample

test to demonstrate the advantage of the robust model. Computational results of the

robust solutions with the cardinalities of 5, 10, 15, 20, 25, and 30 were shown in the

end. They concluded that the robust model performed better in terms of beta

coefficient, market ratio, and tracking error.

Canakgoz and Beasley (Canakgoz, N. and Beasley, J., 2009) considered index

tracking by purchasing a subset of stocks of the index. They proposed mixed-integer

programming formulation for the index tracking problem, which includes the

transaction costs, cardinality constraints, and the limitations of the total transaction

cost. Based on the regression based view of index tracking, they adopted a two-stage

approach, where the first objective is to achieve the intercept of zero and the

secondary objective is to achieve the slope of one, because they believed that the

ideal tracking portfolio would have an alpha (intercept) of zero and a beta (slope) of

one. They used a standard solver (Cplex) to solve eight data sets drawn from major

markets and the largest data set contains 2151 stocks. Problems of this size are much

larger than have been considered previously by other authors in the literature.

Computational times are in all cases reasonable.

Wang et al. (Wang, 2012) considered a mixed-integer programming for Index

Tracking, in which a CVaR risk constraint was added to the model to control the

downside risk of the tracking portfolios. They believed that when the index falls, the

20

tracking portfolio of the index would incur a large downside risk that could incur

large losses for the investor, so it is necessary to select a proper risk measure to

control the downside risk, and CVaR is a good choice. They used the Hang Seng and

FTSE 100 for the numerical tests to show that adding the CVaR constraint has no

impact on the tracking portfolio when the market is bullish, while it can limit the

downside risk of the tracking portfolio when the market is bearish.

Yao, Zhang and Zhou (Yao, D.D, Zhang, S, and Zhou, X.Y., 2006) considered index

tracking by dynamically managing a portfolio consisting of a small number of traded

stocks in the market. The problem was formulated as a stochastic linear quadratic

control problem and the optimal feedback control was generated by semi-definite

programming. A numerical test was carried out by tracking the Hang Seng Index

using four large-cap stocks: HSBC Holdings (0005), Hutchison Whampoa (0013),

Sun Hung Kai (0016), and China Telecom (0941). Empirical studies show that the

SLQ-via-SDP approach is sound and efficient. Also, the examples demonstrate that

the tracking performance is independent from the performance of the market and the

selection of the stocks.

Okay and Akman (Okay, N. and Akman, U., 2003) proposed a solution approach

that used a constraint aggregation (CA) technique to achieve a single constraint to

solve the index tracking problem. In their research, they considered the index

tracking by using the formulation given by Beasley and colleagues (Beasley, J.E.,

Meade, N. and Chang. T.J., 2003) and used the CA to transform it to a new

formulation with only one inequality constraint. Numerical experiments were

implemented using the Hang Seng Index and computational results were compared

with those of Beasley. Okay and Akman concluded that the CA technique produced

the same solution as that of Beasley in terms of CPU time, total number of branch-

and-bound nodes searched, and total number of NLP calls. This paper applies, for the

first time, the CA technique to the IT problem, which gives the same solution with

appreciably favorable computational results in terms of CPU time, total number of

branch-and-bound nodes searched, and total number of NLP calls.

Focardi and Fabozzi (Focardi, S.M. and Fabozzi, F.J., 2004) argued that the

clustering methodology is a good candidate for the Index Tracking, which can

discover the correlation and integration structure of an index by suitably defining the

21

distances between the time series of assets prices. They believe a suitable distance

function that can distinguish time series significantly close to each other or where

they depart from each other is the key to the clustering process. Once the distance is

clearly defined, the clustering performs hierarchically. It starts with clustering the

stocks with the smallest distance, and then clusters the pair of stocks with the

smallest distance, and then clusters groups of stocks with the smallest distance etc.

The process continues until a single cluster is formed. A numerical test was

implemented using the S&P 500 index. The advantage of this approach is that it

reduces the difficulties and computational burden of density forecasts and full

optimization.

Cowell, El-Hassan, and Kwon (David Colwell, Nadima El-Hassan, and Oh Kang

Kwon, 2007) considered the Index Tracking problem as a dynamic hedging problem

under the incomplete markets framework. They applied and extended a local risk-

minimization approach for contingent claims, whose results were used to build close

connections between local risk minimization and Tracking Error Volatility (TEV)

minimization and reveal their equivalent conditions. By exploiting the connections,

they obtained criteria for the selection of optimal tracking portfolios and used a

value-at-risk (VaR) type measure to evaluate any given tracking portfolio. The

computing results show that it is possible to hedge an entire process by local risk

minimization under incomplete markets framework.

Corielli and Marcellino (Francesco Corielli and Massimiliano Marcellino, 2006)

proposed a factor based index tracking approach. In their research, they presented a

dynamic factor model, where the price of each stock is driven by a set of common

and idiosyncratic factors. The solution approach was split into two steps. In the first

step, a tracking portfolio was constructed by the same persistent factors as the index.

In the second step, the tracking portfolio was refined to minimize the loss function.

A numerical test was implemented using the EuroStoxx50 index. In addition, the

Monte Carlo simulations were also proved to support the research. Simulation and

computational results were shown by comparing them with the results of the

Ordinary Least Square (OLS) based index replications. The results are quite

encouraging, and emphasize the importance of a statistical approach to index

tracking.

22

Work, other than that discussed above, dealing with index tracking can be found in

(Fang, Y. and Wang, S.Y., 2005), (Coleman, T.F., Henninger, J., and Li, Y., 2006),

(Yu, L., Zhang, S., and Zhou, X.Y., 2006), (Maringer, 2008), (Ruiz-Torrubiano, R.,

& Suarez, A., 2009), (Guastaroba, G., & Speranza, M. G., 2012).

2.3 Summary

In this Chapter, we present the historical overview of the portfolio optimization

theory and discussed some of the studies related to Index Tracking. We reviewed

several different solution approaches for the Index Tracking problem such as:

Quadratic Programming, Nonlinear Programming, Mixed Integer Programming, and

Genetic Algorithms. It should be noted that the majority of previous works only

considered one problem or a very limited number of problems for the empirical

experiments. Additionally, the problems were extracted from various markets at

different times, and each of them was only solved by one particular solution

approach, consequently making it impossible for comparisons. Particularly, we

reviewed the previous work of GAs and noticed the following issues:

 The problems concerned are independent from each other, and each

problem was usually solved using only one particular approach. Therefore,

there is no benchmark to measure the performance of the solution

approaches.

 Most of the work only considered a single problem or multiple problems of

similar size. In addition, the size of the problems is generally small and the

cardinality was fixed.

 The parameters setting investigations only involved crossover probability

and mutation rate. There is hardly any research done on the stopping

criteria and the initial population size. Moreover, they usually set different

problems with the same number of maximum generations (stopping

criteria) and population size.

23

In our research, we would like to address the above issues. We decide to set a

benchmark first, and then use the benchmark to measure the performance of the

heuristic solution approaches. For the empirical experiments, we consider eight

different market indices. The smallest data set includes 31 stocks and the largest data

set includes 2151 stocks. We believe that the performance of a solution approach can

only be guaranteed after testing it with a variety of problems. Also of interest is to

implement investigations on the initial population size and to set stopping criteria

based on convergence rather than the number of maximum generations. We believe

the initial population size and the stopping criteria play decisive roles in finding

reasonably good solutions in reasonable time. In addition, we notice that few

researchers have used the ACO algorithm to solve the Index Tracking problem and

we believe it is a good candidate.

24

Chapter 3

3 .Mixed Integer Programming

3.1 Introduction

A Mixed Integer Programming (MIP) is an optimization problem in which some of

the variables are restricted to be integers, while others are allowed to be non-

integers. The term often refers to Mixed Integer Linear Programming (MILP), where

the objective function and the constraints are linear. A mixed integer leaner program

in canonical form can be expressed as (Papadimitriou and Steiglitz, 1998):

𝑀𝑎𝑥𝑚𝑖𝑧𝑒 𝑐𝑇𝑥

𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏

𝑥1, 𝑥2 ∈ 𝑥

𝑥1, 𝑥2 ≥ 0, 𝑥2 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Where 𝑐 and 𝑏 are vectors, and 𝐴 is a matrix. The above formulation can also be

transferred to standard form by introducing a variable 𝑠 to eliminate the inequalities.

In this Chapter, we use the MIP and a standard branch and bound optimization to

formulate and solve the Index Tracking problem.

25

3.2 Research Comparisons

Mixed integer programming can serve as a foundation approach for the Index

Tracking problem. BMC (Beasley, J.E., Meade, N. and Chang. T.J., 2003) used the

Mixed Integer Programming as a basic approach for their evolutionary heuristic to

solve the Index Tracking problem. In their research, they use a historical look-back

approach which assumes the past as a guide to the future. They observe the price of

N stocks over a certain period of time [0, T] and decide to select the best set of K

stocks (K < N) to track the performance of the index over the given time period. By

finding the optimal portfolio during the time period [0, T] they deduce what should

be held into the future [T, T + L]. Our MIP approach is similar to BMC’s. In the

following section, we proceed to outline the major differences between the two

studies.

 Transaction cost

In BMC’s paper, they consider the revision of an existing portfolio and the

transaction costs which are incurred through buying and selling of stocks. They

further set the limit on the total transaction costs that can be incurred. In our

approach we do not consider transaction costs as we assume there is no cash inflow

or outflow associated with buying and selling. However it does not downgrade the

practicability and technicality of our solution approaches as the transaction cost is

not an important factor in our research work, and also we could easily reconsider it

by simply adding the transaction costs into our constraints.

 Objective

There are a range of objectives that can be defined for the Index Tracking problem.

BMC are interested in two factors, which are tracking error and excess return. They

state an objective that plays a trade-off between them. He defines the tacking error as

the following:

T

St
tt

E Rr






















 


/1

26

Where

𝑟𝑡 The single period continuous time return given by the new

tracking portfolio at time t

𝑅𝑡 The single period continuous time return given by the index

𝑇 The ending time point of a historical observation time

𝑆 𝑆 = [𝑡|𝑡 = 1, 2… T]

𝛼 The penalisation parameter

They uses α to penalise the difference between 𝑟𝑡 and 𝑅𝑡 , and 𝑆 is the suitable

observation period. By comparison, our tacking error is defined as the sum of the

under-performance (𝑈𝑡) and the over-performance (𝑂𝑡) during the whole

observation period.

 In-sample and Out-of-sample

In BMC’s paper, they state that a value for α determined in-sample does not

automatically guarantee a good performance by the same value of α for out-of-

sample. Thus he assigns weightings for each observation period with the most recent

time receiving the highest weighting. In contrast, our research is more centred

towards the solution approach and so the stability of the model is of less importance

to us. The MIP only serves as a foundation for our research and based on this we will

build more enhanced solution approaches to shorten the computing time while

maintaining solution quality. Note that, we do not completely neglect the stability of

the model as we implement the out-of-sample performance simulations in the post

analysis.

 Observation Period

Initially, we use the entire observation period of 290 time periods. However, we

quickly found out that if we set the observation period to 50 time units it can still

27

produce good out-of-sample results. Moreover, when we shorten the observation

period we can save a lot of computing time. Finally, as our research is mainly

focused on the solution approach it is acceptable to shorten the observation periods

as they are not a determining factor in the experiment but should still be reasonably

controlled. The computational results given in this thesis all use 50 time periods

unless otherwise stated.

 Cardinality

In BMC’s paper, they only limit the number of stocks (cardinality) that can be

selected from each index, but they did not vary the cardinality for each index. In our

research, we run the programme with different scenarios of cardinalities for each

index and try to find out its impact on the tracking error. Table 3-1 shows the data

sets of BMC’s paper and Table 3-2 shows those of ours.

Table 3-1: BMC’s MIP data sets

Index Number of stocks Cardinality

Hang Seng 31 10

DAX 85 10

FTSE 100 89 10

S&P 100 98 10

Nikkei 225 225 10

S&P 500 457 40

Russell 2000 1318 90

Russell 3000 2151 70

Table 3-2: MIP data sets of our research

Index Number of stocks Cardinality

Hang Seng 31

10 15

DAX 100 85

10 15 20

FTSE 100 89

10 15 20

S&P 100 98

10 15 20

Nikkei 225 225

10 15 20 25

S&P 500 457

10 15 20 25 30

Russell 2000 1318

30 40 50 60 70

Russell 3000 2151

30 40 50 60 70 80

28

3.3 Formulation

For convenience of comparison, we adopt the notation of BMC’s (Beasley, J.E.,

Meade, N. and Chang. T.J., 2003). Our interest is to find the best K (𝐾 < 𝑁) stocks

to construct an optimal portfolio and to determine their corresponding weights. The

following is the outline of the formulation.

Index

𝑖 = 1 … 𝑛 denotes the number of stocks in an index

t = 1 … T is the historical time period

Data

𝐾 The cardinality represents the maximum number of stocks

allowed in a portfolio.

𝛴𝑖 The maximum proportion of the tracking portfolio that can be

held in stock 𝑖 (𝑖 = 1 … . 𝑛).

𝛦𝑖 The minimum proportion of the tracking portfolio that can be

held in stock 𝑖 (𝑖 = 1 … . 𝑛)

𝐼𝑡 The index value at time t

𝑉𝑖𝑡 The value of one unit of stock 𝑠 (𝑖 = 1 … 𝑛) at time t

𝑅𝑡 The single period continuous time return of the index, i.e.

𝑅𝑡 = 𝑙𝑜𝑔𝑒[
𝐼𝑡

𝐼𝑡−1
]

𝑁𝑖𝑡 The single period continuous time return of the stock 𝑖

(𝑖 = 1 … 𝑛), at time t. 𝑁𝑖𝑡 = 𝑙𝑜𝑔𝑒[
𝑉𝑖𝑡

𝑉𝑖𝑡−1
]

29

Decision Variables

𝜔𝑖 The proportion of the tracking portfolio that can be held in

stock 𝑖 (𝜔𝑖 ≥ 0)

𝑍𝑖 1 if any stock 𝑖 (𝑖 = 1 … 𝑛) is held in the tracking portfolio, 0

otherwise

𝑈𝑡 The under-performance of the tracking portfolio at time t.

(𝑈𝑡 ≥ 0)

𝑂𝑡 The over-performance of the tracking portfolio at time t.

(𝑂𝑡 ≥ 0)

Model

Minimize Tracking-Error ∑(𝑈𝑡 + 𝑂𝑡)

𝑡

Constraints

∑ 𝑍𝑖𝑖 = 𝐾

(3.1)

∑ 𝜔𝑖𝑖 = 1

(3.2)

𝛦𝑖 ∗ 𝑍𝑖 ≤ 𝜔𝑖 ∀ i

(3.3)

𝛴𝑖 ∗ 𝑍𝑖 ≥ 𝜔𝑖 ∀ i

(3.4)

𝑅𝑡 = ∑ 𝑁𝑖𝑡

𝑖

 ∗ 𝜔𝑖 + 𝑂𝑡 − 𝑈𝑡 ∀ t (3.5)

From the above formulation, the cardinality K indicates that our tracking portfolio

contains exactly 𝐾 different stocks. The minimum threshold proportion of a single

stock is 𝐸𝑖 and 𝛴𝑖 is the maximum. The objective is to minimize the tracking-error. In

this case, it is the under-performance plus the over-performance of the tracking

portfolio during the whole observation period that constitutes the tracking-error. The

first constraint ensures that there are exactly 𝐾 stocks in the new tracking portfolio.

30

The second constraint ensures that we fully invest in the portfolio. The third and

fourth constraints state that if a stock 𝑖 is not in the new tracking portfolio then both

𝑍𝑖 and 𝜔𝑖 are zero, while if stock 𝑖 is in the new tracking portfolio then 𝜔𝑖 is limited

by the proportion thresholds.

3.4 Computational Results

To test the above formulation we use eight market indices, which are the Hang Seng

(Hong Kong), the DAX 100 (Germany), the FTSE 100 (UK), the S&P 100 (USA),

the Nikkei 225 (Japan), the S&P 500 (USA), the Russell 2000 (USA) and the Russell

3000 (USA). Stock price data was originally obtained from DATASTREAM, stocks

with missing values were dropped and for each index we had 290 time units

(weekly) stocks returns. We get the data from John Beasley’s OR library which is

publicly accessible. For each index we have 50 observation periods. The

computational results presented in this paper are coded in AMPL-64 bit and solved

by Cplex on a desktop that has the following system:

 Processor: Intel ® Core ™ i5-2500 CPU @3.30GHz 3.30 GHz

 Installed memory (RAM): 16.0 GB

 System type: 64-bit Operating System.

Due to the size of the problems, optimal solutions cannot be produced within a

reasonable computational time for all indices except the Hang Seng. For example, it

takes almost 10 days to produce the optimal solution for the DAX-100, with such

long computing time making the index-tracking meaningless. Considering the above

issues, we decided to limit the computing time to 2 hours. Table 3-3 shows the

computing results and we set these results as the bench mark to measure the results

produced by our other solution approaches. K, TE, and CT represent cardinality,

tracking error, and computing time respectively. Except the Hang Seng index, MIP is

not able to find optimal solutions of the other indices in a reasonable time. Thus, we

develop two heuristic methods to solve the Index Tracking problem, which are

31

Genetic Algorithms and Ant Colony Optimization. The core aim of developing these

two heuristics is to find reasonably good solutions in a reasonable time.

Table 3-3: Computational results of MIP

Index K TE CT

Hang Seng 10 0.101010742 2.44

15 0.056886088 0.583

 DAX 100 10 0.067296843 7209.49

15 0.037275415 7221.324

20 0.019241806 7203.913

 FTSE 100 10 0.120696147 7312.577

15 0.055322442 7298.064

20 0.033403056 7339.73

 S&P 100 10 0.106237693 7203.85

15 0.047551997 7225.657

20 0.030086608 7207.366

 Nikkei 225 10 0.087352372 7403.56

15 0.048647172 7389.435

20 0.026986383 7503.684

25 0.014928127 7447.022

 S&P 500 10 0.088660628 7260.256

15 0.056483628 7268.022

20 0.027066374 7342.924

25 0.015999239 7341.46

30 0.006709845 7337.536

 Russell 2000 30 0.016186968 7250.086

40 0.005202331 7257.58

50 0.000185917 7274.063

60 0 240.11

70 0 145.868

 Russell 3000 30 0.016114459 7204.806

40 0.004705511 7200.741

50 0.000508717 7205.823

60 0 1555.994

70 0 143.835

80 0 531.07

32

Chapter 4

4 .Genetic Algorithms

4.1 Introduction

John Holland (Holland, 1975) first invented Genetic algorithms (GAs) in the 1960s.

It was further developed by him, his students, and colleagues at the University of

Michigan in the 1960s and 1970s. GA is a search heuristic that is derived from the

process of natural evolution and is routinely used to generate useful solutions to

optimization and searching problems. Many computational problems need to search

for a desired solution from a large number of possibilities (candidate solutions) that

is usually called searching in a ‘search space’ in computer science. In biology, the set

of possible genetic sequences is the various set of possibilities and highly fit

organisms can be seen as the desired solutions. Evolution is a method of searching

solutions from various numbers of possibilities, and it is indeed a very efficient tool

to address such searching problems, as it allows the searching to be carried out

simultaneously in an efficient way. The evolution usually starts from the initial

generation which is a population of randomly generated individuals. In each

generation, the fitness of the individuals is evaluated. Multiple individuals are

selected from the current generation and modified (recombined or mutated) to form a

new generation. The new generation is then used in the next iteration of the

algorithm. Normally, the algorithm terminates when either a maximum number of

33

generations is reached or the fittest individual is found. Typically, genetic algorithms

contain at least the following fundamental elements: population of chromosomes,

selection according to fitness, crossover to produce new offspring, and random

mutation of new offspring (Mitchell, 1998).

4.2 Application for Index Tracking

Till date, Genetic Algorithm has been applied to a wide range of optimization

problems. It has become a very popular optimization method because it is

significantly advantageous when used to find the best solution by global search in

contrast to most common optimization algorithms. To solve Index Tracking

problems, researchers often use binary to encode stocks information in tracking

portfolios. For example, to select 10 stocks from the Hang Seng index consisting of

31 stocks, each portfolio string (chromosome) can be represented by a binary string

including 31 bits, and 10 of which are equal to 1. However, this encoding method is

only feasible when dealing with small size indices, when it deals with large size

indices, the information processed by the GAs would be too overwhelming. In our

research, we deem each stock as a gene, each tracking portfolio as an individual, and

the fitness value of each tracking portfolio is the reciprocal of its tracking error. This

section presents the details of our GA work.

 Initial Population

In our research, the creation of the initial population is carried out in a random

manner, whereby we randomly select 𝐾 different stocks from the index and combine

them to form a tracking portfolio. By repeating the above selection 𝑁 times, we are

able to create the initial generation. The number of times that we use the selection

operator is vital in searching for the optimal solution, because it determines the size

of the initial population. In our research, one of our main goals is to find for a

desirable initial population size for each index so that we can balance the computing

time and the solution quality.

34

 Crossover and Reproduction

The crossover operator is often used to produce new offspring. Typically, it

randomly chooses a locus and exchanges the subsequence of chromosomes before or

after that locus to create two offspring. Figure 4.1 shows an example.

Figure 4.1: Crossover

However, in a simple crossover, the crossover position could be located at any

position on the parent portfolio strings. Hence, it is very likely to produce deformed

offspring. Figure 4.2 shows an example.

Figure 4.2: Deformed offspring

In the above figure, the crossover position is located at the fourth position on both of

the parent portfolios. After exchanging their genetic pieces, they produce one

deformed offspring that contains two duplicating stocks. To meet the cardinality

constraint (3.1), we have to replace the duplicates with other stocks to ensure the

offspring contains exactly K stocks.

Regarding the above issue, we use a semi-optimization approach to produce new

offspring. In our approach, parent portfolios only produce one offspring and this

offspring automatically inherits the mutual bits of chromosomes from the parents.

The selection of the rest of the chromosomes relies on the optimization. Figure 4.3

35

shows an example of the semi-optimization approach. Parent 1 and Parent 2 have

mutual stocks of 1, 2, and 3, so their offspring directly inherit these mutual stocks.

For the other four stocks, they will be chosen by the solver from the non-mutual

stocks (4, 5, 6, 7, 8, 9, 10, 11), and together with the mutual stocks they will form an

offspring. The semi-optimization approach not only avoids the deformation issue but

also ensures that the offspring is at least as fit as the fitter one of the parents. In

contrast, the crossover operator cannot guarantee superiority of the offspring.

Figure 4.3: Semi-optimization approach

After producing the offspring, we can use them to either replace the whole preceding

generation or replace only the unfit individuals in the previous generation. The

former approach is called the generational approach and the latter one is called the

steady-state-approach.

 Mutation.

Before introducing mutation, it is necessary to mention an important concept known

as ‘fitness landscape’, which was originally defined by the biologist Sewell Wright

(Wright, 1984). It represents the space of all possible genotypes (Genotypes refers to

the particular set of genes in a genome) along with their fitness. Wright assumes that

each genotype is a part of the string of chromosomes and can be assigned with a

value of fitness. If the length of the genotype is l, then the fitness landscape can be

seen as a ′𝑙 + 1′dimensional plot and each genotype is a point in l dimension and its

fitness is plotted along the ‘𝑙 + 1’ axis. For simplicity, suppose each tracking

portfolio only contains two stocks, then we have a plot with 𝑙 = 2 dimension

landscape. The fitness values of possible portfolio combinations form ‘hills’ and

‘valleys’ on the landscape. As it shown in figure 4.4, each point on the 𝑥 − 𝑦 surface

represents a possible portfolio combination, the 𝑍 axis represents the fitness axis,

36

and the fitness landscape formed is in grey. (Notably, as duplicate stocks are not

allowed in a tracking portfolio, combinations such as (6, 6), (7, 7) and (8, 8) are not

assigned with any fitness values. Also, combinations such as (6, 7) and (7, 6) have

the same fitness value as the sequence of stocks has zero influence on tracking

portfolios.)

Figure 4.4: Fitness landscape

The evolution drives the populations to move along the landscape in a certain way.

During the evolutionary process, the movement of populations is very likely to be

directed toward local ‘hills’ (local optimum). This is commonly caused by the loss of

useful chromosomes. In order to maintain genetic diversity in the populations, it is

necessary to introduce mutation. By mutation, it is similar to a random walk on the

fitness landscape to enable the evolution of a certain probability to jump out of the

local optimum. Conventionally, mutation is operated by flipping some of the bits in a

chromosome. Figure 4.5 shows an example.

Figure 4.5: Traditional mutation

37

The string 1234567 in chromosome 1 has mutated from its initial position to yield

8234567, chromosome 2. This kind of mutation can occur at any position in a

chromosome with a certain probability, usually very small. The flipping mutation

certainly can bring back the eliminated chromosome bits and preserve diversity in a

generation. However, it has more negative influence than positive influence on the

fitness value of an individual, because it often breaks the bonds of stocks in

portfolios that make the mutants less fit than the originals. In order to keep the

mutant as fit as its original, we develop a new way of mutation. In our approach,

with probability 𝑃𝑚 we impose mutation on individuals by providing extra bits of

chromosome (usually the number of extra bits is set to 5). In the index tracking

problem, the extra bits are selected from a specific set which is defined as the

follows:

𝑃𝑗 Represents portfolio 𝑗

A Represents all the assets in an index

B Represents the special set from which we select extra different

genes for each portfolio

𝐵 = 𝑃𝑗̅ ∩ 𝐴

Once the extra bits are provided to each individual, we let the solver sort out the new

optimal combination that can be defined as Pĵ.

In the following sections, we present two GA approaches to solve the Index Tracking

problem, which are named the Inverse Triangle GA and the Roulette GA. The

computing results for the two approaches are also presented. At the end of the

section, we compare the two approaches and summarize a conclusion on the

findings.

38

4.3 The Inverse Triangle Genetic Algorithm

4.3.1 Introduction

The name Inverse Triangle genetic algorithm (IT-GA) is derived from its

evolutionary pattern, which looks like an inverse triangle. In the IT-GA, we

randomly generate a number of individuals and evaluate the fitness of each

individual, sort the initial generation from the fittest to the least fit, and then select

the top 30% (this number is user-specified) to form the first generation, see figure

4.6.

Figure 4.6: Inverse triangle evolution

In the above figure, each black dot represents a portfolio. We assume that the first

generation is composed by portfolios 1, 2, 3, 4, and 5. The reproduction process in

the first generation consists of 4 mating pairs: ‘12’, ‘23’, ‘34’, and ‘45’. Therefore,

the parent portfolios together will produce 4 offspring, 6, 7, 8, and 9. Subsequently,

the four offspring change roles to serve as the parents and repeat the previous mating

process. Following this fashion, the evolution goes on for several generations until

there is only one individual left which is potentially the fittest individual achievable.

The IT-GA is different from any previous GAs from two aspects:

1. It continuously narrows down the searching space until there is only one

individual left.

2. It allows us to approximately calculate the computational time even before

the evolution starts.

39

4.3.2 Formulation

The following is the pseudo code of the IT-GA. It is transformed from the

formulation of the MIP with several changes, see the details below.

Index

𝐹𝑜𝑟 𝐽 = 1. . . 𝑗 − 1

𝑃𝑗 Represents Portfolio 𝑗

𝐴 𝑃𝑗 ∪ 𝑃𝑗+1

𝐼 𝑃𝑗 ∩ 𝑃𝑗+1

𝐷 𝐴 ∩ 𝐼

Model

Minimize Tracking Error ∑(𝑈𝑡 + 𝑂𝑡)

𝑡

Subject

∑ 𝑍𝑑

𝑑∈𝐷

 + |𝐼| = 𝐾

(4.1)

∑ 𝜔𝑎

𝑎∈𝐴

= 1

(4.2)

𝛦𝑖 ≤ 𝜔𝑖 ≤ 𝛴𝑖 ∀ 𝑖 ∈ 𝐼

(4.3)

𝛦𝑑 ∗ 𝑍𝑑 ≤ 𝜔𝑑 ∀ 𝑑 ∈ 𝐷

(4.4)

𝛴𝑑 ∗ 𝑍𝑑 ≥ 𝜔𝑑 ∀ 𝑑 ∈ 𝐷

(4.5)

𝑅𝑡 = ∑ 𝑁𝑎𝑡

𝑎∈𝐴

 ∗ 𝜔𝑎 + 𝑂𝑡 − 𝑈𝑡 ∀ 𝑡
(4.6)

40

𝑃𝑗 𝑎𝑛𝑑 𝑃𝑗+1 represent two neighboring portfolios that serve as parent portfolios. ‘A’

represents the set of 𝑃𝑗 𝑢𝑛𝑖𝑜𝑛 𝑃𝑗+1. ‘I’ represents the mutual stocks of the parent

portfolios and 𝐷 represents the non-mutual stocks. Equation (4.1) means that a new

offspring is composed by the mutual stocks inherited from the parents, and a selected

number of the non-mutual stocks.

4.3.3 Simulation

We illustrate the mechanism of the Inverse Triangle GA by simulation. In the

simulation, we generate 20 portfolios (each portfolio contains 4 different stocks) and

select the top 10 fit ones to form the first generation. Subsequently, the semi-

optimization operator is used to produce the offspring. The following shows the

basic steps of the IT-GA:

 Generate an initial population

 Evaluate the fitness of individuals in the initial generation

 Sort them from the fittest to the least fit

 Select the top 30% (user-specified) to form the first generation

 Repeat

­ Mate the neighbouring individuals to produce offspring

­ Sort the offspring from the fittest to the least fit

­ With probability 𝑃𝑚 ≤ 0.02 implement mutation

 Until

­ We find the fittest offspring

The data set used to implement the simulation is from the Hang Seng index. For

simplicity, we decrease the number of stocks of the index to 10 and set the

cardinality to 4. We only present the simulation to the fourth generation, as the rest

41

of the generations can be easily deduced. Note here that, the relation between the

tracking error and the fitness value is given by:

𝑓𝑖 = 1/𝑓(𝑥)

The fitness value is the reciprocal of the tracking error, which means that the smaller

the tracking error the fitter the individual. Table 4-1 shows the simulation results.

Table 4-1: IT-GA simulation

Initial
population

(Portfolio No.)

Stocks in Portfolio
Tracking error

𝑓(𝑥)
Fitness value

𝑓𝑖

1 4 9 7 8 0.564493 1.771501152

2 2 7 9 3 0.566167 1.766263311

3 3 1 9 4 0.567521 1.762049334

4 2 4 1 7 0.570928 1.751534344

5 5 6 8 7 0.571562 1.74959147

6 5 9 7 2 0.574703 1.740029198

7 1 2 5 4 0.579622 1.725262326

8 10 6 9 7 0.588624 1.698877382

9 7 1 4 3 0.595866 1.678229669

10 5 2 6 10 0.603175 1.657893646

11 5 4 1 3 0.607775 1.645345728

12 1 9 8 5 0.612161 1.633557185

13 2 5 8 6 0.615245 1.625368756

14 5 10 2 4 0.616589 1.621825884

15 8 1 2 9 0.622338 1.606843869

16 5 1 6 2 0.622885 1.605432785

17 5 1 7 4 0.625538 1.598623905

18 2 10 9 1 0.629814 1.587770358

19 8 1 4 2 0.635992 1.572346822

20 2 4 10 1 0.638456 1.566278647

42

First Generation
(Portfolio No.)

Stocks in Portfolio Tracking error 𝑓(𝑥) Fitness value 𝑓𝑖
offspring (stocks in

Portfolio)
Tracking error 𝑓(𝑥) Fitness value 𝑓𝑖

1 4 9 7 8 0.564493 1.771501 9 7 4 2 0.53126 1.882318

2 2 7 9 3 0.566167 1.766263 9 3 2 4 0.515001 1.941744

3 3 1 9 4 0.567521 1.762049 1 4 9 2 0.51498 1.941823

4 2 4 1 7 0.570928 1.751534 7 2 4 6 0.478501 2.08986

5 5 6 8 7 0.571562 1.749591 5 7 6 9 0.569804 1.754989

6 5 9 7 2 0.574703 1.740029 5 2 9 4 0.435712 2.295094

7 1 2 5 4 0.579622 1.725262 5 4 6 9 0.416266 2.40231

8 10 6 9 7 0.588624 1.698877 7 6 4 3 0.430683 2.321893

9 7 1 4 3 0.595866 1.67823 1 3 2 6 0.410773 2.434435

10 5 2 6 10 0.603175 1.657894

Ave 2.118274

Ave 1.730123

Max 2.434435

Max 1.771501

Second Generation
(Portfolio No.)

Stocks in Portfolio Tracking error 𝑓(𝑥) Fitness value 𝑓𝑖
offspring (stocks in

Portfolio)
Tracking error f(x) Fitness value fi

11 1 3 2 6 0.410773 2.434435 1 3 2 6 0.410773 2.434435
12 5 4 6 9 0.416266 2.40231 5 4 6 9 0.416266 2.40231
13 7 6 4 3 0.430683 2.321893 5 4 6 9 0.416266 2.40231
14 5 2 9 4 0.435712 2.295094 2 4 9 6 0.431132 2.319475
15 7 2 4 6 0.478501 2.08986 2 4 9 6 0.431132 2.319475
16 1 4 9 2 0.51498 1.941823 1 4 9 2 0.51498 1.941823
17 9 3 2 4 0.515001 1.941744 9 3 2 4 0.515001 1.941744
18 9 7 4 2 0.53126 1.882318 9 7 4 6 0.465436 2.148523

19 5 7 6 9 0.569804 1.754989

Ave 2.238762

Ave 2.118274

Max 2.434435

Max 2.434435

43

Third Generation
(Portfolio No.)

Stocks in Portfolio
Tracking error

𝑓(𝑥)
Fitness value 𝑓𝑖

offspring (stocks in
Portfolio)

Tracking error
𝑓(𝑥)

Fitness value 𝑓𝑖

11 1 3 2 6 0.410773 2.434435 1 3 2 6 0.410773 2.434435

12 5 4 6 9 0.416266 2.40231 5 4 6 9 0.416266 2.40231

12 5 4 6 9 0.416266 2.40231 5 4 6 9 0.416266 2.40231

20 2 4 9 6 0.431132 2.319475 2 4 9 6 0.431132 2.319475

20 2 4 9 6 0.431132 2.319475 2 4 9 6 0.431132 2.319475

21 9 7 4 6 0.465436 2.148523 2 4 9 6 0.431132 2.319475

16 1 4 9 2 0.51498 1.941823 1 4 9 2 0.51498 1.941823

17 9 3 2 4 0.515001 1.941744

Ave 2.305615

Ave 2.238762

Max 2.434435

Max 2.434435

Fourth Generation
(Portfolio No.)

Stocks in Portfolio Tracking error 𝑓(𝑥) Fitness value 𝑓𝑖

11 1 3 2 6 0.410773 2.434435

12 5 4 6 9 0.416266 2.40231

13 5 4 6 9 0.416266 2.40231

20 2 4 9 6 0.431132 2.319475

20 2 4 9 6 0.431132 2.319475

20 2 4 9 6 0.431132 2.319475

16 1 4 9 2 0.51498 1.941823

Ave 2.305615

Max 2.434435

44

From the above simulation, we notice that the average fitness value gradually

increases from 1.73 to 2.31, which means the fitness level of the whole population is

improved after each generation. The maximum fitness value is 1.77 in the first

generation and it increases to 2.43 in the second generation and remains the same till

the last generation. By further observation, we find that some duplicate portfolios

appear in the evolution, such as portfolio 12 and portfolio 20 in the third generation.

These duplicate portfolios are redundant individuals in an evolution and should be

removed, examples are shown below.

Figure 4.7: Evolution with redundant duplicates

Figure 4.7 shows the whole evolution process for the simulation. Except for the first

generation, the whole evolution produces 45 offspring in total. Each offspring is

associated with a ‘solve’ command. As stated earlier, we use the Total Solve Elapsed

Time as our computing time, which is the sum of the elapsed seconds used by all the

‘solve’ commands. So the total computing time can be affected by the duplicate

members. Figure 4.8 shows the transformed evolution after removing the duplicates

in each generation.

Figure 4.8: Transformed evolution

45

After removing the duplicates, the evolution only has 7 generations and produces 25

offspring. Besides the removal of duplicates, we could possibly further shorten the

computing time. As we stated before, the maximum fitness value remains unchanged

from the second generation till the end. Thus, we could introduce stopping criteria to

terminate the algorithm before it reaches the 10
th

 generation. Our stopping criteria

can test the maximum fitness value in each generation. If the value is unchanged for

a specified number of generations, the evolution would be stopped. The following

shows the expression of the stopping criteria.

𝑔 Represents generation

𝐵𝑒𝑠𝑡𝑔 Represents the best portfolio in generation 𝑔

𝑃1
𝑔

 Represents the first portfolio in generation 𝑔

𝐶 A counter

let Best𝑔 = 𝑃1
𝑔

𝑖𝑓 𝐵𝑒𝑠𝑡𝑔 = 𝐵𝑒𝑠𝑡𝑔−1 𝑡ℎ𝑒𝑛 𝐶 = C + 1

else C = 0

Because each generation has been sorted, thus 𝑃1
𝑔

 is the fittest offspring in the

gth generation. If 𝐵𝑒𝑠𝑡𝑔 = 𝐵𝑒𝑠𝑡𝑔−1then it means that two consecutive generations

have the same maximum fitness value. If this situation goes on for 3 generations, we

would declare that we would force the programming to stop and report the best

solution encountered. We name the Inverse Triangle GA with removing duplicates

and stopping criteria as the ‘Enhanced Inverse Triangle GA’ (EIT-GA).

46

4.3.4 Computational Results

We apply the IT-GA and EIT-GA to the real market indices to further prove the

findings of the simulation. We generate different size of initial populations for each

index and test them by the first five indices (Hang Seng, DAX, FTSE, S&P 100, and

Nikkei 225). Table 4-2 shows the size of the initial populations generated.

Table 4-2: Initial population size for each index

Index
Cardinality

𝐾 = 10 𝐾 = 15 𝐾 = 20

Hang Seng 50 50

DAX 200, 400, 600, 800, 1000 200, 400, 600, 800 200, 400, 600, 800, 1000

FTSE 200, 400, 600, 800 200, 400, 600, 800 200, 400, 600, 800

S&P 200, 400, 600, 800 200, 400, 600, 800 200, 400, 600, 800

Nikkei 400, 800 400 400

Table 4-3 presents the comparison of the computing results of the MIP, the IT-GA

and the EIT-GA. Note here, we only show the best solutions achieved from each

index (PZ represents the population size). For convenience of readability, we round

the tracking error and the computing time to the fifth decimal place and the first

decimal place respectively.

47

Table 4-3: Computing results of MIP, IT-GA, and EIT-GA for the first five indices

Index K

Solution Approach

MIP IT-GA EIT-GA

TE CT TE CT PZ TE CT PZ

Hang Seng 10 0.10101 2.4 0.10101 20.6 50 0.10101 16.5 50

15 0.05689 0.6 0.05689 18.4 50 0.05689 13.9 50

DAX 10 0.06730 7209.5 0.06730 5551.8 1000 0.06730 617.8 1000

15 0.03728 7221.3 0.03486 521.5 200 0.03486 271.9 200

20 0.01924 7203.9 0.01924 2130.7 200 0.01924 1036.7 200

FTSE 10 0.12070 7312.6 0.09982 2621.6 600 0.09982 615.1 600

15 0.05532 7298.1 0.05436 988.4 200 0.05436 401.7 200

20 0.03340 7339.7 0.02858 7531.3 400 0.02858 2359.7 400

S&P 100 10 0.10624 7203.9 0.09629 1205.6 400 0.09629 437.2 400

15 0.04755 7225.7 0.04755 15853.4 800 0.04755 2102.3 800

20 0.03009 7207.4 0.02789 8348.3 600 0.02789 3200.4 600

Nikkei 225 10 0.08735 7403.6 0.08581 9036.8 800 0.08581 1748.2 800

15 0.04865 7389.4 0.04477 8798 400 0.04477 3721.6 400

20 0.02699 7503.7 0.02372 36515.6 400 0.02372 17595.8 400

In the case of Hang Seng, DAX, and FTSE, the computing results of the IT-GA are

better than the corresponding results of MIP. However, the total computing time is

increased by about 11620 time units, which is caused by large indices such as S&P

100 and Nikkei-225, especially when the cardinality is big as well. The situation is

improved when we use the EIT-GA. The solution qualities maintain the same whilst

each computing time is shortened dramatically. For example, the computing time of

S&P-100 with cardinality of 15 (S&P 100-15) is shortened by 13751 time units and

the computing time of Nikkei 225-10 is shortened by 7288 time units. The total

computing time of the five indices is decreased by 65003.6 time units. Nevertheless,

the computing time for the Nikkei 225-20 still goes beyond the limitation. We

observe that it is caused by the reproduction. As the cardinality becomes bigger, it

48

takes more computing time for the solver to find the optimal combination. Therefore,

we restrict the ‘single solve time’ to 1 time for Nikkei and S&P-500 and to 0.5 units

for Russell-2000 and Russell-3000. Table 4-4 shows the computing results for the

Nikkei (bigger cardinalities), S&P-500, Russell-2000, and Russell-3000. Notably,

we want to achieve good solutions whilst control the computing time, so we have to

carefully set the initial population size. (All of the below initial population size are

set based on experience.) Table 4-4 shows the computational results.

Table 4-4: Computational results of EIT-GA and MIP for the larger indices

Index K
MIP EIT-GA

TE CT TE CT PZ

 Nikkei 20 0.02699 7504 0.02512 3312 400

25 0.01493 7447 0.00913 3725 400

S&P 500 10 0.08866 7260 0.06296 607 400

15 0.05648 7268 0.03989 1854 400

20 0.02707 7343 0.02166 2233 400

25 0.01600 7342 0.01157 1933 400

30 0.00671 7338 0.00640 3442 400

Russell 2000 30 0.01619 7250 0.01214 1969 600

40 0.00520 7258 0.00490 476 600

50 0.00019 7274 0.00116 3650 600

60 0 240 0 277 600

70 0 146 0 286 600

Russell 3000 30 0.01611 7205 0.01449 477 600

40 0.00471 7201 0.00455 240 600

50 0.00051 7206 0.00039 1703 600

60 0 1556 0 277 600

70 0 144 0 389 600

80 0 531 0 482 600

There are five instances where the MIP and the EIT-GA produce the same solutions.

Apart from that, the computing time for EIT-GA is always faster than MIP. The total

computing time decreased by about 70178 time units. Therefore, we conclude that

49

the EIT-GA is better than the MIP and it is able to find reasonably good solutions in

reasonable time. However, we could not construct solid relations amongst the

population size, the size of indices, and the cardinality size. Therefore, we cannot

immediately know the suitable size of initial population for a given problem to help

the algorithm produce fairly good solution.

With the aim of constructing reliable relations among the three factors while

maintaining good computing results, we develop another GA solution approach

based on the Schema Theorem.

4.4 Roulette Genetic Algorithms

4.4.1 Schema Theorem

Although the mechanics of Genetic Algorithms are surprisingly simple to describe,

which usually involve nothing complex other than copying chromosomes and

exchanging bits of chromosomes, the reason why it works is very subtle and

complicated. There are generally two questions about GAs: how do GAs work, and

what kind of problems are they good for? According to the traditional theory of GAs,

good solutions generally tend to be made up of short, low-order, highly-fit ‘building

blocks’—particular bits of strings. Instead of obtaining good solutions by trying each

possible combination, the work of GAs is to discover, emphasise, and recombine the

good building blocks to construct even more highly fit and higher-order building

blocks in a parallel fashion. The ability to produce fitter solutions by recombining

good building blocks is considered to be the main source of the GA's search power.

Holland (Holland, 1975) first introduces the notion of schema to formalise the notion

of building blocks. A schema is a template describing a subset of strings with

similarities. It is composed of ones, zeroes, and asterisks which are the wild cards

meanings ‘don’t care’. The Schema Theorem is very important and it is considered

to be the fundamental theorem of genetic algorithm.

In this section, we first introduce the theoretical foundations of GAs: the schema

theorem. Following, we detail how we apply this theorem to the Index Tracking

50

problem. Before the introduction of the schema theorem, we need to present some

notation. For convenience, some of the notations are adopted from Goldberg’s

(Goldberg, 1989).

𝑜(𝐻) Represents the order of a schema 𝐻, which is simply the number of

fixed positions in a schema. (𝑜(111 ∗∗ 0) = 4, 𝑜(0000 ∗ 1) = 5)

𝛿(𝐻) Represents the defining length of a schema 𝐻, which is the distance

between the first and last specific string position. (𝛿(111 ∗∗ 0) =

5)

𝑚(𝐻, 𝑡) Represents that there are 𝑚 examples of a particular schema 𝐻

contained within the population 𝐴(𝑡) at a given time 𝑡

𝑓(𝐻) The average fitness of the strings representing schema 𝐻

𝑓𝑖 The fitness value of string 𝐴𝑖

𝑓 ̅ The average fitness of the entire population

𝑃𝑖 The probability that string 𝐴𝑖 gets selected during reproduction

𝑃𝑑 The probability of schema H being destroyed under simple

crossover

𝑃𝑠 The probability of schema H surviving under simple crossover

𝑃𝑐 The probability of crossover

𝑃𝑚 The probability of mutation

𝑛 The population size

𝑀 The number of mutual stocks

51

𝐷 The number of non-mutual stocks

The operation of GAs is very straightforward. It starts with randomly generating a

population of strings, and then it explicitly manipulates the strings: copies strings

with the bias toward fitness, mates and swaps bits of strings, and occasionally

mutates a part of a string. Although it operates on a population of strings in such

straightforward manner, it actually implicitly processes the fitness of much more

schemas during each generation. To analyse the operation, we assume that a string is

copied regarding its fitness value during the reproduction process, or more precisely

it is selected by the probability 𝑃𝑖 = 𝑓𝑖/ ∑ 𝑓𝑗. Accordingly, the expected number of

the representatives of schema 𝐻 at time 𝑡 + 1 can be given by the following

equation:

𝑚(𝐻, 𝑡 + 1) = 𝑚(𝐻, 𝑡) ∗ 𝑛 ∗ 𝑓(𝐻) ∑ 𝑓𝑗⁄ (4.7)

Alternatively, the above equation can be written as:

𝑚(𝐻, 𝑡 + 1) = 𝑚(𝐻, 𝑡) ∗ 𝑓(𝐻) 𝑓̅⁄ (4.8)

The above equations show that a schema with a fitness value above the population

average would be increased in the next generation, those below the population

average would be decreased in the next generation and will gradually die out during

the evolution. If we assume that the fitness value of a schema is above average with

an amount 𝑐 ∗ 𝑓̅, where c is constant, then equation (4.8) can be transformed as

follows:

𝑚(𝐻, 𝑡 + 1) = (1 + 𝑐) ∗ 𝑚(𝐻, 𝑡) (4.9)

If time starts at 𝑡 = 0, then we can achieve the following expression:

𝑚(𝐻, 𝑡) = 𝑚(𝐻, 0) ∗ (1 + 𝑐)𝑡 (4.10)

The above expression shows that for the fitness values of a schema above population

average, they would be sampled under reproduction at an exponential rate. In

52

contrast, for those below population average, the number would be decreased

exponentially in future generations. Based on the above findings, we put the

crossover under consideration. To investigate how the crossover influences on a

schema, we need to consider the following example:

𝐴 = 0011|10

𝐻1 = 0 ∗∗∗ | ∗ 0

𝐻2 =∗∗ 11| ∗∗

String ‘A’ is an example of the schema 𝐻1 𝑎𝑛𝑑 𝐻2 with six fixed positions.

Assuming that the crossover position takes place on the fifth locus, where we use the

symbol ‘|’ as the crossing position, it is clear that schema 𝐻1 is destroyed as one ‘0’

in the first position and the other ‘0’ in the last position are separated. On the other

hand schema 𝐻2 survives as the crossover position cannot separate the ‘11’. Hence,

if the crossover position is randomly located on schema 𝐻 with length 𝑙, then the

survival probability is given by the following equation:

𝑃𝑠 = 1 −
𝛿(𝐻)

𝑙 − 1
 (4.11)

If the crossover is operated occasionally with probability 𝑃𝑐, the survival probability

can be expressed as:

𝑃𝑠 ≥ 1 − 𝑃𝑐 ∗
𝛿(𝐻)

𝑙 − 1
 (4.12)

Assume that the reproduction and crossover are two independent events. Thus, the

expected number of the representatives of schema 𝐻 at time 𝑡 + 1 can be given by

the following equation:

𝑚(𝐻, 𝑡 + 1) ≥ 𝑚(𝐻, 𝑡) ∗
𝑓(𝐻)

𝑓 ̅
∗ [1 − 𝑃𝑐 ∗

𝛿(𝐻)

𝑙 − 1
] (4.13)

The last factor we need to consider is the mutation operator. A schema H that can

survive from mutation is only when each of its fixed positions survives. Therefore,

the probability of surviving from mutation is (1 − 𝑃𝑚)𝑜(𝐻) . As the probability of

mutation is usually very small, the survival probability can be written as 1 − 𝑜(𝐻) ∗

53

𝑃𝑚. Therefore, the number of samples of schema H in the next generation can be

given by:

𝑚(𝐻, 𝑡 + 1) ≥ 𝑚(𝐻, 𝑡) ∗
𝑓(𝐻)

𝑓 ̅
∗ [1 − 𝑃𝑐 ∗

𝛿(𝐻)

𝑙 − 1
− 𝑜(𝐻) ∗ 𝑃𝑚] (4.14)

In our research, we define each tracking portfolio as a string and the cardinality (𝐾)

is the length of a string. However, we are not able to directly apply the Schema

Theorem to the index tracking problem, because the sequence of stocks in a tracking

portfolio has no influence on its tracking error, so a particular combination of stocks

can be arranged in several patterns (e.g., ‘456123’, ‘145263’, and ‘124563’ are the

same). On the other hand, the sequence of zeros, ones, and asterisks determine the

fitness of a schema. Thus, it is impossible to investigate the growth or decay of

combinations, but we can investigate on a particular stock to calculate its survival or

death probability in future generations. What we believe is that if a stock is an

element of a good ‘building block’ then its quantity would be increased in the future

generations, otherwise its quantity would be decreased. In our research, we denote

that a ‘building block’ is the mutual stocks of tracking portfolios. A good ‘building

block’ can give positive influence on the fitness of tracking portfolios. Generally

speaking, the larger the size of a good ‘building block’ the bigger the influence it can

impose on tracking portfolios. As ‘building blocks’ is recognized as the mutual

stocks of the parent portfolios, they are very subjective and can change from time to

time. For example, assume that portfolio A and portfolio B share mutual stocks 1, 2,

and 3, but portfolio A and portfolio C share mutual stocks 6, 7, 8, and 9. Once

portfolio A changes its mating partner from portfolio B to portfolio C, the ‘building

block’ changes from ‘123’ to ‘6789’. During the evolution, we want to protect good

‘building blocks’ and combine them to form even more highly fit and higher-order

‘building blocks’.

4.4.2 Application

In this section, we apply the Schema Theorem to the index tracking problem. We

detail the solution approach named Roulette Genetic Algorithm (R-GA) from three

54

aspects: the selection, crossover, and mutation. We first introduce the selection

process named Roulette Wheel selection.

 Roulette Wheel Selection

The selection process is implemented regarding the fitness values (𝑃𝑖 = 𝑓𝑖/ ∑ 𝑓𝑗) of

the portfolios, more precisely, we create a roulette wheel, where each current

individual takes a slot. The size of the slot is based on the fitness value of the

individual. The fitter the individuals the bigger size the slot. During the reproduction

process, we rotate the roulette wheel to decide which individuals should be selected

into the mating pool. As for the mating partners, they are randomly selected.

Therefore, stocks of the portfolios with fitness values above the population average

are more likely to appear in the next generation. For stocks of portfolios with fitness

value below the population average, they are less likely to appear in the next

generation and will eventually die out.

 Crossover

Semi-crossover operator

For a semi-crossover, we keep the mutual stocks untouched, cut the parent portfolios

at the same locus, and exchange the pieces after the locus. Considering a general

case, where portfolio A (cardinality is 𝐾) is in the mating pool and portfolio B

(mating partner) is randomly selected, they share 𝑀 mutual stocks. What is the

probability of a particular stock (𝐻) in portfolio A being survived after the mating?

To solve the problem, we should consider the case with two scenarios: the stock is a

non-mutual stock and the stock is a mutual stock. We use figure 4.9 for illustration.

Figure 4.9: Portfolio illustration

55

 Non-mutual stock. The probability of stock H sitting outside the ‘building

block’ is 𝑃𝑜𝑢𝑡 =
𝐾−𝑀

𝐾
, and it has 50% chance of being exchanged by the

crossover. So the survival probability of stock H sitting outside the

‘building block’ is: 𝑃𝑜𝑢𝑡−𝑠 =
𝐾−𝑀

2𝐾

 Mutual stock. Once a stock is sitting inside the ‘building block’, it would

be guaranteed to survive. So the survival probability of stock H sitting

inside the ‘building block’ is: 𝑃𝑖𝑛−𝑠 =
𝑀

𝐾

Therefore, the total survival probability is 𝑃𝑠 =
𝐾+𝑀

2𝐾
 , and then the expected number

of stock 𝐻 at generation 𝑔 + 1 can be given by the following equation. 𝑀̅ is the

average value of 𝑀 and ∆(𝐻) is the disturbance caused by the mating partners. The

reason why we introduce ∆(𝐻) into the equation is because if the mating partner

contains a particular stock 𝐻 , it has a potential chance to be inherited by the

offspring.

𝑚(𝐻, 𝑔 + 1) ≥ 𝑚(𝐻, 𝑔) ∗
𝑓(𝐻)

𝑓 ̅
∗

𝐾 + 𝑀̅

2𝐾
+ ∆(𝐻) (4.15)

∆(𝐻) is affected by three factors: the number of the population, the size of the index,

and the cardinality. Generally, its approximate calculation can be given by ∆(𝐻) =

𝑛∗𝑘

2𝑁
, where N is the size of the index. Furthermore, if the crossover occurs by a

certain probability, then we have:

𝑚(𝐻, 𝑔 + 1) ≥ 𝑚(𝐻, 𝑔) ∗
𝑓(𝐻)

𝑓 ̅
∗ [1 − 𝑃𝑐

𝐾 − 𝑀̅

2𝐾
] + ∆(𝐻) (4.16)

We broadly categorise the evolution into different stages named as: initial stage,

expansion stage, maturation stage, and stagnation stage. At the initial stage, the

evolution is most likely to drive populations to move along the fitness landscape in

random manner. During that period, few mating pairs have mutual stocks, especially

for the large sized indices, where most of the mating pairs don’t have any mutual

stocks. Hence, 𝑀̅ is approximately equal to zero, thus the survival probability is

around 50% at the initial stage. At the expansion stage, some mating pairs share a

few stocks while others may share less or none. Small good ‘building blocks’ are

formed. At the maturation stage, most mating pairs share a considerable number of

56

stocks. Good small ‘building blocks’ are combined and constructed to large ones. At

the stagnation stage, most of the individuals have similar combinations to a certain

degree. The maximum fitness value maintains the same for several generations,

which means that the evolution either has reached the global optimal point or is stuck

at a local optimum. Generally, 𝑀̅ gradually increases along with the evolution and

finally reaches K.

The following tables show the results of the simulation (data from the Hang Seng

index), where we examine the effect of the semi-crossover operator on stocks given

by the above equations. Note here that the data set is from the Hang Seng index. For

simplicity, we set the cardinality 𝐾 = 4 and shrink the size of the index to 10 stocks.

(𝑓𝑖 =
1

𝑓(𝑥)
, 𝑀̅ = 2 𝑎𝑛𝑑 ∆(𝐻) = 0.8)

Table 4-5 (a): Semi-crossover operator simulation – portfolio processing

Portfolio
No.

Composing
stocks

𝑓(𝑥)
Tracking

error

𝑓𝑖 Fitness
value

Expected
number of

times

selected 𝑓𝑖/𝑓 ̅

Actual
times

selected
from

Roulette
Wheel

1 1 2 4 8 0.635992 1.57234682 0.83745366 1

2 3 7 9 10 0.655519 1.5255088 0.81250708 0

3 1 4 6 10 0.564189 1.77245568 0.9440344 3

4 1 4 5 9 0.516545 1.93593975 1.03110828 1

5 2 3 4 6 0.445397 2.245188 1.19581817 0

6 2 3 5 8 0.514576 1.94334753 1.03505376 1

7 2 4 5 9 0.435712 2.29509401 1.2223988 2

8 1 3 7 9 0.649325 1.54006083 0.82025769 1

9 1 2 9 10 0.629814 1.58777036 0.84566844 0

10 3 4 5 6 0.424157 2.35761758 1.25569972 1

Sum 18.7753294

Ave 1.87753294

Max 2.35761758

 (continued)

57

Mating pool
(stocks)

Mating Partner
(stocks)

Offspring
(stocks)

𝑓(𝑥)
Tracking

error

𝑓𝑖 Fitness
value

3 4 5 6

8 9 5 6

3 4 5 6

0.424157 2.3576176

1 4 5 9

2 7 5 9

1 2 5 9

0.56885 1.7579327

1 4 6 10

7 4 6 10

1 4 6 10

0.564189 1.7724557

6 1 4 10

2 1 4 10

1 4 6 10

0.564189 1.7724557

1 4 6 10

2 7 8 10

1 6 8 10

0.583497 1.7138049

4 5 9 2

7 8 10 2

2 7 8 9

0.63671 1.5705737

1 2 4 8

3 5 6 8

2 4 5 8

0.553196 1.8076776

1 7 3 9

6 8 3 9

3 7 8 9

0.557986 1.7921597

4 2 5 9

8 2 5 9

2 4 5 9

0.435711 2.2950993

2 5 3 8

6 9 3 8

2 3 8 9

0.540078 1.8515844

Sum 18.691361

Ave 1.8691361

Max 2.3576176

Table 4.5(b) semi-crossover operator simulation – stocks processing

Stocks
No.

𝑚(𝐻, 𝑔) 𝐹(𝐻)
𝐹(𝐻)

𝑓̅

𝑚(𝐻, 𝑔) ∗ 𝐹(𝐻)

𝑓̅

𝐾 + 𝑀̅

2𝐾
= 0.75

∆(𝐻) = 0.8
Actual
times

selected 𝑚(𝐻, 𝑔 + 1)

1 5 1.6817147 0.8957045 4.47852 3.36 4.16 4

2 5 1.9287493 1.0272786 5.13639 3.85 4.65 5

3 5 1.9223445 1.0238673 5.11934 3.84 4.64 3

4 6 2.0297736 1.0810855 6.48651 4.86 5.66 5

5 4 2.1329997 1.1360651 4.54426 3.41 4.21 4

6 3 2.1250871 1.1318508 3.39555 2.55 3.35 4

7 2 1.5327848 0.8163824 1.63276 1.22 2.02 2

8 2 1.7578472 0.9362537 1.87251 1.40 2.20 5

9 5 1.9278814 1.0268163 5.13408 3.85 4.65 5

10 3 1.6285783 0.8674033 2.60221 1.95 2.75 3

58

Usually, the actual count of a particular stock 𝐻 at generation 𝑔 + 1 matches with

the expectation, except that there is one special circumstance, where the actual count

of H8 is almost two times its expectation. By further investigation, we find that the

special circumstance is caused by the extreme amount of disturbance (∆(𝐻)=3)

caused during the mating process. Generally, the simulation reached the expectation.

However, we also discover some issues of the semi-crossover operator. The

maximum fitness value (2.3576176) remains constant and it might be lost in the

future generations if the crossover site locates on any position of the string ‘3456’. In

addition, the average fitness value slightly decreases from 1.878 to 1.869. It

enlightens us that the generational approach may not be suitable for the crossover

operator as it is too random that we cannot guarantee the quality of the new

generation. We believe that a steady-state-approach is a better choice for the semi-

crossover operator and large size of populations must be generated to ensure a

certain probability of achieving fit offspring. Thus, we can replace the unfit

individuals with the fitter offspring to form a new generation so that the average

fitness value could be improved generation by generation. We test the idea with

several data sets, but the results still cannot meet the expectations. We notice that the

semi-crossover operator makes the mating process extremely fast, but prolongs the

whole computing time, because the fitness of the generations improves very slowly.

It means that we cannot efficiently construct good ‘building blocks’, which make the

algorithm weak in searching power.

Semi-optimization Operator

The semi-optimization operator can be seen as an extreme case of crossover, where

the locus is always chosen at the optimal position. Thus, the parents can most

efficiently exchange their pieces of genetic information and the population size is

fairly small compared with semi-crossover. However, the computing time for each

mating process is much longer than that of the semi-crossover, because each time the

solver needs to optimize the non-mutual stocks; the more there is of non-mutual

stocks the larger the amount of time the solver takes for optimization. Next, we need

to consider the survival probability of a particular stock under semi-optimization.

Again, we break the case down to two scenarios: when a particular stock is a mutual

stock and when it is a non-mutual stock.

59

 Non-mutual stock. Once the mating partner is selected, the optimal

combination is already determined regardless of whether the breeding

process takes place or not. So its survival probability is either: 𝑃𝑜𝑢𝑡−𝑠 =

𝐾−𝑀

𝐾
 𝑜𝑟 0

 Mutual stock. It is the same as the semi-crossover : 𝑃𝑖𝑛−𝑠 =
𝑀

𝐾

Therefore, the total survival probability is:

𝑀

𝐾
≤ 𝑃𝑠 ≤ 1

Accordingly, we consider the expected number of stock 𝐻 at generation 𝑔 + 1 .

Neutrally, we can use the average probability, where 𝑃𝑠 =
𝑀

𝐾
+1

2
=

𝐾+𝑀

2𝐾
. So equation

(4.15) and (4.16) are still feasible for the semi-optimization operator. Alternatively,

we may play it more conservatively by using the lower bound of the survival

probability. Again, we run simulations on the semi-optimization operator using the

population sample generated from the semi-crossover simulation. The following

tables show the results:

Table 4-6 (a): Semi-optimization operator simulation – portfolio processing

Portfolio
No.

 Stocks
𝑓(𝑥)

Tracking
error

𝑓𝑖 Fitness
value

Expected
number of

times
selected

𝑓𝑖/𝑓 ̅

Actual
times

selected
from

Roulette
Wheel

1 1 2 4 8 0.635992 1.57234682 0.83745366 1

2 3 7 9 10 0.655519 1.5255088 0.81250708 0

3 1 4 6 10 0.564189 1.77245568 0.9440344 3

4 1 4 5 9 0.516545 1.93593975 1.03110828 1

5 2 3 4 6 0.445397 2.245188 1.19581817 0

6 2 3 5 8 0.514576 1.94334753 1.03505376 1

7 2 4 5 9 0.435712 2.29509401 1.2223988 2

8 1 3 7 9 0.649325 1.54006083 0.82025769 1

9 1 2 9 10 0.629814 1.58777036 0.84566844 0

10 3 4 5 6 0.424157 2.35761758 1.25569972 1

Sum 18.7753294

Ave 1.87753294

Max 2.35761758

60

(Continued)

Mating pool
(stocks)

Mating Partner
(stocks)

New population
(stocks)

𝑓(𝑥)
Tracking

error

𝑓𝑖 Fitness
value

3 4 5 6

8 9 5 6

4 5 6 9

0.41627 2.402287

1 4 5 9

2 7 5 9

2 4 5 9

0.435711 2.2950993

1 4 6 10

7 4 6 10

4 6 7 10

0.536048 1.8655046

6 1 4 10

2 1 4 10

1 4 6 10

0.564189 1.7724557

1 4 6 10

2 7 8 10

2 6 7 10

0.528463 1.8922801

4 5 9 2

7 8 10 2

2 4 5 9

0.435711 2.2950993

1 2 4 8

3 5 6 8

1 3 6 8

0.446564 2.2393207

1 7 3 9

6 8 3 9

1 3 6 9

0.4561979 2.1920311

4 2 5 9

8 2 5 9

2 4 5 9

0.435711 2.2950993

2 5 3 8

6 9 3 8

3 5 6 8

0.447001 2.2371315

Sum 21.486308

Ave 2.1486308

Max 2.402287

Table4-6 (b) semi-optimization operator simulation – stocks processing

Stocks
No.

𝑚(𝐻, 𝑔) 𝐹(𝐻)
𝐹(𝐻)

𝑓̅

𝑚(𝐻, 𝑔) ∗ 𝐹(𝐻)

𝑓̅

𝐾 + 𝑀̅

2𝐾
= 0.75

∆(𝐻)
= 0.8

Actual
times

selected 𝑚(𝐻, 𝑔
+ 1)

1 5 1.6817147 0.8957045 4.47852 3.36 4.16 3

2 5 1.9287493 1.0272786 5.13639 3.85 4.65 4

3 5 1.9223445 1.0238673 5.11934 3.84 4.64 3

4 6 2.0297736 1.0810855 6.48651 4.86 5.66 6

5 4 2.1329997 1.1360651 4.54426 3.41 4.21 5

6 3 2.1250871 1.1318508 3.39555 2.55 3.35 7

7 2 1.5327848 0.8163824 1.63276 1.22 2.02 2

8 2 1.7578472 0.9362537 1.87251 1.40 2.20 2

9 5 1.9278814 1.0268163 5.13408 3.85 4.65 5

10 3 1.6285783 0.8674033 2.60221 1.95 2.75 3

61

Generally, we find that the number of stocks in the portfolios above average fitness

increases more than expected and those below average fitness decrease more than

expected. On one side, it shows that the semi-optimization can successfully protect

the good stocks. On the other side, as the growth speed or the decay speed is too fast,

we have more risk of obtaining sub-optimal solutions. For the fitness value, the

average fitness value reaches 2.149 and the maximum value is increased from 2.358

to 2.402. Both of the values are better than those of semi-crossover. Therefore, we

conclude that the semi-optimization operator is the better choice for the R-GA.

 Mutation

The mutation method is similar to that of the EIT-GA, where we provide ‘fresh’

genes to the evolution to maintain the diversity. It occasionally happens in the

reproduction process with a certain probability. We define the mutation parameter

as 𝑃𝑚 , if 𝑃𝑚 ≥ 0.02 then select the mating partners from the previous offspring,

otherwise, the mutation process is triggered, where the mating partners are randomly

generated. The following are the steps of the R-GA.

 Generate the initial population

 Repeat

 Evaluate the fitness of individuals

 Create the roulette wheel to select individuals into mating pool

 If 𝑃𝑚 ≥ 0.02

- Select the mating partners from the previous offspring

 Else

- Randomly generate mating partners

 Mate the parents to produce new offspring

 Until

 Meet the stopping criteria

Note here that, the stopping criteria are the same with that of EIT-GA.

62

4.4.3 Investigation of population size

The aim of investigating initial population size is to construct reliable relations

between three factors: cardinality, initial population size, and the size of the index. It

is almost impossible to summarize the relations of the three factors from empirical

studies without any framework. Thus, we use the following equation to define the

framework, and then we try to search for the best ‘frequency’ for the equation.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝐼𝑛𝑑𝑒𝑥 𝑆𝑖𝑧𝑒

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦

The ‘frequency’ means the average number of times a particular stock can be picked

up when we generate the initial population. We generate five sets with frequency

equals to 6, 9, 12, 15, and 18 (write as f6, f9, f12, f15, and f18). The corresponding

size of the initial population for each index with different cardinalities is shown in

table 4-7 and the computing results are shown in table 4-8. (The reason why we

don’t test the algorithm by the last three indices or the Nikkei index with bigger

cardinalities is because a single mating process could cost us extraordinary amount

of computing time. Thus, we decide to find the most desirable set first, and then use

it to generate tacking portfolios for last three indices.)

Table 4-7: Initial population size under different frequencies

Frequency K
Initial population size

Hang Seng DAX FTSE S&P Nikkei

f6

10 19 51 53 59 135

15 12 34 36 39 ----

20 ---- 26 27 29 ----

f9

10 28 77 80 88 203

15 19 51 53 59 ----

20 ---- 38 40 44 ----

f12

10 37 102 107 118 270

15 25 68 71 78 ----

20 ---- 51 53 59 ----

f15

10 47 128 134 147 338

15 31 85 89 98 ----

20 ---- 64 67 74 ----

f18

10 56 153 160 176 405

15 37 102 107 118 ----

20 ---- 77 80 88 ----

63

Table 4-8: Computational results of R-GA for smaller size indices under different input frequencies

Index K

Computational Results

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑓6) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑓9) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑓12) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑓15) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑓18)

TE CT TE CT TE CT TE CT TE CT

Hang
Seng

10 0.101010742 5.7 0.101010742 10.9 0.101010742 16.3 0.101010742 16.7 0.101010742 19.5

15 0.056886088 3.3 0.056886088 5.3 0.056886088 8.0 0.056886088 8.5 0.056886088 13.3

 DAX 10 0.069071471 35.8 0.070037168 111.9 0.067296843 113.0 0.067296843 113.7 0.069161645 145.4

15 0.037468948 74.4 0.037904515 217.7 0.037312618 302.4 0.037468948 243.9 0.033208033 366.9

20 0.025376215 126.0 0.022087138 268.5 0.022141031 527.0 0.022383211 623.5 0.019949278 652.4

 FTSE 10 0.101422483 80.3 0.099823448 97.0 0.099823448 133.4 0.099823448 169.1 0.11011537 167.1

15 0.064295024 140.6 0.066674418 359.9 0.05703033 372.3 0.05435597 412.1 0.056244049 678.2

20 0.038013702 401.6 0.032838238 437.5 0.033113403 863.8 0.030839004 1133.7 0.031466236 1795.2

 S&P 10 0.100628635 63.6 0.100628635 162.0 0.099653821 168.3 0.100628635 193.4 0.090899847 283.7

15 0.053665422 257.8 0.056136286 338.9 0.051351667 709.0 0.053651399 737.8 0.050947878 869.0

20 0.032541688 196.7 0.027379289 482.5 0.027379289 938.9 0.025649629 1338.8 0.026032438 1537.0

 Nikkei 10 0.099245473 303.1 0.080572321 420.9 0.080572321 682.8 0.087102594 963.0 0.087366785 1142.3

64

Noticeable from table 4-8, it is hard to choose a particular frequency whose tracking

errors are always better than those of the others, consequently making it very

difficult for comparisons. Thus, we decide to compare the average tracking errors of

each index. (For example, the average tracking error of the DAX with frequency 6 is

calculated by (0.069071471 + 0.037468948 + 0.025376215) 3⁄ = 0.0439722) Thus,

we are able to transfer the above table to an average tracking error table, shown in

table 4-9.

Table 4-9: Average Tracking Error

Index
Average Tracking Error

f6 f9 f12 f15 f18

Hang Seng 0.078948 0.078948 0.078948 0.078948 0.078948

DAX 0.043972 0.043343 0.042250 0.042383 0.040773

FTSE 0.067910 0.066445 0.063322 0.061673 0.065942

S&P 0.062279 0.061381 0.059462 0.059977 0.055960

Nikkei 0.099245 0.080572 0.080572 0.087103 0.087367

Total Average 0.070471 0.066138 0.064911 0.066017 0.065798

After comparing the above average tracking errors for each index, we first ruled out

the sets f6 and f9, because they have the worst solutions of the five at most of the

time. For the other three sets, f18 have the best average tracking errors for DAX and

S&P, f15 have the best one for FTSE, and f12 have the best one for Nikkei. Among

the three, f12 have the smallest total average tracking error which shows its strong

stability. In addition, we compare the computing time associated with the three sets.

From figure 4.10, we could see that f12 requires the least amount of computing time.

Therefore, we conclude that f12 is the most desirable frequency we are looking for.

Although the result cannot be proved rigorously, we believe that f12 is the most

suitable choice.

65

Figure 4.10: Computing time comparison of f12, f15, and f18

Then, the approximate expression for the relations among cardinality (K), population

size (n), and the size of an index (N) can be given by:

𝑛 ≈
𝑁 ∗ 12

𝐾

4.4.4 Enhancement

Before we use f12 to implement the rest of the tests, we would like to make some

improvements on the R-GA. We find that the R-GA still has potential room to

improve the solution qualities while not largely increasing the computing time. We

can achieve this goal by adjusting the 𝑃𝑚 rate to a very high value when the stopping

criteria are almost met. We explain it using the following figure.

2070.933667

2630.924

3323.688167

0

500

1000

1500

2000

2500

3000

3500

Computing Time

f12

f15

f18

66

Figure 4.11: Roulette wheel

When the best tracking portfolio is unchanged for two generations, the roulette

wheel would be like the above figure. The majority part of the wheel would be taken

by the best tracking portfolio, and then followed by the second best portfolio, and so

on. At that moment, if the 𝑃𝑚 rate is increased to a very high value such as 0.9, most

of the mating partners would be randomly generated. These randomly created mating

partners can bring back the eliminated stocks and preserve diversity. Therefore, we

might further improve the solution values. If the best solution is changed, we would

set the mutation rate back to 0.2; otherwise, the algorithm would be terminated. We

call the improved algorithm the ‘Enhanced Roulette Genetic Algorithm’ (ER-GA).

4.4.5 Computational Results

We test the ER-GA on all the 8 market indices. As for the last three indices and

Nikkei index with bigger cardinalities, we set a limitation for each single mating

process. For this reason, the solver would provide us the best solution it can find

during that limited duration. The solving time limitation for Nikkei 225 with bigger

cardinalities (15, 20, 25, and 30) and S&P 500 is 1s and it is 0.5s for the two largest

indices, Russell 2000 and Russell 3000. The following table shows the comparison

between the computing results of EIT-GA and ER-GA.

40%

20%

20%

10%

10%

Roulette Wheel

1

2

3

4

…

67

Table 4-10: EIT-GA vs ER-GA

Index K
EIT-GA ER-GA

TE CT TE CT

 Hang Seng 10 0.10101 16.5 0.10101 17.5

15 0.05689 13.9 0.05689 8.7

 DAX 10 0.06730 617.8 0.06730 115.2

15 0.03486 271.9 0.03515 311.8

20 0.01924 1036.7 0.02021 540.4

 FTSE 10 0.09982 615.1 0.09982 134.8

15 0.05436 401.7 0.05664 429.0

20 0.02858 2359.7 0.02906 980.2

 S&P 100 10 0.09629 437.2 0.09965 175.4

15 0.04755 2102.3 0.05040 626.0

20 0.02789 3200.4 0.02617 1009.1

 Nikkei 225 10 0.08581 1748.2 0.08057 784.3

15 0.04477 3721.6 0.04269 2197.5

20 0.02512 3312.0 0.02690 1041.2

25 0.00913 3725.0 0.01125 2336.5

 S&P 500 10 0.06296 607.0 0.07260 1443.6

15 0.03989 1854.0 0.03502 4369.1

20 0.02166 2233.0 0.01738 3779.4

25 0.01157 1933.0 0.01021 3140.1

30 0.00640 3442.0 0.00924 3633.1

 Russell 2000 30 0.01214 1969.0 0.01072 2639.9

40 0.00490 476.0 0.00401 1808.8

50 0.00116 3650.0 0.00043 1147.7

60 0 277.0 0 534.7

70 0 286.0 0 456.1

 Russell 3000 30 0.01449 477.0 0.00794 5727.3

40 0.00455 240.0 0.00198 5874.7

50 0.00039 1703.0 0.00059 1850.8

60 0 277.0 0 892.9

70 0 389.0 0 770.8

80 0 482.0 0 1358.4

68

We separate the above table into two parts by the size of the indices. The first part

contains the computational results of the first four indices and the second part

contains those of the rest four indices. There are 11 comparisons in the first part. In

terms of solution quality, EIT-GA beats ER-GA 6 times, it loses to ER-GA 1 time,

and they draw for 4 times. For the computing time, EIT-GA costs about 11073 time

units to solve the first four indices while ER-GA only costs about 4348 time units.

There are 20 comparisons in the second part. In terms of solution quality, EIT-GA

beats ER-GA 5 times, and it loses to ER-GA 10 times, and they drew for 5 times.

For the computing time, EIT-GA costs about 32802 time units while ER-GA costs

45787 time units.

Based on the above fact, we conclude that the EIT-GA works better for small size

indices while ER-GA is more suitable for the large size ones. However, the

computing results of ER-GA for the large indices can prove that it is able to

construct sound relations between the cardinality, the size of the index, and the size

of the populations. Overall, we conclude that ER-GA is the better choice of the two

solution approaches in general.

69

Chapter 5

5 .Ant Colony Optimization

5.1 Introduction

Ant colony optimisation (ACO) is a meta-heuristic solution approach for

approximate optimisation. The ACO is inspired by the observation of the natural

foraging behaviour of real ants. The core of the foraging behaviour is the indirect

communication between the ants. This indirect communication is facilitated by the

chemicals produced by the ants, called pheromones. When ants go out to search for

food, they initially explore the surrounding area in a random manner. While walking

from their nest to the food resources and vice versa, they deposit pheromone trails on

the ground. Other ants can smell the pheromones and tend to choose,

probabilistically, paths marked by the strong pheromone concentrations. In the long

run, the shortest path is more likely to have the strongest pheromone concentrations.

Thus, this indirect means of communication that enables the ants to find the optimal

path between the nest and the food resources is known as ‘stigmergy’. The ACO

meta-heuristic was first formalised by Dorigo and his colleagues in 1999. In the

book ‘Ant Colony Optimisation’ (Dorigo M, Stützle T, 2004), they give a

comprehensive description about the ACO Meta-heuristic, which can be broken

down to three parts: problem representation, the ants’ behaviour and the general

structure of the ACO meta-heuristic.

70

Firstly, they provided a formal characterisation of the class of problems to which the

ACO can be applied. They considered a general minimization problem(𝑆, 𝑓, Ω),

where 𝑆 represents the set of candidate solutions, 𝑓 represents the objective function,

and Ω represents a set of constraints. The aim is to find a globally optimal

solution 𝑠∗, where 𝑓(𝑠∗) ≤ 𝑓(𝑠), 𝑠 ∈ 𝑆. Then, they designed an artificial ant which is

a stochastic constructive procedure that builds solutions by moving randomly on a

completely connected construction graph 𝐺𝑐 = (𝐶, 𝐿), where 𝐶 and 𝐿 are denoted as

the set of the nodes and the set of connections on the graph respectively.

Figure 5.1: Construction graph

The components 𝑐𝑖 ∈ 𝐶 and the connections 𝑙𝑖 ∈ 𝑙 are associated with pheromone

trails 𝜏𝑖 and 𝜏𝑖𝑗 and heuristic value, which is also called heuristic information,

Ƞ𝑖 and Ƞ𝑖𝑗 respectively. The pheromone trail encodes the memory about the entire

searching process, and is updated by the ants themselves. In contrast, the heuristic

information is provided by other sources, usually this is the estimated cost of adding

components or connections to the solution under construction. The ants use these

values to make probabilistic decisions on how to walk on the graph. The ACO

algorithm can be broke down into three steps: Construct Ants Solutions, Update

Pheromones and Daemon Actions.

 Construct Ants Solutions

This manages colonies of ants that walk on the construction graph of the considered

problem. The moving of ants is guided by stochastic decisions based on the

pheromone trails and the heuristic information. In this fashion, the ants gradually

build the solutions for the problem. Deneubourg and his colleagues (Deneubourg, J.-

71

L., Aron, S., Goss, S., &Pasteels, J.-M., 1990) (Goss et al, 1989) designed an

experiment, where they used a double bridge to connect the nest and the food

resources. They ran the experiments by varying the ratio 𝑟 = 𝑙𝑙/𝑙𝑠 , where 𝑙𝑙

represents the length of the longer bridge and 𝑙𝑠 represents the length of the shorter

one. In the experiments, they initially set 𝑟 = 1. At the beginning, as there are no

pheromones on either of the bridges, the ants do not have any preference so they

select the either of the two bridges with equal probability; yet, due to the random

fluctuation, a few more ants will select one bridge over the other. Thus, one bridge

starts to accumulate more pheromone concentrations than the other. The extra

amount of pheromone in turn will stimulate more ants to choose that bridge. The

outcome is that, although initially the ants randomly selected the path, eventually all

the ants used the same bridge. In the second experiment, the researchers set 𝑟 = 2, so

the long bridge is twice as long as the short one. In this case, almost all the ants

choose the short path as the pheromone accumulates much faster on the short path

than it does on the long one. However, there is a small percentage of ants still choose

the longer bridge, and this was explained as a type of ‘path exploration’.

Figure 5.2: Double bridge experiment

72

 Update Pheromones

This is a process that modifies the current pheromone concentrations. The

pheromone values can either be increased by depositing new pheromone on the

nodes or connections the ants walked through or decreased by evaporation. The

depositing of new pheromone can be achieved in two ways. Either the nodes or the

connections are used by many ants, or are only used by one ant that produces a really

good solution. Conversely, the evaporation plays a role of causing the past

information to be forgotten: it helps the ACO algorithm to avoid early convergence

to sub-optimal solutions. However, a too high evaporation rate would also lead to

rapid convergence. Deneubourg and his colleagues carried out an additional

experiment that reveals the natural disadvantage of ACO, where only the long bridge

is initially offered to a colony of ants and after 30 minutes a short bridge is added. In

this case, the short bridge is selected by few ants while the majority of the ants are

trapped using the long bridge. They explained the reason for this as the high

pheromone concentration on the long bridge and the slow evaporation rate.

Figure 5.3: Additional experiment

 Daemon Actions

This is a step which is biased toward the searching process. For example, the daemon

can deliberately select one or a few ants that build good solutions in the algorithm

iterations, and then deposit additional pheromone on the nodes and connections they

used. In other words, the daemon actions are used to magnify the effect of good

solutions.

73

5.2 Application

The way that we apply the ACO algorithm to the Index Tracking problem follows

exactly the three steps: Construct Ants Solutions, Update Pheromones and Daemon

Actions. In order to improve the ACO algorithm to solve the Index Tracking

problem, we use artificial ants which maintain the characteristics of real ants while

they have some additional capabilities. These capabilities are:

1. Probabilistically construct paths by pheromone trails. The ants are determined to

have two working modes: forward and backward. When they are in the forward

mode, they are moving from the nest toward the food resources, and when they

are in the backward mode, they are heading back from the food resources to the

nest. When they move forward, ants build the solutions by probabilistically

choosing the nodes and connections to move.

2. Memorise the paths they have gone along. The artificial ants can memorize the

nodes they have visited to avoid visiting the same node twice. Therefore they can

never be trapped in a loop.

3. Go through extra nodes and choose the best 𝐾 out of 𝐾 + 𝑒𝑥𝑡𝑟𝑎 to build optimal

solutions. When the cardinality is 𝐾, it means that an ant must walk through

𝐾 nodes on the construction graph to build up a solution. Our ants are more

intelligent, they can go through 𝐾 + 𝑒𝑥𝑡𝑟𝑎 nodes and evaluate the solution

values of each possible combination, and then select the best 𝐾 nodes to

construct an optimal path. In our research, the number of the extra nodes is user

specified, but it should be restrictively controlled. By setting too high a number,

the computer time would be affected. We set this number equal to 2 in our

research.

4. Update pheromones while moving backward to the nest. The artificial ants

deposit pheromone on a path biased toward the solution values. The smaller the

solution value of a path the more pheromone is deposited. In addition, we use a

steady-state approach to update the pheromones, where we sort the solution

values of the two recent colonies from the smallest to the largest and only use the

better half to update the pheromone information.

74

In our research, we treat each portfolio as a path and each stock as a node on the

construction graph. In the following, the meaning of the terms should become clear

if we switch them from time to time. Below are the details about our ACO solution

approach:

We first generate a number of portfolios and calculate their solution values, and then

we sort the solution values from the smallest to the largest and use these sorted

solution values to update the pheromone information. The pheromone information

updating compromises two parts: heuristic information and pheromone trails.

Equations (5.1) to (5.3) are used to update the heuristic information.

𝐻𝑗 =
1/𝑂𝐵𝑗

∑ 1/𝑂𝐵𝑗𝑗
 𝑗 = 1. . 𝑛

(5.1)

𝑃𝐼𝑖 = ∑ 𝐻𝑖 ∗ 𝑃𝑟𝑜𝑝𝑗,𝑖

𝑗

 𝑖 ∈ 𝑁

(5.2)

𝑃𝑖 =
𝑃𝐼𝑖

∑ 𝑃𝐼𝑖𝑖
 𝑖 ∈ 𝑁

(5.3)

In equation (5.1), 𝑂𝐵𝑗 represents the solution value of portfolio 𝑗 and 𝐻𝑗 represents

the weight of portfolio 𝑗 in a colony, the smaller a solution value the bigger the

weight of a portfolio. In equation (5.2), 𝑃𝑟𝑜𝑝𝑗,𝑖 represents the weight of stock 𝑖 in

portfolio 𝑗 and 𝑃𝐼𝑖 represents the weight of stock 𝑖 in a colony. After achieving 𝑃𝐼𝑖,

we use equation (5.3) to calculate the normalised probability of each stock, and then

we use the normalised probabilities to select the first stock in a portfolio. From

another point of view, equation (5.3) determines the first movement of an ant on the

construction graph of the considered problem. After the first step, an artificial ant

still has to move ‘𝐾 + 𝑒𝑥𝑡𝑟𝑎 − 1’ nodes to build a solution. As for the rest of the

movement, it is no longer guided by the heuristic information, but by the pheromone

trails between the nodes. We construct a table to measure the amount of attraction

between each pair of the stocks.

𝑃𝑗,𝑖,𝑖1,𝑔 =
1

𝑂𝐵𝑗
 𝑗 = 1. . 𝑛 (𝑃𝑟𝑜𝑝𝑗,𝑖 <> 0, 𝑃𝑟𝑜𝑝𝑗,𝑖1 <> 0) (5.4)

75

𝑃𝑗,𝑖,𝑖1,𝑔 = 0 𝑖 = 𝑖1 (5.5)

𝑃𝑖,𝑖1 = ∑ ∑ 𝑃𝑗,𝑖,𝑖1,𝑔

𝑔𝑗

 (5.6)

Equation (5.4) represents the attraction value between stock 𝑖 and stock 𝑖1 in

portfolio 𝑗 in colony 𝑔. Generally, the smaller the solution values of a portfolio the

bigger the attraction between its stocks. Equation (5.5) shows that there is no

attraction between a stock and itself. The attraction only occurs between two

different stocks. Equation (5.6) gives the latest total amount of attraction between

stock 𝑖 and stock 𝑖1 , and Pi,i1 is updated after each colony. The pheromone trail

updating is vitally important for the ACO algorithm as it can directly affect the

quality of the solutions. The following are two requirements for good pheromone

information:

∑ 𝑃𝐼𝑖𝑖∈𝑂𝑝𝑡𝑖𝑚𝑎𝑙

∑ 𝑃𝐼𝑖𝑖
> M M ∈ (0,1)

𝑃𝑖∊𝑂𝑝𝑡𝑖𝑚𝑎𝑙, 𝑖1∊𝑂𝑝𝑡𝑖𝑚𝑎𝑙 > 𝑃𝑖∈𝑂𝑝𝑡𝑖𝑚𝑎𝑙, 𝑖1∈𝑅𝑒𝑠𝑡 > 𝑃𝑖∈𝑅𝑒𝑠𝑡, 𝑖1∈𝑅𝑒𝑠𝑡 𝑖 ≠ 𝑖1

Note that, here, Optimal is defined as a set of stocks in the ‘optimal’ tracking

portfolio or very good tacking portfolios and Rest is defined as a set of the rest of the

stocks in an index. In the first expression, 𝑀 must be big enough to maintain a

certain probability of choosing a stock in the Optimal set. The second expression

shows that the attraction value between ‘Optimal’ stocks must be bigger than any

other pairs of stocks. Furthermore, the amount of attraction between an ‘Optimal’

stock and a ‘Rest’ stock should be greater than that of between two ‘Rest’ stocks.

Therefore, it ensures that if somehow the ‘Rest’ stocks are picked, we still have the

opportunity to construct a good tracking portfolio. By simply using the equations

(5.4) ~ (5.6) are not sufficient enough, because if we randomly generate a colony, the

difference between the smallest solution value and the largest solution value may not

be big enough to be distinguishable. Consequently, the attraction table is not able to

offer instructive guidance. Table 5-1 shows such an example. (For simplicity, we

only generate 20 portfolios and set the cardinality to 4)

76

Table 5-1: Simulation

Portfolio
No.

Stocks
Tracking

error 𝑂𝐵𝑗
Attraction

𝑃𝑗,𝑖,𝑖1

1 4 9 7 8 0.564493 1.771501

2 2 7 9 3 0.566167 1.766263

3 3 1 9 4 0.567521 1.762049

4 2 4 1 7 0.570928 1.751534

5 5 6 8 7 0.571562 1.749591

6 5 9 7 2 0.574703 1.740029

7 1 2 5 4 0.579622 1.725262

8 10 6 9 7 0.588624 1.698877

9 7 1 4 3 0.595866 1.67823

10 5 2 6 10 0.603175 1.657894

11 5 4 1 3 0.607775 1.645346

12 1 9 8 5 0.612161 1.633557

13 2 5 8 6 0.615245 1.625369

14 5 10 2 4 0.616589 1.621826

15 8 1 2 9 0.622338 1.606844

16 5 1 6 2 0.622885 1.605433

17 5 1 7 4 0.625538 1.598624

18 2 10 9 1 0.629814 1.58777

19 8 1 4 2 0.635992 1.572347

20 2 4 10 1 0.638456 1.566279

As shown above, the difference between the largest attraction value and the smallest

attraction value is very small, only about 0.21. Therefore, if we construct an

attraction table based on the above figures, it could not provide constructive

guidance for the selection of stocks. In order to enlarge the differences, we

standardize the solution values of a colony, and then we only enlarge the attraction

of stocks in a portfolio, whose solution value lies within (−∞, −2σ], (−2σ, −σ],

and (−σ, 0], by 50 times, 7 times and 3 times respectively, see figure 5.4. (Note that

the numbers 50, 7 and 3 are set based on experience of numerical experiments)

77

Figure 5.4: Enlargement method

Table 5-2 and table 5-3 below show the attraction table before and after the

amplification.

Table 5-2: Attraction table before amplification

1 2 3 4 5 6 7 8 9 10

1 0 11.4 5.09 13.3 8.21 1.61 5.03 4.81 6.59 3.15

2 11.4 0 1.77 8.24 9.98 4.89 5.26 4.8 6.7 6.43

3 5.09 1.77 0 5.09 1.65 0 3.44 0 3.53 0

4 13.3 8.24 5.09 0 6.59 0 6.8 3.34 3.53 3.19

5 8.21 9.98 1.65 6.59 0 6.64 5.09 5.01 3.37 3.28

6 1.61 4.89 0 0 6.64 0 3.45 3.37 1.7 3.36

7 5.03 5.26 3.44 6.8 5.09 3.45 0 3.52 6.98 1.7

8 4.81 4.8 0 3.34 5.01 3.37 3.52 0 5.01 0

9 6.59 6.7 3.53 3.53 3.37 1.7 6.98 5.01 0 3.29

10 3.15 6.43 0 3.19 3.28 3.36 1.7 0 3.29 0

Table 5-3: Attraction table after amplification

1 2 3 4 5 6 7 8 9 10

1 0 25.4 19 41.2 11.7 1.61 18.9 4.81 17.2 3.15

2 25.4 0 12.4 22.2 23.9 4.89 36.8 4.8 27.7 6.43

3 19 12.4 0 19 1.65 0 17.4 0 24.7 0

4 41.2 22.2 19 0 10 0 31.3 14 24.7 3.19

5 11.7 23.9 1.65 10 0 17.1 26 15.5 13.8 3.28

6 1.61 4.89 0 0 17.1 0 17.3 13.9 5.1 6.75

7 18.9 36.8 17.4 31.3 26 17.3 0 24.6 42 5.1

8 4.81 4.8 0 14 15.5 13.9 24.6 0 15.6 0

9 17.2 27.7 24.7 24.7 13.8 5.1 42 15.6 0 6.68

10 3.15 6.43 0 3.19 3.28 6.75 5.1 0 6.68 0

78

Comparing the above two tables, table 5-3 is more instructive than table 5-2. For

example, in table 5-2, the attraction value of stock 4 and stock 9 is 3.53 and the

attraction value of stock 4 and stock 10 is about the same. However, stock 4 is

actually much more attractive to stock 9 than to stock 10, as they are included in two

of the three best tracking portfolios. In contrast, the situation is largely improved in

table 5-3. The attraction value between stock 4 and stock 9 has increased to 24.7

while the attraction value between stock 4 and stock 10 remains the same. Thus, the

attraction table can provide sound guidance for the selection of stocks. After

constructing the attraction table, we categorise all the stocks into two types: picked

stocks and non-picked stocks, and then we use the following equations to select the

remaining stocks:

𝑃𝑝𝑖𝑐𝑘𝑖1∈𝑁𝑝𝑖𝑐𝑘𝑒𝑑 = ∑ 𝑃𝑖,𝑖1

𝑖∈𝑝𝑖𝑐𝑘𝑒𝑑

 (5.7)

𝑊 = ∑ 𝑃𝑝𝑖𝑐𝑘𝑖1

𝑖1∈𝑁𝑝𝑖𝑐𝑘𝑒𝑑

 (5.8)

𝑁𝑃𝑝𝑖𝑐𝑘𝑖1∈𝑁𝑝𝑖𝑐𝑘𝑒𝑑 =
𝑃𝑝𝑖𝑐𝑘𝑖1

𝑊
 (5.9)

Equation (5.7) states that the selection of a stock is based on the previous stocks that

have been selected. As long as the number of selected stocks is greater than one, then

the selection of the next stock has to incorporate the combined attraction. This

combined attraction is a result of summing up all the attractions between the current

picking stock and the already selected stocks (stated another way, except for the very

first step, the rest of the moves of the ants are not independent and are strongly

related to the nodes they have gone through), e.g., if stock 1 and stock 2 are selected,

then the probability of picking stock 𝑗 is given by the following:

𝑃𝑝𝑖𝑐𝑘𝑗 = 𝑃1,𝑗 + 𝑃2,𝑗 (5.10)

After calculating all the probabilities of picking the non-picked stocks, we normalise

them using equations (5.8) and (5.9), and then we use the normalised probability to

pick the rest of the stocks to generate a tracking portfolio. By repeatedly doing this

for 𝑛 times, we can create a new colony. Besides the above basic steps, we need to

79

insert mutation and stopping criteria into the ACO algorithm to ensure it can produce

good solutions in reasonable time.

 Mutation

As we stated Above, the movements of the artificial ants are guided by the

pheromone information. There is always a potential risk that such information would

cause the algorithm to converge to a local optimum. In order to avoid an early

convergence, it is necessary to implement mutation. We decide to do the mutation as

soon as an artificial ant reaches the food source. We need to consider the following

two problems:

1. The sequence of the nodes that the ants go through cannot affect the objective

values of the routes, so we can not implement the mutation by swapping

nodes.

2. Randomly changing a node or several nodes in a route would break their

inner attraction that makes the solutions even worse.

Considering the above issues, we decide to carry out the mutation by moving more

extra nodes, but these nodes are no longer affected by the pheromone information.

Instead, they are specially selected from a set of nodes, which can be illustrated by

the following figure:

Figure 5.5: Mutation of ACO

In figure 5.5 above, A is the universe of all the nodes between the nest and the food

resources and B is a set which contains the nodes that an artificial ant has gone

80

through. The nodes used for mutation are selected from the set C which can be

defined as 𝐶 = 𝐴 ∩ 𝐵̅. To control the computing time, we normally select five nodes

for the mutation. As for the mutation rate, it should not be set either too large or too

small, as it either dramatically increase the computational time or does not have any

substantial influence on the computing results. For the convenience of comparison,

we set the mutation rate to be the same as that of GAs (0.02).

 Stopping Criteria

The main purpose of building the ACO algorithm for solving the Index Tracking

problem is to find reasonably good solutions in reasonable time. Theoretically, the

algorithm should be terminated when all the ants in a colony follow the same path to

commute between the nest and the food sources. Practically, this is not feasible, as it

usually takes a tremendous amount of time for full covergence, especially when the

size of the colony is large as well. Therefore, our stopping criteria only checks for

partial convergence. To be more specific, the algorithm would be terminated

immediately, when the top solutions of a colony converge. The reason why we only

consider the top solutions is that they have the most powerful influence on the

updating of pheronome information. Our the stopping criteria enable interaction

between the user and the computer, and let the user decide where to stop. The

stopping criteria comprise two parts:

1. Best Solution. When the best solution achieved so far has not changed for

three colonies, the program would be stopped temporarily and the

interaction part would be triggered.

2. Interaction. The better half of the two recent colonies are listed. If the

convergence is clear, then the user can stop the program permenantly,

otherwise, the user can give the computer ‘carry on’ instruction and

refresh the stopping criteria.

One can notice that the only difference between the stopping criteria of ACO and

thoes of GAs is the interaction part. Although the Best Solution is usually good

enough, we cannot entirely rely on it, becuase sometimes we would ternimate the

algorithm too early. The following table 5-4 shows an example, which is extracted

from the computing results of the FTSE-15.

81

Table 5-4: Stopping criteria illustration

Ants No.
Colony

12
th

 13
th

 14
th

 15
th

1 0.078392 0.078392 0.078392 0.078392

2 0.08318 0.08318 0.0788 0.0788

3 0.0839 0.0839 0.0818 0.0818

4 0.084177 0.084177 0.08318 0.08318

5 0.08458 0.08458 0.0839 0.083641

6 0.087442 0.087442 0.084047 0.083648

7 0.08771 0.08771 0.084177 0.0839

8 0.087832 0.087832 0.08458 0.084047

9 0.091045 0.090299 0.088751 0.087966

…
…

…
…

…
…

…
…

…
…

n 0.105788 0.103961 0.100299 0.098511

Although the best solution is unchanged from the 12
th

 colony to the 15
th

 colony, the

15
th

 colony has not converged yet. If the algorithm is terminated at the 15
th

 colony,

we would get a very poor tracking portfolio.

Our ACO algorithm comprises five elements in total: Construct Ants Solutions,

Update Pheromones, Daemon Actions, Mutation, and Stopping Criteria. The

following are the steps of the ACO algorithm:

 Generate an initial ant colony

 Evaluate the objective value of each route used by the colony

 Deposit pheromones biased to objective values

 Repeat

- Use the heuristic information to choose the first move

- Use the attraction table to instruct the rest of the moves

- Mutation

82

- Update the pheromone information

 Until

- The user decides when to stop and report the best solution achieved

5.3 Parameters Investigation

When we use the ACO algorithm to solve the Index Tracking problem, we notice

that the changing of some parameters can have a big influence on the computing

results. Particularly, there are two parameters: the colony size and the evaporation

rate which play decisive roles in searching good tracking portfolios. In the following,

we investigate on the size of the colony and the evaporation rate, and illustrate how

they affect both the solution qualities and the computing time. Note here that, the

investigations are only implemented for the first five indices as they are sufficient

enough to give general conclusions.

 Colony Size

In the investigation, we keep other parameters unchanged and observe how the

computing results change as the colony size changes. We use the same way to

generate colonies as we generate the initial population for the R-GA. This time we

generate seven groups: f6, f9, f12, f15, f18, f21, and f24. The details are given below

(we set the evaporation rate equal to 0.5):

83

Table 5-5: Colony size for each index under different frequencies

Frequency Cardinality
Colony Size

Hang Seng DAX FTSE S&P Nikkei

f6

10 19 51 53 59 135

15 12 34 36 39 ----

20 ---- 26 27 29 ----

f9

10 28 77 80 88 203

15 19 51 53 59 ----

20 ---- 38 40 44 ----

f12

10 37 102 107 118 270

15 25 68 71 78 ----

20 ---- 51 53 59 ----

f15

10 47 128 134 147 338

15 31 85 89 98 ----

20 ---- 64 67 74 ----

f18

10 56 153 160 176 405

15 37 102 107 118 ----

20 ---- 77 80 88 ----

f21

10 65 179 187 206 473

15 43 119 125 137 ----

20 ---- 89 93 103 ----

f24

10 74 204 214 235 540

15 50 136 142 157 ----

20 ---- 102 107 118 ----

The following table shows the computing results of the above groups. For the reason

of space, we round up the tracking errors to the fifth decimal place and the

computing time to the first decimal place.

84

Table 5-6: Computational results under different input frequencies

Index K

Computational Results

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓6

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓9

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓12

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓15

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓18

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓21

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 𝑓24

TE CT TE CT TE CT TE CT TE CT TE CT TE CT

Hang
Seng

10 0.10101 5.2 0.10425 7.8 0.10215 18.7 0.10101 23.3 0.10101 22.5 0.10101 23.6 0.10101 49.0

15 0.05689 8.5 0.06046 11.2 0.05689 13.4 0.05689 11.6 0.05689 15.1 0.05689 16.8 0.05689 27.7

 DAX 10 0.07979 35.7 0.08350 32.7 0.06856 42.3 0.06907 85.3 0.06907 78.7 0.06730 119.3 0.06907 170.0

15 0.04699 26.9 0.03747 36.0 0.03824 46.6 0.03827 73.7 0.04202 66.9 0.03860 90.3 0.03515 118.2

20 0.02848 43.6 0.03114 54.7 0.03109 68.6 0.02613 95.5 0.02631 156.3 0.02593 145.9 0.02507 161.8

 FTSE 10 0.13625 31.3 0.12290 47.1 0.11264 77.2 0.12243 94.6 0.11421 133.2 0.12142 109.3 0.11517 168.0

15 0.08286 35.8 0.07670 64.1 0.06674 80.0 0.05756 73.2 0.06845 159.1 0.05791 139.2 0.05101 194.0

20 0.04412 33.4 0.04653 52.3 0.04333 81.0 0.04260 116.9 0.03733 116.6 0.04599 181.9 0.03376 174.8

 S&P 10 0.11213 44.6 0.11833 55.9 0.11331 92.8 0.10736 132.9 0.11443 88.7 0.11048 178.0 0.10000 177.3

15 0.05528 40.9 0.06232 57.4 0.06762 117.5 0.06022 67.0 0.06552 154.9 0.06165 142.4 0.06094 182.7

20 0.04191 33.1 0.05063 70.5 0.03871 113.4 0.04058 122.9 0.03649 94.4 0.04130 132.2 0.03317 181.2

 Nikkei 10 0.12301 79.0 0.11379 182.9 0.10457 161.5 0.09182 333.3 0.09908 329.0 0.09259 254.2 0.09259 434.8

85

Generally, the larger the colony size the better the solution we can achieve. For

example, the best solutions of DAX-20, FTSE-20, and S&P-20 are all achieved from

f24, which are 0.025066372, 0.033761488, and 0.033167268, respectively. On the

downside, f24 costs the most amount of computing time among the seven groups.

We conclude theoretically the colony size for each problem should be set as large as

possible, but practically it should be acceptably large so that the computing time and

the solution quality can be balanced.

 Pheromone Evaporation Rate

The evaporation rate can also influence the pheromone information, as it has the

function of forgetting the past information. In real ant colonies, the density of

pheromones decreases over time by evaporation but it does not play an important

role in finding the shortest path. However, the evaporation is very critical for the

artificial ants in searching for the optimal solution. The idea of investigating the

evaporation rate is enlightened by the Extend Double Bridge Experiment (Dorigo M,

Stützle T, 2004). In this experiment, the ants start from the ‘nest’ node. They can

choose between the upper and the lower parts of the graph. If they choose the upper

part of the graph, they can always reach the destination by going along a path of

eight lengths, while if they choose the lower part, they may find paths shorter than

eight lengths, but at the same time they may go along a path of more than eight

lengths.

Figure 5.6: Extended double bridge experiment

86

During the experiment, the researchers ran it with different evaporation rate 𝜌 =

{0, 0.1, 0.01} and the following graph in figure shows the relationship between the

number of completed path (x-axis) and the moving average of the length of the path

(y-axis). When the evaporation rate is zero, the algorithm does not converge, because

the moving average is about 7.5, which is not related to either of the paths plotted. If

the evaporation rate is 0.01 or 0.1, the algorithm converges to a single path.

However, the evaporation rate is the greatest of the three, the moving average is 6

which is a sub-optimal solution. In contrast, when the evaporation rate is 0.01 the

algorithm converges to the shortest route in all trials. In the investigation, we run the

algorithm with four different evaporation rates 𝜌 = {0.05, 0.1, 0.5, 0.9} to find out

how they affect the computing results. For the colony size, we use the data from f24.

Computing results are given below. For the reason of space, we round the tracking

errors up the fifth decimal place and the computing time to the first decimal place.

Figure 5.7: The results of the extended double bridge experiment

87

Table 5-7: Computational results under different evaporation rates

Index K

Computational results

0.05 0.1 0.5 0.9

TE CT TE CT TE CT TE CT

Hang Seng 10 0.10101 41.0 0.10101 34.8 0.10101 49.0 0.10101 36.4

15 0.05689 36.4 0.05689 37.9 0.05689 27.7 0.05689 25.5

 DAX 10 0.07361 286.1 0.07413 339.4 0.06907 170.0 0.06907 112.2

15 0.03790 229.1 0.04032 285.5 0.03515 118.2 0.03747 138.7

20 0.02052 366.2 0.02036 258.2 0.02507 161.8 0.02627 92.5

 FTSE 10 0.11517 310.3 0.11517 261.7 0.11517 168.0 0.11801 130.1

15 0.07411 313.0 0.07240 247.7 0.05101 194.0 0.07710 131.1

20 0.03650 414.7 0.03341 320.7 0.03376 174.8 0.03373 159.9

 S&P 10 0.10000 219.3 0.09965 261.2 0.10000 177.3 0.09965 110.0

15 0.06022 651.1 0.06022 477.4 0.06094 182.7 0.06220 128.8

20 0.03983 478.1 0.02956 456.9 0.03317 181.2 0.03111 103.4

 Nikkei 10 0.09460 552.4 0.09259 391.4 0.09259 434.8 0.09722 260.7

88

When we set the evaporation to 0.9, the algorithm converges very quickly and costs

the least amount of the computing time, but it usually produces the worst solutions.

If we set the evaporation rate to 0.5, the algorithm is still able to converge at most of

the time, but it only can find good solutions for the two smallest indices: Hang Seng

and DAX. As for the three larger indices, the solutions are poor. When we set the

evaporation rate to 0.1, the algorithm often produces good solutions. Particularly, it

finds the best solutions among the four for the tracking portfolios with big

cardinalities such as: DAX-20, FTSE-20, and S&P-20. When the evaporation rate is

0.05, the algorithm hardly converge and costs most amount of computing time.

Regarding both the solution quality and the computing time, we conclude that the

evaporation rate should be set to 0.1.

Even after finding the most suitable evaporation rate, however, the computing results

still do not meet our expection. In order to improve the solution quality, we decide to

make several changes on the mutation rate and the stopping criteria. Originally, the

mutation process is a stochastic event that happens with a probability of 0.02, but we

adjust the mutation rate to 1 to make it a deterministic event. From another point of

view, each ant is able to make an extra number of moves on the construction graph

by twice, which make them even more powerful in finding good soltuions. In the

first time, the extra number of moves is guided by the pheromone trails (named

intelligent moves), and in the second time, the extra number of moves are purely

random (named mutation moves). In addition, the two times of extra moves play

different functions in the algorithm. The intelligent moves can correct the wrong

decisions which ants probabilistically make based on the pheromone concentrations.

The mutation moves are used to maintain the diversity in the algorithm. For the

stopping criteria, we add more features in the interaction part, where we not only can

examine the convergence, but also can increase the the number of intelligent moves

and mutation moves. The following shows the flowchart of the ACO.

89

Generate an initial

colony and evaluate

the solution values

Update the

heuristic

information and

the attraction table

Create a new colony

For each ant:

Intelligent moves: go through 𝑲 + 𝒆𝒙𝒕𝒓𝒂

nodes based on the pheromone information and

choose the best 𝑲 nodes.

Mutation moves: randomly go through

𝑲 + 𝒆𝒙𝒕𝒓𝒂 nodes and choose the best 𝑲 nodes

Combine the recent two colonies

and sort them in a numerical

order. Only keep the better half

Stopping Criteria:

1. The best solution is unchanged for 3

colonies

2. Convergence

End

If ‘2’

If none

𝑰𝒏
𝒕𝒆
𝒍𝒍𝒊𝒈

𝒆
𝒏
𝒕

=
𝒊𝒏
𝒕𝒆
𝒍𝒍𝒊𝒈

𝒆
𝒏
𝒕 +

𝟏

𝒆
𝒙
𝒕𝒓
𝒂

=
𝒆
𝒙
𝒕𝒓
𝒂

+
𝟏

If ‘1’

90

5.4 Computational Results

As the artificial ants become more powerful, we are able to play a trade-off between

the size of the colony and the solution quality. Therefore, we use f15-10 (frequency

15 with cardinality of 10) as the colony size for the first five indices, which are 47,

128, 134, 147, and 338 respectively. For the last three indices, as the attraction tables

are too large, which contain 457 × 457, 1318 × 1318 and 2151 × 2151 elements

respectively. Therefore, we have to further cut the colony size. By emperical

experience, we set the colony size to 150, 75, and 30 for S&P 500, Russell 2000, and

Russell 3000 respectively. Table 5-8 shows the comparisons between the computing

results of ER-GA and ACO. (Intelligent and Mutation represent the number of

intelligent moves and mutation moves respectively and size represents the colony

size.

91

Table 5-8: ER-GA vs ACO

Index K
ER-GA ACO

TE CT Population TE CT Intelligent Mutation size

Hang Seng 10 0.10101 17 37 0.10101 21 2 5 47

15 0.05689 9 25 0.05689 16 2 5 47

 DAX 10 0.0673 115 102 0.0673 127 2 5 128

15 0.03515 312 68 0.03515 354 2~4 5~7 128

20 0.02021 540 51 0.02036 302 2~5 5~8 128

 FTSE 10 0.09982 135 107 0.09842 98 2~3 5~6 134

15 0.05664 429 71 0.05703 272 2~4 5~7 134

20 0.02906 980 53 0.02858 351 2~4 5~7 134

 S&P 10 0.09965 175 118 0.09935 366 5~6 5~6 147

15 0.0504 626 78 0.0504 573 5~8 5~8 147

20 0.02617 1009 59 0.02873 690 5~7 5~7 147

 Nikkei 10 0.08057 784 270 0.09259 490 7 7 338

15 0.04269 2197 180 0.04736 1374 7~9 7~9 338

20 0.0269 1041 135 0.02461 1721 7~9 7~9 338

25 0.01125 2336 108 0.02283 2413 7~12 7~12 338

 S&P 500 10 0.0726 1444 548 0.08201 517 10~11 10~11 150

15 0.03502 4369 366 0.03214 1541 10~11 10~11 150

20 0.01738 3779 274 0.02145 2375 10~12 10~12 150

25 0.01021 3140 219 0.01059 2300 10~13 10~13 150

30 0.00924 3633 183 0.00846 2957 10~17 10~17 150

 Russell 2000 30 0.01072 2640 527 0.00762 4714 15~17 15~17 75

40 0.00401 1809 395 0.00478 1380 15~21 15~21 75

50 0.00043 1148 316 0.00056 5650 15~21 15~21 75

60 0 535 264 0 2797 15~16 15~16 75

70 0 456 226 0 785 15 15 75

 Russell 3000 30 0.00794 5727 860 0.00674 1210 25 25 30

40 0.00198 5875 645 0.00155 3305 25~26 25~26 30

50 0.00059 1851 516 0.00009 3853 25~27 25~27 30

60 0 893 430 0 1283 25 25 30

70 0 771 369 0 741 25 25 30

80 0 1358 323 0 1819 25 25 30

92

In the above table, expressions such as ‘2~3’ / ‘5~6’ mean that initially ants are

allowed to take 2 ‘intelligent’ moves and 5 ‘mutation’ moves, and the number of

moves are increased through the searching process until they finally reach 3 and 6

respectively.

Again, we separate the comparison by two groups: the first four indices and the last

four inidces. In the first group, ACO beats or loses to ER-GA three times each, and

they draw 5 times, in terms of solution quality. The two solution approaches are

equally good for solving small size indices, but ACO is slightly better, because it

spends about 1176 time units less that the ER-GA does. In the second group, ACO

beats ER-GA seven times, and it loses to ER-GA eight times, and they draw five

times, in terms of solution quality. The two solution approaches spend almost the

same amount of computing time.

Overall, we conclude that the ACO algorithm works slightly better for the small size

index while the ER-GA is more productive for the large size index. Generally, the

two solution approaches are equally good. In addition, we find that the ACO

alogrithm works better either with powerful ants and small size colonies or less

powerful ants and large size colonies.

93

Chapter 6

6 .Post Analysis

6.1 Tracking Portfolios Investigation

6.1.1 Investigation Method

In the previous chapters, we use several solution approaches to deal with the Index

Tracking problem. Whatever solution approaches used, we actually try to solve two

fundamental questions.

1. Which stocks should be selected to form a good tracking portfolio for a given

index?

2. How much proportion should be given to the stocks in the tracking portfolio?

To answer the above questions, we need to use the following illustration.

94

Figure 6.1: The return of Hang Seng index and its stocks

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

10

18

29

Index

95

(The data used for the above illustration is from the Hang Seng index. For the reason

of space and clarity, we only depict return of the index (𝑇 = 1 … 50) and compare it

with three stocks from the index return, stock 10, stock 18, and stock 29.)

Considering an extreme case, where a tracking portfolio is only composed by a

single stock, which stock would you pick among the three? Arguably, everyone

would pick stock 18, because stock 18 has the most similar curve to that of the index.

Consider another case, where we need to select 𝐾 stocks to form a tracking portfolio.

Assume that we know a particular stock 𝐻 whose curve is extremely close to that of

the index. How should we pick the stocks? It might cost us tremendous amount of

time to find the optimal tracking portfolio, but to find a fairly good one, we could

select the stock 𝐻 and assign it with a very large weight, and then randomly pick the

rest stocks. Base on the above assumption, if we can find the stock 𝐻 in an index,

then we can form a good tracking portfolio. Therefore, we investigate all the stocks

in an index. Before introducing our investigation method, we need to define two

notations:

𝐷𝑖,𝑡 The difference between the return of the index and the

return of the stocks 𝑖 at time 𝑡

𝐸𝑖 = ∑ |𝐷𝑖,𝑡|

𝑡

 𝑡 = 1 … 𝑇 (name it tracking error of stocks 𝑖)

In our investigation, we first calculate the tracking error of each single stock in an

index and sort their tracking errors from the smallest to the largest, and then we

investigate each best tracking portfolio achieved to answer the following questions:

1. Is a good tracking portfolio mainly composed of stocks whose return curves

are close to that of the index (name this kind of stocks ‘close’ stocks)?

2. If yes, are they assigned with large weights?

3. How does the number of close stocks change as the cardinality changes?

We investigate the Hang Seng index first. The close stocks and the optimal

portfolios found by MIP are shown in table 6-1 and table 6-2, respectively.

96

Table 6-1: Close stocks of the Hang Seng index

Sequence Assets Tracking Error

1 30 0.836184044

2 27 0.863627405

3 12 0.906704067

4 11 0.927586793

5 28 0.936674507

6 22 0.937887916

7 24 0.943844523

8 26 0.989549926

9 3 1.023770649

10 21 1.030483113

11 13 1.037880974

12 31 1.051200381

13 18 1.053314154

14 6 1.057315272

15 4 1.067125077

16 5 1.067304409

17 14 1.082638143

18 20 1.106248613

19 15 1.115634801

20 7 1.226111461

21 8 1.245387753

22 2 1.25439917

23 25 1.328835313

24 17 1.398357754

25 19 1.415774641

26 1 1.4180224

27 9 1.428918746

28 10 1.640887392

29 23 1.779078158

30 16 2.184850543

31 29 2.485006209

97

Table 6-2: Optimal portfolio of the Hang Seng index with K=10 and K=15

K=10 K=15

assets Weight assets Weight

11 0.142085359 4 0.056649571

12 0.126630675 11 0.128981463

15 0.129587587 12 0.086145825

18 0.094112224 13 0.057174344

21 0.143762182 14 0.021298088

22 0.130762849 15 0.123751574

23 0.036352913 18 0.061180918

25 0.043006333 21 0.092843515

26 0.071053615 22 0.076711982

27 0.082646264 23 0.024972322

25 0.026960195

26 0.063606179

27 0.077692952

28 0.058045392

31 0.043985679

Six of the stocks in the optimal portfolio are from the top 10 ‘close’ stocks, which

are stocks 27, 12, 11, 22, 26, and 21 (write this as 𝐶𝑆10 = 6 and name it the ‘close’

stock effect). The total weight of these stocks takes 70% of the whole portfolio. The

portfolio tacking error is about 0.101, which is almost eight times smaller than that

of the best ‘close’ stock, stock 30. Therefore, it proves that the combination of the

stocks produces positive effects to reduce the total tracking error of the portfolio, so

we declare that the combination effect is 8 (write it as 𝐵𝑒 = 8). As the cardinality

increased to 15, eleven of the stocks in the optimal portfolio are from the top 15

‘close’ stocks (𝐶𝑆15 = 11). Moreover, it inherits all the stocks from the previous

optimal portfolio with cardinality of 10. Thus, we say the inheritance effect is 100%

(𝐼𝑒 = 100%). The total weight of them takes 80% of the whole portfolio, and the

combination effect is almost 15.

98

6.1.2 Investigation Findings

Only investigating the Hang Seng index is not sufficient to summarize a general

conclusion, because the size of the index is too small. Therefore, we would like to

carry on our investigation on other four indices: DAX, FTSE, S&P, and Nikkei. For

the reason of space, we do not list the table of the tracking error of each stock in the

indices. The following table shows the close stock effect, the combination effect, and

the inheritance effect of each index under different cardinalities. Notably, the

following figures are derived from the best tracking portfolios we have achieved so

far.

Table 6-3: Tracking portfolios investigation

Index
No.

stocks
𝐾

𝐶𝑆𝑛/𝑊

𝐵𝑒 𝐼𝑒

𝑛 = 𝐾 𝑛 = 𝑁 ∗ 30% 𝑛 = 𝑁 ∗ 50% 𝑛 = 𝑁 ∗ 80%

Hang
Seng

31 10 6/70% 6/70% 7/79% 9/96% 8.3 -----

15 11/80% 7/58% 11/80% 14/98% 14.7 100%

DAX 85 10 3/46% 6/78% 10/100% 10/100% 6.4 -----

15 4/48% 6/70% 10/87% 13/96% 12.3 40%

20 9/67% 9/67% 16/93% 18/96% 22.2 67%

FTSE 89 10 1/17% 3/45% 7/77% 10/100% 7.9 -----

15 2/21% 3/30% 8/65% 14/97% 16.3 70%

20 5/30% 6/38% 12/62% 19/97% 27.8 73%

S&P 98 10 2/30% 4/56% 7/82% 8/89% 6.7 -----

15 5/41% 8/56% 10/72% 14/94% 12.8 30%

20 7/48% 8/52% 10/66% 18/94% 23.8 100%

Nikkei 225 10 1/18% 5/63% 7/76% 10/100% 9.2 -----

15 2/21% 8/70% 8/70% 13/92% 17.3 10%

20 0/0% 6/40% 12/77% 17/92% 30.8 13%

25 2/11% 6/40% 10/53% 18/75% 66.0 20%

99

 𝐶𝑆𝑛/𝑊 represents the close stocks effect and the total percentage of weight the close

stocks take of the tracking portfolio. Let’s use the FTSE index for example; when the

cardinality is 10, 1/17% means that only one stock is selected from the top 𝐾 close

stocks to form the tracking portfolio and that close stock takes 17% of the weight of

the portfolio; 3/45% means that three stocks are selected from the top 27 (89 ×

30% ≈ 27) close stocks to form the tracking portfolio and they take about 45%

weight of the portfolio. From the above table, we find that a good tracking portfolio

is mainly composed of the top 80% ‘close’ stocks of an index. Averagely, these

stocks take about 94% of the total weight of the tracking portfolio, which leaves a

tiny proportion for the last 20% ‘close’ stocks. Among the close stocks of each index,

the higher the rank of a close stock the larger the weight it is assigned with. For

example, for the FTSE index with the cardinality of 10, only one stock is selected

from the top 10 close stocks, but it takes about 17% of the total weight of the

tracking portfolio; also, for the Nikkei index with cardinality of 10, the stock

selected from the top close stocks takes 18% of the total weight. In contrast, the last

20% of the close stocks are given almost nearly the minimum weight (1%), or

sometimes they are not even selected. (In reality, a close stock is more likely to be

the stock that takes large percentage of capitalization of an index. For example, Shell,

BP, and HSBC are more likely to be the close stocks in the FTSE index. However,

our data do not specify the details about the companies and the industry sectors of

the indices, so we are not able to make further discussion here.)

𝐼𝑒 represents the inheritance effect. For example, in the Dax-15, the 40% inheritance

means that 40% of the stocks of the tracking portfolio with cardinality 10 are

inherited by the tracking portfolio with cardinality 15.

𝐵𝑒 represents the combination effect, which shows that the bigger the cardinality the

more the combination effect. Each time the cardinality increases by five units, the

effect is increased by 1.89 times averagely. We believe the combination effect can be

used to examine the quality of a tracking portfolio. For the same index, assume that

the combination effect of a tracking portfolio with cardinality 15 is only 1.5 times

bigger than that of a tracking portfolio with cardinality of 10, and then we could

conclude that it is a poor tracking portfolio.

100

6.1.3 Further Application

Here, we would like to detail the inheritance effect, as we would like to apply it to

our heuristic solution approaches. For the GAs, we could use it to generate tracking

portfolios in a certain manner so that the evolution is able to start at a higher stage

(maturation stage) instead of the initial stage. For example, if we have achieved a

fairly good tracking portfolio of the DAX-10, to search for a considerable good

tracking portfolio for the DAX-15, we can initially generate the tracking portfolios

by combining the 10 stocks achieved from the DAX-10 with another random five

stocks. The same method could be applied to the ACO to improve the searching

ability of the algorithm, where we make the searching process ‘half deterministic’

and ‘half probabilistic’, see figure 6.2 below.

Figure 6.2: Half deterministic and half probabilistic searching

We cut the graph into two parts. Originally, the ants should probabilistically select

the nodes on both parts of the graph; however, if we know that there is a good path

(highlighted in red) on the left part, we could force the initial colony to follow that

path to narrow down the searching space. By using the inheritance effect, we believe

that we could further shorten the computing time for both of the solution approaches.

On the other hand, we have more risk to achieve sub-optimal solutions.

101

6.1.4 Computational Results

We run the ER-GA and the ACO to test the above assumption. In the test, we keep

all of the parameters the same using only the inheritance effect to search tracking

portfolios with bigger cardinalities. Note here that, we do not implement the test on

the Hang Seng index, because the computing time for both of the two scenarios is

already very short. The following tables show the comparison of the computing

results.

102

Table 6-4: Results comparison for GA

Index K
ER-GA Inherited ER-GA

TE CT TE CT

Hang Seng 10 0.101010742 17.488 ------ ------

15 0.056886088 8.735 ------ ------

 DAX 10 0.067296843 115.232 ------ ------

15 0.035154218 311.794 0.035154218 105.811

20 0.020212963 540.419 0.023789522 57.375

 FTSE 10 0.099823448 134.79 ------ ------

15 0.056638474 429.034 0.048657473 146.794

20 0.029058669 980.184 0.031018156 75.718

 S&P 10 0.099653821 175.407 ------ ------

15 0.050399037 626.029 0.053651399 53.679

20 0.026170453 1009.138 0.030197377 232.575

 Nikkei 10 0.080572321 784.257 ------ ------

15 0.042686755 2197.451 0.042379989 172.668

20 0.026897044 1041.193 0.02216469 153.71

25 0.011254701 2336.498 0.009039572 459.677

 S&P 500 10 0.072604735 1443.628 ------ ------

15 0.035021586 4369.138 0.032574883 307.751

20 0.017379756 3779.407 0.017645178 450.34

25 0.010214859 3140.091 0.008291947 451.853

30 0.009241603 3633.144 0.00420194 472.662

 Russell 2000 30 0.010717636 2639.91 ------ ------

40 0.004013996 1808.83 0.00363944 1157.31

50 0.000427548 1147.72 0.00015756 1799.29

60 0 534.66 0 149.114

70 0 456.101 0 131.223

80 0 606.544 0 140.771

 Russell 3000 30 0.007936652 5727.32 ------ ------

40 0.001983568 5874.664 0.002030017 2213.019

50 0.000585532 1850.839 0.000324913 3853.34

60 0 892.931 0 467.402

70 0 770.754 0 231.437

80 0 1358.35 0 948.711

103

Table 6-5: Results comparison for ACO

Index K size
ACO Inherited ACO

TE CT Inteligent extra TE CT Inteligent extra

Hang Seng 10 47 0.10101 21 2 5 ------ ------ ------ ------

15 47 0.05689 16 2 5 ------ ------ ------ ------

DAX 10 128 0.06730 127 2 5 ------ ------ 2 5

15 128 0.03515 354 2~4 5~7 0.03515 163 2~3 5~6

20 128 0.02036 302 2~5 5~8 0.02392 168 2~4 5~6

FTSE 10 134 0.09842 98 2~3 5~6 ------ ------ ------ ------

15 134 0.05703 272 2~4 5~7 0.05611 111 2~3 5~6

20 134 0.02858 351 2~4 5~7 0.03301 134 2~3 5~6

S&P 10 147 0.09935 366 5~6 5~6 ------ ------ ------ ------

15 147 0.05040 573 5~8 5~8 0.05365 279 5~6 5~6

20 147 0.02873 690 5~7 5~7 0.03429 111 5 5

Nikkei 10 338 0.09259 490 7 7 ------ ------ ------ ------

15 338 0.04736 1374 7~9 7~9 0.05050 287 7 7

20 338 0.02461 1721 7~9 7~9 0.02507 557 7 7

25 338 0.02283 2413 7~12 7~12 0.01256 335 7 7

S&P 500 10 150 0.08201 517 10~11 10~11 ------ ------ ------ ------

15 150 0.03214 1541 10~11 10~11 0.04554 316 10 10

20 150 0.02145 2375 10~12 10~12 0.02372 304 10 10

25 150 0.01059 2300 10~13 10~13 0.01114 290 10 10

30 150 0.00846 2957 10~17 10~17 0.00511 518 10 10

Russell
2000

30 75 0.00762 4714 15~17 15~17 ------ ------ ------ ------

40 75 0.00478 1380 15~21 15~21 0.00543 1918 15~18 15~18

50 75 0.00056 2014 15~21 15~21 0.00127 985 15~16 15~16

60 75 0 980 15~16 15~16 0 133 15 15

70 75 0 454 15 15 0 148 15 15

Russell
3000

30 30 0.00674 1210 25 25 ------ ------ ------ ------

40 30 0.00155 3305 25~26 25~26 0.00224 486 25 25

50 30 0.00009 967 25~27 25~27 0.00070 613 25 25

60 30 0 1283 25 25 0 89 25 25

70 30 0 741 25 25 0 210 25 25

80 30 0 1819 25 25 0 209 25 25

104

As shown in table 6-4, after changing the way in which the initial populations are

generated, the Inherited ER-GA is superior in terms of computing time, as the total

computing time is shortened by about 25463 time units. We also find that we do not

have to limit each solving time for the Nikkei-225 and S&P-500, because the

inheritance enables the evolution to start from the maturation stage, where large

building blocks are already formed. For the solution quality, although the ER-GA

works better with small indices (DAX, FTSE, and S&P), its computing time is four

times as long as that of Inherited ER-GA. Also, Inherited ER-GA is better both in

terms of solution quality and computing time when dealing with large indices.

The Inherited ACO also saves tremendous amount of computing time; 21802 time

units less than that of the ACO, but the solution quality is generally compromised,

shown in table 6-5.

Overall, we conclude that the inheritance effect is more suitable for the GA, as it

could help the GA to largely shorten the computing time while producing better

solutions for larger size indices.

6.2 Out-of-sample Performance

In the widespread research, many findings could simply be the product of a process

called data mining, also known as data snooping. Data mining can unintentionally be

misused, and can then produce results which appear to be significant while it actually

cannot predict future behaviour and run on a new sample of data may bear little use.

Simply by asking ourselves a question, can we look back on the data and find a

portfolio that would almost perfectly re-perform the index? The answer is very

positive. However, will this portfolio provide the same performance in the future?

Perhaps not. It is always possible that enough data snooping can detect a portfolio

that would have worked in the past by chance and fail to perform in the future. In

order to check the stability of our solution approach, we decided to run simulations

on the out-of-sample data. As stated in the previous part, our observation period

is 0~50. We would like to know how our model performs out-of-sample. We choose

observation times 51~60 as the out-of sample data to test if there is a huge

105

discrepancy between the model prediction and the real index. The following figures

show the performance:

Figure 6.3: Hang Seng, K=10

Figure 6.4: Hang Seng, K=15

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Hang Seng, K=10

Index

Portfolio

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Hang Seng, K=15

Index

Portfolio

106

Figure 6.5: DAX, K=10

Figure 6.6: DAX, K=15

-0.03

-0.02

-0.01

0

0.01

0.02

50 52 54 56 58 60 62

DAX, K=10

Index

Portfolio

-0.03

-0.02

-0.01

0

0.01

0.02

50 52 54 56 58 60 62

DAX, K=15

Index

Portfolio

107

Figure 6.7: DAX, K=20

Figure 6.8: FTSE, K=10

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

DAX, K=20

Index

Portfolio

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

FTSE, K=10

Index

Portfolio

108

Figure 6.9: FTSE, K=15

Figure 6.10: FTSE, K=20

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

FTSE, K=15

Index

Portfolio

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

FTSE, K=20

Index

Portfolio

109

Figure 6.11: S&P, K=10

Figure 6.12: S&P, K=15

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

S&P, K=10

Index

Portfolio

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

S&P, K=15

Index

Portfolio

110

Figure 6.13: S&P, K=20

Figure 6.14: Nikkei, K=10

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

50 52 54 56 58 60 62

S&P, K=20

Index

Series2

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Nikkei, K=10

Index

Portfolio

111

Figure 6.15: Nikkei, K=15

Figure 6.16: Nikkei, K=20

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Nikkei, K=15

Index

Portfolio

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Nikkei, K=20

Index

Portfolio

112

Figure 6.17: Nikkei, K=25

In the above figures, the out-of-sample performance of Hang Seng-10&15, DAX-15,

FTSE-20, and Nikkei 225-25 is outstanding, because majority parts of the tracking

portfolio curve can match with that of the corresponding index. The rest of the out-

of-sample performance is acceptable, but there are four exceptions: FTSE-10&15,

S&P-10, and Nikkei 225-10, where large out-of-sample variations occur. By further

observation, we notice that the large variations usually happen when the cardinality

is small, and when the cardinality is increased the out-of-sample performance would

become better, such as the curves of FTSE-20, S&P-20, and Nikkei 225-25 are very

close to the curves of their corresponding indices. Overall, we conclude that our

model is able to produce acceptable results to track the future performance of an

index.

-0.04

-0.02

0

0.02

0.04

0.06

0.08

50 52 54 56 58 60 62

Nikkei, K=25

Index

Portfolio

113

Chapter 7

7 .Conclusion

7.1 Summary

In this thesis, we have developed solution approaches for the Index Tracking

problem. We develop two solution approaches to solve the problem, which are

Genetic Algorithms, and Ant-colony Optimization. We have presented mathematical

formulations for each of the solution approaches, along with the computational

results. The computing results of the MIP solution approach are used as a benchmark

to measure the performance of the other approaches.

In Chapter 2, we reviewed the previous works on the Index Tracking problem, as

well as the portfolio management theory in general. We observe that the genetic

algorithms used for the Index Tracking problem often consider only one problem or

a limited number of small size problems. In addition, we find that the genetic

algorithms still have space to be improved from several aspects, such as the

reproduction and mutation operators. We also observe that very few researchers have

used the Ant-colony optimization to solve the index tracking problem. We believe it

is a good candidate.

In Chapter 3, we consider the Mixed Integer Programming solution approach. We

first review BMC’s MIP solution approach. Based on their work, we build our MIP

114

approach and present its formulation. We limit the total computing time to 7200 time

units and present the computational results for the eight market indices. We find that,

except for the Hang Seng index, the optimal solution cannot be achieved within the

given time limitation.

In Chapter 4, we initially present the genetic algorithm from three aspects: initial

population generation, reproduction and crossover, and mutation. Then we present

the basic IT-GA and the EIT-GA. We use the EIT-GA to solve the eight market

indices and compare the computational results with those of the MIP. We conclude

that generally the EIT-GA is better than MIP both in terms of solution quality and in

computing time. However, the EIT-GA is not able to build reliable relations among

the cardinality, the initial population size, and the size of the index. Therefore, we

consider the R-GA. We first introduce the Schema Theorem which serves as the

foundation for the R-GA. Then we investigate the initial population size and find the

most suitable frequency to construct the solid relations among the cardinality, the

initial population size, and the size of the index. We also enhance the algorithm and

use the enhanced algorithm ER-GA to solve the eight market indices. In the end, we

compare the ER-GA with the EIT-GA. We conclude that the ER-GA is preferable,

because we can immediately generate a suitable population size for a given problem

to help the algorithm find fairly good solutions.

In Chapter 5, we consider the Ant-colony Optimization for the Index Tracking

problem. Initially, we give an introduction about the capabilities of our artificial ants.

Then we build a basic algorithm by following three steps: construct ant solutions,

update pheromone information, and daemon action. We use the basic algorithm to

implement investigations on two parameters: colony size and evaporation rate.

Regarding the findings from the investigations, we build the ACO algorithm to solve

the eight market indices. In the end, we compare the computing results of the ACO

with the ER-GA. We conclude that the two solution approaches are equally good.

Moreover, we find that the ACO alogrithm works better either with powerful ants

and small size colonies or less powerful ants and large size colonies.

In Chapter 6, we implement the post analysis on the computing results. We first

investigate the stocks and the best tracking portfolios of the first five indices. We

discover several new findings for our research such as the close stock effect, the

115

combination effect, and the inheritance effect. In addition, we state how we can put

these findings into practice. Particularly we use the inheritance effect to improve the

ER-GA to build a more powerful algorithm called Inherited Roulette GA. We find

that it not only shortens the computing time largely, but also finds better results for

the large size indices. We also apply the inheritance effect to the ACO algorithm and

conclude that the inheritance effect is not suitable for the ACO algorithm. Finally,

we test the model by out-of-sample data. The out-of-sample performance shows that

the model has strong stability in tracking the index out-of-sample.

7.2 Contribution to Knowledge

Chapter 2 proves that we are familiar with the relevant previous works of both the

portfolio management theory and the Index Tracking. The solution approaches

presented in Chapters 3-5 are, to the best of our knowledge, original works. The

Inverse Triangle GA, the ACO algorithm, and the Inherited Roulette GA/ACO have

not been presented elsewhere in the literature. In the following, we list the main

contributions of our thesis:

1. The solution approaches developed can deal with a variety of data sets. The

smallest data set is the Hang Seng index which contains only 31 stocks while

the largest one is the Russell 3000 which contains 2151 stocks.

2. We developed the IT-GA, which finds the best solutions by continuously

narrowing down the searching space. It plays a trade-off between the

diversity of the algorithm and the computational time. The empirical studies

show that it is able to produce sound solutions.

3. For the Roulette GA, we successfully construct solid relations among the

cardinality, the population size, and the size of the index. We believe by

using the equation: 𝑛 ≈
12∗𝑁

𝐾
 we are able to immediately generate a suitable

size of initial population for a given problem to help the algorithm produce

fairly good solution result. We also proved that the ‘semi-optimization’

operator used for breeding is better than the crossover operator. Additionally,

instead of using a fixed ‘maximum generation’ as the stopping criteria, we

116

created a more flexible one, which is used to check the changing the best

solution of an algorithm.

4. We are one of the pioneers to use the ACO algorithm to target the index

tracking problem. Through the empirical experiments, we find the most

suitable evaporation rate (0.1) for the algorithm to deliver high quality

solution in good computational time. We also find that the ACO works

equally well either with powerful ants and small size colonies or less

powerful ants and large size colonies.

5. In the post analysis, we discover the close stock effect, the combination

effect, and the inheritance effect. Particularly, we apply the inheritance effect

to the ER-GA and make the algorithm even more powerful in searching for

good solutions.

We would like to point that, the solution approaches are tested by different sizes of

indices, which has previously been done by very few people in the field. Therefore,

the solution approaches are reliable, and we encourage people to use them in real-

case practice. Also, we find out that Nigam and Agarwal (Ashutosh Nigam and

Yogesh K. Agarwal, 2013) used the ACO to solve the index fund problem after we

have completed the ACO solution approach. We declare that the two works are

independent from each other.

7.3 Future Ideas and Directions

In this thesis we have presented and evaluated a number of solution approaches for

the Index Tracking. However, there are a number of extensions and enhancements

that could be considered:

We can use the close stock effect to select stocks to generate portfolios as we know

that most of the stocks in the optimal or good tracking portfolios are selected from

the top 80% of the close stocks. Usually, the top 20% close stocks are the most

important ones, as they often constitute the largest portion in the portfolios.

117

Therefore, when we generate portfolios, we enable the top close stocks to have more

chances of being selected.

The inheritance effect shows that there are inner connections between the good

tracking portfolios with different cardinalities. One could use a ‘build-up’ approach,

where the cardinality is slightly increased from 1 to the targeting number 𝐾, to solve

the index tracking problem. For example, once the best close stock is found, one

could use it to find a good tracking portfolio which includes two stocks, and then use

these two stocks to find a good tracking portfolio with three stocks, etc., until it

reaches the targeting cardinality 𝐾. Alternatively, one could take a hybrid solution

approach, where it combines the MIP with GAs or ACO. The MIP is used to find

portfolios with small cardinalities, such as 𝑘 is equal to 3 or 5, and then use the

finding stocks to search for good portfolios with larger cardinalities by using the

heuristic methods.

118

Reference

Alexander, C., 2001. Market models: A guide to financial data analysis. s.l.:John Wiley &

Sons.

Ashutosh Nigam and Yogesh K. Agarwal, 2013. Ant colony optimization for index fund

problem. Journal of Applied Operational Research, 5(3), pp. 96-104.

B. Miller and D. Goldberg, 1995. Genetic algorithms, tournament selection, and the effects

of noise. Complex Systems, pp. 193-212.

Beasley, J.E., Meade, N. and Chang. T.J., 2003. An evolutionary heuristic for the index

tacking problem. European Journal of Operational Research 148, pp. 621-643.

Beasley, J. E., 2013. Portfolio optimisation: models and solution approaches. In Tutorials in

Operations Research , Volume 10, pp. 201-221.

Canakgoz, N. and Beasley, J., 2009. Mixed-integer programming approaches for index

tracking and enhanced indexation. European Journal of Operational Research, Volume 196,

pp. 384-399.

Carhart, M., 1997. On Persistence in Mutual Fund Performance. Journal of Finance, 52(1),

pp. 57-82.

Chang-Chun Lin, Yi-Ting Liu., 2008. Genetic algorithms for portfolio selection problems

with minimum transaction lots. European Journal of Operational Research, Volume 185,

pp. 393-404.

Charles Thomas, Peter Westaway and Todd Schlanger, n.d. Vanguard UK Adviser. [Online]

Available at: https://www.vanguard.co.uk/adviser/adv/home

[Accessed 4 11 2014].

Chen, C. and Kwon, H. R., 2012. Robust portfolio selection for index tracking. Computers

& Operations Research, Volume 39, pp. 829-837.

Coleman, T.F., Henninger, J., and Li, Y., 2006. Minimizing tracking error while restricting

the number of assets. Journal of Risk, Volume 8, pp. 33-56.

119

David Colwell, Nadima El-Hassan, and Oh Kang Kwon, 2007. Hedging diffusion processes

by local risk minimization with applications to index tracking. Journal of Economic

Dynamics & Control, Volume 31, pp. 2135-2151.

Deneubourg, J.-L., Aron, S., Goss, S., &Pasteels, J.-M., 1990. The self-organizing

exploratory pattern of the Argentine ant. Journal of Insect Behaviour , Volume 3, pp. 159-

168.

Dorigo M, Stützle T, 2004. Ant Colony optimization. Cambridge: MA: MIT Press.

Elton, E., 2007. Modern portfolio theory and investment analysis.. New York: Wiley.

Fama, E. F., & French, K. R., 1993. Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics, Volume 33(1), pp. 3-56.

Fama, E. F., & French, K. R., 1996. Multifactor explanations of asset pricing anomalies. The

Journal of Finance, Volume 55(1), pp. 55-84.

Fama, E. F., and French, K. R., 1992. The Cross-Section of Expected Stock Returns. Journal

of Finance, 47(2), pp. 427-466.

Fang, Y. and Wang, S.Y., 2005. A fuzzy index tracking portfolio selection model. Lecture

Notes in Computer Science, Volume 3516, pp. 554-561.

Focardi, S.M. and Fabozzi, F.J., 2004. A methodology for the index tracking based on time-

series clustering. Quantitative Finance, Volume 4, pp. 417-425.

Francesco Corielli and Massimiliano Marcellino, 2006. Factor based index tracking. Journal

of Banking & Finance, Volume 30, pp. 2215-2233.

Goldberg, D. E., 1989. Genetic Algorithm in Search, Optimization, and Machine Learning.

s.l.:Addison Wesley Longman.

Goss et al, 1989. Self-organised shortcuts in the Argentine ant. Naturwissenschaften,

Volume 76, pp. 579-581.

Guastaroba, G., & Speranza, M. G., 2012. Kernel search: An application to the index

tracking problem. European Journal of Operational Research, 217(1), pp. 54-68.

Haugen, R.A. and Baker, N.L., 1990. Dedicated stock portfolios. Journal of Portfolio

Management, 16(4), pp. 17-22.

120

Holland, J., 1975. Adaptation in Natural and Artificial Systems: An Introduction Analysis

with Application in Biology, Control, and Artificial Intelligence. s.l.:MI.

Jeurissen, R. and Van Den Berg, J., 2005. Index Tracking Using a Hybrid Genetic

Algorithm. s.l., Computational Intelligence Methods and Applications Conference.

Kyong Joo Oh, Tae Yoon Kim, and Sungky Min, 2005. Using genetic algorithm to support

portfolio optimization for index fund management. Expert Systems with Applications,

Volume 28, pp. 371-379.

Lai, K. K., Yu, L., Wang, S. Y. and Zhou, C. X., 2006. A Double-Stage Genetic

Optimization Algorithm for Portfolio Selection. Springer-Verlag , pp. 928-937.

Larsen Jr., G.A. and Resnick, B.G., 1998. Empirical insights on indexing. Journal of

Portfolio Management, 25(1), pp. 51-60.

Lee, J.Y., Kim, T.Y. and Min, S., 2005. Portfolio Optimization for Index Fund Management

based on Genetic Algorithm: A Stratified Approach. s.l., 대한산업공학회 2005

추계학술대회 논문집.

Lin, C.M. and Gen, M., 2007. An Effective Decision-Based Genetic Algorithm Approach to

Multiobjective Portfolio Optimization Problem. Applied Mathematical Sciences, Volume 5,

pp. 201-210.

Lintner, 1965. Security Prices, Risk, and Maximal Gains from Diversification. Journal of

Finance, 20(4), pp. 587-615.

Maringer, D., 2008. Constrained index tracking under loss aversion using differential

evolution. Studies in Computational Intelligence, Volume 100, pp. 7-24.

Markowitz, H., 1952. Portfolio Selection. Journal of Finance 7 (1), pp. 77-91.

Markowitz, H., 1959. Portfolio selection: Efficient Diversification of Investments. New

York: Wiley.

Markowitz, H., 1991. Portfolio Selection: Efficient Diversification of Investments. New

York: Wiley.

Mitchell, M., 1998. An Introduction to Genetic Algorithms. 6 ed. London: Massachusetts

Institute of Technology.

Mossin, 1966. Equilibrium in a Capital Asset Market. Econometrica, 34(4), pp. 768-783.

121

Okay, N. and Akman, U., 2003. Index tracking with constraint aggregation. Applied

Economics letters, Volume 10, pp. 913-916.

Orito, Y., Tamamoto, H. and Yamazaki, G., 2003. Index Fund Selections with Genetic

Algorithms and Heuristic Classifications. Computers & Industrial Engineering, Volume 45,

pp. 97-109.

Pandari, A.R., Azar, A., and Shavazi, A.R., 2012. Genetic algorithms for portfolio selection

problem with non-linear objectives. African Journal of Business Management, Volume 6,

pp. 6209-6216.

Papadimitriou and Steiglitz, 1998. Combinatorial optimization: algorithms and complexity.

New York: Dover.

Roll, R., 1977. A Critique of the Asset Pricing Theory's Tests Part 1: On Past and Potential

Testablility of the Theory. Journal of Financial Eonomics, 4(2), pp. 129-176.

Ross, S., 1976. The Arbitrage Theory of Capital Asset Pricing. Journal of Ecnomic Theory ,

13(3), pp. 341-360.

Rudd, A., 1980. optimal selection of passive portfolios. Financial Management, pp. 57-66.

Ruiz-Torrubiano, R., & Suarez, A., 2009. A hybrid optimization approach to index tracking.

Annals of Operations Research, 166(1), pp. 57-71.

Shapcott, J., 1992. Index Tracking: Genetic Algorithms for Investments Portfolio Selection,

s.l.: EPCC-SS92-24.

Sharpe, W., 1964. Capital asset prices: A theory of market equilibrium under conditions of

risk. Journal of Finance 19 (3), pp. 425-442.

Sharpe, W. F., 1966. Mutual fund performance.. The Journal of Business, Volume 39(1), pp.

119-138.

Sharpe, W. F., 1975. Adjusting for risk in portfolio performance measurement. Journal of

Portfolio Management, Volume 1(2), pp. 29-34.

Sharpe, W. F., 1994. The Sharpe ratio. Journal of Portfolio Management, Volume 21(1), pp.

49-58.

Soam, Palafox, and Iba, 2012. Multi-Objective Portfolio Optimization and Rebalancing

Using Genetic Algorithms with Local Search. Japan, The University of Tokyo.

122

Treynor, J., 1961. Towards a theory of market value of risky assets. Unpublished

Manuscript.

Tun-Jen Chang, Sang-Chin Yang, Kuang-Jung Chang, 2009. Portfolio optimization

problems in different risk measures using genetic algorithm. Expert Systems with

Applications, Volume 36.

Wang, M. H., 2012. A mixed 0–1 LP for index tracking problem with CVaR risk constraints.

Springer Science+Business Media, Volume 196, pp. 591-609.

Wilmott, P., 1998. Derivatives: The theory and practice of financial engineering.

Chichester: John Wiley and Sons Ltd.

Wright, S., 1984. Evolution and the Genetics of Populations: Genetics and Biometric

Foundations v. 1 (Genetic & Biometric Foundations). s.l.:New Edition. University of

Chicago Press.

Yao, D.D, Zhang, S, and Zhou, X.Y., 2006. Tracking a financial benchmark using a few

assets. Operations Research, Volume 54, pp. 232-246.

Yu, L., Zhang, S., and Zhou, X.Y., 2006. A downside risk analysis based on financial index

tracking models. Stochastic Finance, pp. 213-236.

