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Abstract. In this paper we explore the combination of text-mining,
un-supervised and supervised learning to extract predictive models from
a corpus of digitised historical floras. These documents deal with the
nomenclature, geographical distribution, ecology and comparative mor-
phology of the species of a region. Here we exploit the fact that portions
of text in the floras are marked up as different types of trait and habi-
tat. We infer models from these different texts that can predict different
habitat-types based upon the traits of plant species. We also integrate
plant taxonomy data in order to assist in the validation of our models.
We have shown that by clustering text describing the habitat of different
floras we can identify a number of important and distinct habitats that
are associated with particular families of species along with statistical
significance scores. We have also shown that by using these discovered
habitat-types as labels for supervised learning we can predict them based
upon a subset of traits, identified using wrapper feature selection.

1 Introduction

In the last two decades, there has been a surge in data related to biodiversity
of plants through, for example, on-line publications, DNA-sequences, images
and metadata of specimens. Much of the new data is characterised by its semi-
structured, temporal, spatial and 'noisy’ nature arising from disparate sources.
Here, we focus on the use of textual data in floras. These are the traditional taxo-
nomic research outputs from organisations such as the Royal Botanical Gardens
at Kew, London, and deal with the nomenclature, geographical distribution,
ecology and comparative morphology of the species of a region, explicitly linked
to defined taxonomic concepts. We exploit the use of data mining (and in par-
ticular text mining) in combination with machine learning classifiers in order to
build predictive models of habitat based upon plant traits.

Text mining has grown in popularity with the digitisation of historical texts
and publication [12]. In particular, the use of text mining for bioinformatics data
has led to a number of different approaches. For example, medline abstracts
have been mined for association between genes, proteins and disease outcome



[11]. These can vary from simple statistical approaches to more complex concept
profiles as developed in [8] where a measure of association between a pair of
genes is calculated based not only on the co-occurrence of entities in the same
document, but also on indirect relations, where genes are linked via a number
of documents. An association matrix for gene-pairs can be generated, where
each entry represents the strength of the relationship between genes, based on a
database of scientific literature. Business Intelligence is another area where text
mining has proved popular in relation to tweet messages and sentiment analysis
[5]. In ecology, the use of text mining is a little less explored though there is a
growing interest in the use of these approaches to extract knowledge [14].

There is a growing effort to taking a predictive approach to ecology [3] with
the availability of larger and more diverse datasets. If we can build models that
can predict biodiversity or species distribution, for example, then we will have
greater confidence that the models capture important underlying characteristics.
A related discipline, ‘systems ecology’, encourages a focus on holistic models
of ecosystems [10]. This follows the success of similar approaches in molecular
biological applications Many novel techniques developed from bioinformatics can
be translated to the ecological domain [15]. Indeed, here we make use of a statistic
that was previously developed for validating clusters in microarray data.

In this paper, we explore the use of text-mining where we exploit the fact
that the flora that we analyse are marked-up to distinguish between descrip-
tions of different plant traits and habitats. We cluster habitat texts and use a
statistic (originally designed to validate clusters of genes from microarray ex-
periments) to validate the discovered habitat-types against the plant taxonomy.
We then exploit the trait texts to build probabilistic classifiers [6] for predicting
the habitat clusters. The motivation for this research is to permit exploration of
taxonomic and functional trait diversity. This will lead to better plant functional
type classifications for input to vegetation models under differing climate change
scenarios. From this, we can gain a better understanding of plant species distri-
bution, vital for effective species and habitat conservation. In the next section
we describe the general pipeline that we have developed to build these predictive
models from the marked up text and plant taxonomy. We also describe the prob-
abilistic models and statistics that we use to assess our results. In the results
section we document the results from the different stages of the pipeline with
insights from plant ecology before concluding.

2 Methods

2.1 Data

The Flora of Tropical East Africa (FTEA) is one of the largest regional tropical
Floras ever completed, covering 12,500 wild plant species from Uganda, Kenya
and Tanzania. Together with Flora Zambesiaca and Floras Somalia, these floras
cover equatorial, tropical and subtropical biomes of [16] and major phytochoria
of [17]. Virtually all the main vegetation types are represented. These floras
have been digitised to create the EFLORAS database - a unique data source
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Fig. 1. Pipeline for Converting Free Marked-Up Flora Text into Predictive Models of
Ecosystems

of tropical plant species distribution, ecology and morphology, together with
historical data on plant collectors [9] in the EFLORAS corpus. Each document
represents a tazon (in this case a species) which is identified by a unique ID and
contains a digitised paragraph, tagged as to whether it describes a number of
different characteristics: habitat, habit, leaf, fruit, or seed (flower features were
not available for this study). In total there are 8252 documents (i.e. species),
containing each paragraph. Standard text mining procedures were employed for
each paragraph type in order to remove stop-words, white spaces, punctuation
and numbers, and to stem all necessary words [4]. This results in an n (terms)
by m (documents) matrix for each paragraph, where cells contain the number of
times a term has appeared in the corresponding document. Terms can include
anything such as ‘bilobate’, ‘golden’ and ‘elongated’ reflecting traits but also
other terms such as ‘beautifully’ and ‘actually’ reflecting a particular author’s
writing style.

2.2 Experiments

We exploit the text concerning plant traits to predict habitat. Therefore, the
matrices for all types of trait are combined into a single document term matrix,
the trait matriz, for all types except habitat. Clearly, the combined trait matrix
and the habitat matriz are sparse and any terms that appear in less than 10% of
all documents are removed from both. This reduces the size of the trait matrix
to 759 terms, and the habitat matrix to 106. We use the tm package in R for
all of this processing [4]. Having processed the text into two matrices: one that



represents the plant traits and the other that represents the habitat character-
istics, we exploit probabilistic clustering to the habitat data in order to identify
different types of habitat. We found that a simple Expectation Maximisation ap-
proach to clustering [1] identified meaningful clusters without the need to supply
the number of clusters. We exploit plant taxonomy information to validate these
clusters. This contains details of the plant family, genus, and species for each
flora document. We make use of a statistic previously developed for assessing
clustering in microarray data against known gene functional information [13].
This NBH statistic is used to score the significance of each plant family being
associated with a particular habitat based upon the number of times a plant
family is associated with it, and the number of times the family is associated
with others. This probability score is based on the hypothesis that, if a given
habitat, 4, of size s;, contains x documents from a defined family of size kj,
then the chance of this occurring randomly follows a binomial distribution and
is defined by:

k) T kj—x

pr(observing = docs from family j) = (52 )p”q

where p = s;/n,
g=1-p

As in [13] we use the normal approximation to the binomial to calculate the
probability where:

2= (@ w)o,
o = kjpq

This cluster probability score is used to identify statistically significant families
allocated to each habitat (at the 1% level).

The cluster labels identified through the clustering are then used to identify
predictive features in the trait matrix using a wrapper feature selection approach
[7] to explore combinations of predictive terms. We use the Naive Bayes Classifier
[6] as the classifier for the wrapper as this was found to be the most predictive.
Whilst we expect there to be interesting interactions between terms, it appears
that the simplicity of the Naive Bayes is suitable to classifying a large number
of habitats by minimising parameters. What is more, the flexibility of Bayesian
classifiers allow us to use different nodes as predictors so we can use the resultant
models to predict both neighbouring plant traits as well as habitat type.

The Naive Bayes classifier makes the simplifying assumption that each feature
is independent of each other given the class. This corresponds to the efficient
factorization

p(zle) = [Ti=, p(xile)

Assuming uniform priors, a Bayesian estimate of p(z;|c) is given by

Peigle) =



where s is the number of discretized states of the gene variable X, n(x;p|c) is the
number of cases in the dataset where X; takes on its pth unique state within the
samples from class ¢, and n(c) = Z;zl n(zip|c) is the total number of samples
from class c. From p(z|c), an estimate of p(c|z) is calculated using Bayes rule
and the resulting classification rule assigns the sample x to the class associated
to the highest estimated probability.

Having identified the relevant features to predict habitat type, we explore
how predictive these features are using a Naive Bayes classifier under a 10-fold
cross-validation regime. Finally, we explore the interactions between features
within each habitat type by carrying out ‘what if’ experiments on a sample
of habitats and build Bayesian network structures from data associated with
each habitat type to see if any traits / network-of-traits are highlighted for that
habitat in particular. The general pipeline is illustrated in Figure 1.

3 Results

3.1 Discovering Habitat Clusters

Having clustered the data into 9 different habitats based upon the document
term matrices generated from the habitat corpus, the individual term frequencies
were calculated and explored in the context of habitats that they likely represent.
The following descriptions could be elicited from experts based upon the terms
associated with each habitat cluster.Habitat O - appears to reflect vegetation in
wet places that are largely, but not exclusively, upland (For the remainder of the
paper we refer to this habitat type as WETLANDS - WET when abbreviated).
Habitat 1 reflects a mixture of woody and herbaceous vegetation in drier con-
ditions, including deciduous types (DECIDUOUS BUSHLAND - BUSHLAND).
Habitat 2 clearly reflects lowland and upland, wetter forest types (RAINFOR-
EST). Habitat 3 contains a variety of upland vegetation (MONTANE). Habi-
tat 4 appears to represent disturbed vegetation and cultivation (DISTURBED)
Habitat 5 contains vegetation in open sites, and margins including cultivation,
similar to 4 and not readily separable (OPEN/DISTURBED - OPEN). Habitat
6 is large and contains a combination of open woody and herbaceous vegetation
in wetter areas, including evergreen types (WOODLAND + WOODED GRASS-
LAND - WOODED). Habitat 7 is a mixture of drier lowland forest, scrub and
evergreen bush (FOREST 4+ SCRUB + BUSH - SCRUB). Habitat 8 contains
mixed habitats including rainforest and dry vegetation (FOREST + SCRUB +
BUSH - SCRUB2).

The distribution of documents to habitat varied dramatically. In general, the
three larger clusters (habitats 1, 6 and 8) were less specific and generally mixed
different habitat-types. For this reason, these were omitted from the feature
selection and classification analysis though further work will involve exploring
finer grain clusters to split these into more detail. The identified habitats were
validated by using the NBH statistic [13]. The distribution of all plant families
occurring in the texts over each specific habitat were explored. Families with an



NBH statistic with p values at less than the 1% level were selected and com-
pared to the distribution over the other habitats in order to highlight the specific
association between that family and the discovered habitat (shown in Figure 2).
These results highlighted some expected families of plants based upon their
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Fig. 2. Significant Plant Families for 2 Selected Habitats Using the NBH Statistic
(denoted with an ‘x’) Compared to the Distribution over all Other Habitats (Denoted
by Error Bars)

habitat types: Habitat 0 (WET) is clearly dominated by families of aquatic and
marshplants (figure 2a). Habitat 1 (BUSHLAND) contains Burseraceae, Legu-
minosae, Capparidaceae which are dominant dry bushland components. Portu-



lacaceae is also characteristic of this type of habitat. Habitat 2 (RAINFOREST)
contains herbs and understory shrub/treelet families are well represented (includ-
ing ferns), followed by tree families (figure 2b). Habitat 3 (MONTANE) contains
montane ferns. Habitat 4 (DISTURBED) are mostly families with weedy species
which make sense for disturbed regions (figure 2¢). Habitat 5 (OPEN) includes
a mixture of herbaceous and woody families. Habitat 6 (WOODLAND) families
are a mixture and this is not surprsing considering the large mixed habitats that
were identified earlier. It is intriguing as to why the mistletoe families are so
prominent (Loranthaceae, Viscaceae, Santalaceae). Habitat 7 (SCRUB) families
are scrub component families and Habitat 8 (SCRUB2) fits with forest herbs
shrubs and trees. For all identified families the p-value compared to the distri-
butions of other families and habitats illustrate that they are well separated and
significant.

3.2 Plant Trait Feature Selection and Classification

We now turn to the plant trait documents. We wish to use these to predict habi-
tat type. A wrapper feature selection procedure was carried out on the plant
traits to identify combinations of traits that characterise the different habitat
clusters. A greedy search scored with classification accuracy was used to identify
the features. Figure 3 illustrates the identified features and how the expected
frequencies of these terms vary for each habitat type. For example, the term
FRUIT_exsert representing the term ‘exsert’ in the text describing ‘fruit’ is iden-
tified as relevant and, as can be seen here, has a much higher expected frequency
in scrub habitats compared to others. Features marked with an asterisk ‘*’ were
those that were expected to be good at discriminating between the habitats.
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Fig. 3. Identified Features (using Naive Bayes Wrapper) - Expected Frequencies for
each Habitat



- HO H2 H3 H4 H5 HT7 ||[AUC
Habitat0: 0.06 0.05 0.01 0.03 0.01 0.01{] 0.70
Habitat2: 0.05 0.15 0.01 0.03 0.01 0.03|| 0.71
Habitat3: 0.02 0.02 0.02 0.02 0.00 0.01|| 0.69
Habitat4: 0.03 0.03 0.01 0.08 0.02 0.01{] 0.70
Habitat5: 0.02 0.03 0.01 0.05 0.02 0.02|| 0.64
Habitat7: 0.02 0.03 0.00 0.03 0.01 0.07|| 0.75
Wtd Avg.: - - - - - - 10.70
Table 1. Classification Results (Confusion Matrix and AUC) of Habitats Given Fea-
tures as Percentages (10 fold Naive Bayes Classifier)

The results of applying 10-fold cross-validation to predicting the habitat type
with Naive Bayes is shown in Table 1. The predictive accuracy varied depending
on the habitat with Habitat 7 (SCRUB) being the most accurately predicted.
The table shows the distribution of Areas Under the ROC curves for each habitat.
The confusion matrix indicated the typical misclassifications involved mistakenly
classifying Habitats 0 (WET) and 2 (RAINFOREST), and 4 (DISTURBED) and
5 (OPEN) which makes sense as vegetation could easily overlap between these.

3.3 ‘What if?’ Experiments

Having identified both habitat type and plant traits relevant to predicting habi-
tat type, we explore the interaction discovered between the different features.
This allows us to explore combinations of terms as well as their relationship to
different habitats. Figure 4 illustrates the expected frequencies as inferred from
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Fig. 4. ‘What if’ Experiments Illustrating Distributions of Key Traits Using Different
Observations on HABITAT annual (left) and HABITAT tree (right)

the predictive model for some selected plant traits. The three bars in Figure 4a



represent expected frequencies for the other traits when HABIT _annual is set to
0, 1 and 2 respectively. Terms in brackets illustrate the most probable habitat
given the observation.

For the scenario in Figure 4a where HABIT_annual=0 is observed, the most
likely habitat is RAINFOREST, and the highest expected values are for HABIT_herb,
HABIT stem and SEED_seed. This is somewhat counterintuitive as the features
herb, stem and seed are associated with annuals, but here annual has a fre-
quency of zero. For HABIT _annual=1, the most likely habitat is DISTURBED,
with highest conditional expected frequencies for HABIT stem, HABIT herb
and HABIT branch. For HABIT _annual=2, the most likely habitat WET, with
highest conditional expected frequencies for HABIT stem, HABIT herb and
HABIT branch, while HABIT _puberulous is 0. This scenario makes sense: As
the frequency of HABIT annual is increased, so too are the probabilities of
observing the ‘annual related’ features (stem, herb, branch etc.). There are com-
paratively few annuals in rainforests but as expected they are a major element of
disturbed habitats. In addition, very high numbers of annuals appear to be as-
sociated with the wet habitat and these plants apparently are never puberulous
(shortly hairy). Aquatic plants are frequently glabrous, that is, without hairs.

Unlike HABIT-annual, if we observe HABIT tree as either 0,1 or 2 (see Fig-
ure 4b), the most likely habitat is always RAINFOREST. This could be be-
cause the habitat is more species diverse. However, the intermediate scenario
HABIT tree=1 gives the highest probability for habitat 2. This is because RAIN-
FOREST is a rich habitat which contains both tree and non-tree species. It could
be that HABIT tree=2 precludes non-tree species typical of RAINFOREST.

3.4 Networks of Traits

For the final piece of analysis, we explored learning network structures for differ-
ent habitat-types by splitting the data accordingly and learning networks using
the K2 algorithm of [2]. Some sample networks are documented in Figure 5 (de-
tail). Some interesting characteristics emerge when focussing on the ‘hub’ nodes -
those that have higher degree of connectivity. For example, in Habitat 0 (WET-
LANDS) there are two clear hubs: HABIT_shrub and LEAF_free. The former
links to features of woody plants (expected to be mostly absent from typical
habitat 0 plants). The latter contains many aspects of leaf descriptions (lamina,
outline, lanceolate, pinnate, surface) but there are some connections which are
not immediately clear (connections from HABIT terrestrial, FRUIT-wide and
FRUIT _pappus). The term LEAF_free may cover several different situations eg.
free stipules, free petiole (all parts of the leaf). In Habitat 2 (RAINFOREST)
there is a HABIT epiphyte hub (containing terms epiphyte and pseudobulb)
which could be linked to orchids (an epiphyte is a plant that grows on trees
such as orchids). Also epiphyte and tree are linked which could be related to
plants specifically growing on trees. In general, many of the hubs make sense in
terms of why they may be connected (often descriptive terms that are related
to similar parts of a plant). There are also some interesting relationships that
appear to be specific to their habitat such as orchids in rainforests.
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4 Conclusions

In this paper we have explored a pipeline for converting text documents at the
Royal Botanical gardens at Kew, London describing different plant families into
models that can predict habitat type and neighbouring plant characteristics,
based upon plant traits. The pipeline identifies distinct habitat types and in-
tegrates taxonomy data in order to highlight significant plant families within
those habitats by exploiting a statistic previously developed for bioinformatics
applications. A combination of wrapper feature selection and naive Bayes clas-
sification is exploited to identify the discriminative features and build models
that can predict both neighbouring plant traits and habitat type. Future work,
will involve exploring other predictive capabilities between the text and other
data such as the taxonomy. For example, we will explore how well our models



can predict families and species directly rather than via the habitat. We will also
explore other ways to quantify the value of the ‘what if’ results.

The paper documents the start of a larger project that explores the hypothe-

sis that a comprehensive understanding of neighbouring species and what a plant
looks like will indicate where it grows. Our tools will enable predictions about
individual species and their functions in ecosystems of other regions. This will be
facilitated through identifying factors (including taxonomic and environmental)
that influence biodiversity and stability of ecosystems, vital for effective species
and habitat conservation.
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