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Abstract. The overhead trolley of a gantry crane can be moved in two directions in the plane. The trolley
is attempting to control the motion of a suspended, rigid-body, distributed mass load, supported by a hook,
modelled as a lumped mass, in turn connected to the trolley by a light flexible cable. This flexible system
has six degrees of freedom, four variables describing the flexible, hanging load dynamics and two (directly
controlled) input variables for the trolley position. The equations of motion are developed and the crane model
is verified. Then a form of wave-based control (WBC) is applied to determine what trolley motion should be
used to achieve a reference motion of the load, with minimum swing during complex manoeuvres. Despite the
trolley’s limited control authority over the complex, flexible 3-D dynamics, WBC enables the trolley to achieve
very good motion control of the load, in a simple, robust and rapid way, using little sensor information, with
all measurements taken at or close to the trolley.

1 Introduction

In a typical problem of crane control, the challenge is to
achieve controlled motion of the load, simultaneously mov-
ing it to follow a desired trajectory while actively controlling
the swing. The system can be described as under-actuated:
only the trolley is directly controlled, and it must indirectly
control the swinging load at the far end of the cable. Perfor-
mance can be measured under various headings, including
minimization of sway during motion or on arrival at target,
tracking desired motion paths, accurate repositioning pay-
loads in target within the shortest possible time, maximum
repetition rate, and safety (Abdel-Rahman et al., 2003). Even
with no external disturbances, the trolley motion can cause
significant payload pendulation, especially when the dynam-
ics are more complex. Also cranes are inherently lightly
damped (Todd et al., 1997). Finally, the load can change sig-
nificantly, in ways which the controller may not know in ad-
vance. All these factors add to the control challenge.

Experienced crane drivers can acquire considerable skill,
both in steering a load along a desired trajectory and in damp-
ing the swinging, especially on arrival at target. The trajec-
tory might require guiding a heavy load safely around or be-

tween obstacles, within a factory, on a building site, or be-
tween a dock and a ship’s hold. But developing the driving
skills takes time and is expensive. Also even highly trained
drivers can make mistakes. Furthermore drivers will typically
err on the side of safety at the cost of longer manoeuvre
times. Often drivers will also rely on at least one assistant
(a person) to guide the load, especially for final positioning.
One view of improving automatic control, therefore, is to try
to understand what experienced crane drivers do intuitively,
defining when to accelerate and to decelerate, and for pla-
nar trolleys, where and when to change direction and how
quickly. But fully understanding what a human operator does
is far from easy, and implementing this in a robust automatic
control system is a further challenge.

This paper is about automating the process of moving the
gantry of a crane to control the motion of a load when the
load is dynamically complex. Specifically the paper is about
a technique to solve this challenge based on the idea of me-
chanical waves. The technique is shown to have many ad-
vantages over existing approaches, including robustness to
changes in the system dynamics, known or unknown; ease of
implementation; and general applicability.
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The reference inputs are requested motions to the system,
that is, desired controlled motions of the load. These in-
puts could be desired crane positions or velocities over time.
(Specifying one, of course, implicitly specifies the other.)
Here it is assumed that the reference inputs are position con-
trol requests for the load motion over time. Often the problem
is one of getting the load to track a desired trajectory. Many
papers measure performance by the tracking ability of their
control strategies (Sun et al., 2013; Kim and Singhose, 2010;
Manning et al., 2010; Neupert et al., 2010; Forest et al., 2001;
Vaughan et al., 2011).

In published work to date, the load and cable dynamics are
frequently modelled as a simple or (at most) a double pendu-
lum system moving in a plane. Abdel-Rahman et al. (2003)
in a crane review article report that “most control strategies
for this class of crane assume a planar gantry crane, utilize
planar, linear models, and assume that the crane path, ex-
ternal forces, and control effort are all planar”. The simple
pendulum model considerably simplifies the dynamics, giv-
ing a swing frequency which is independent of the load mass.
The simplification is not always appropriate however. Some
researchers have recently modelled the loads as 3-D pen-
dula to which various control techniques have been applied.
However they generally assume a single, lumped-mass, load
(Al-Garni et al., 1995; Sun et al., 2013; August et al., 2010;
Yang and Yang, 2006; Antić et al., 2012; Cheng-Yuan et al.,
2006; Maghsoudi et al., 2012; Chen et al., 2005; Schulze and
Chang, 2010; Zhong, 2011). The most dynamically advanced
developments in crane controllers in 3-D assume point mass
loads, or at most, a rod-like body hanging from the trolley.

Some papers report work on controlling double-pendulum
cranes (Kim and Singhose, 2006; Kim and Singhose, 2010;
Masoud and Nayfeh, 2003; Sawodny et al., 2002; Manning et
al., 2010; Tanaka and Kouno, 1998; Cheng-jun et al., 2009;
Singhose and Towel, 1998; Kenison and Singhose, 1999;
Dan and Li, 2008) but their simulations or experiments are
planar rather than spatial. Manning et al. (2010), for example,
present a dynamic model of bridge cranes with distributed-
mass loads as a planar double pendulum. This work is an
example of the use of input shapers. In general, the input
shaper design depends on knowing the natural frequencies
of the flexible system to be controlled. See Kenison and
Singhose (1999) for example.

The authors found no research which considered the con-
trol of a 3-D double-pendulum crane involving rigid body dy-
namics, so this aspect of the work is considered novel. Also
novel is the application of wave ideas to this control problem,
although it had previously been applied to a simple, one-
degree of freedom gantry crane leading to a robust control
performance (O’Connor, 2003). In this work it is shown that
“wave-based control”, or WBC, can be applied successfully
to controlling more complex dynamical systems in 3-D, such
as controlling the double-pendulum load, retaining many of
the advantages that WBC demonstrated in controlling sim-
pler systems.

The paper treats the load as a distributed mass, with trans-
lational and swing rotational inertia effects about two axes.
Furthermore, this distributed load is assumed to be hanging
from a hook of significant mass, about which the load is free
to swing. The hook in turn is modeled as a lumped mass, so
that its 3-D translational inertia effects can be taken into ac-
count. The trolley is taken to move in the horizontal plane,
with motion controllers for two perpendicular axes. Three
simplifying assumptions or restrictions are made. Firstly, the
effects of cable hoisting are not considered. Secondly, the
mass of the cable is assumed to be negligible. Thirdly, spin
rotation of the load (as opposed to swinging in either pla-
nar direction) is neglected. (The authors are confident that
WBC can easily be adapted to work without these assump-
tions, but the present paper assumes them to make the flex-
ible dynamics more manageable.) The entire system has 6
degrees of freedom, four of which are determined by the sys-
tem dynamics and two of which are controlled, input vari-
ables. Figure 1 shows a schematic of the system model and
the variables used as coordinates in the dynamic model.

As a control technique, WBC has been successfully ap-
plied to various flexible mechanical systems. It sees the ac-
tuator motion (in this case the motion of the trolley) as
launching a disturbance, or mechanical wave, into the flex-
ible system, while responding to waves coming back from
the system, usually trying to absorb them (O’Connor, 2003,
2007; O’Connor et al., 2009; O’Connor and Fumagalli, 2009;
O’Connor and McKeown, 2008; McKeown, 2009). This
launching and absorbing are considered to be happening si-
multaneously. These notional motion waves have DC com-
ponents (or net displacement components), which, on pass-
ing thought the flexible system, from actuator to tip and back
again, leave behind the desired net displacement, while si-
multaneously controlling vibrations. The control system de-
cides on the launch wave net displacement, usually setting
it to half the reference displacement. The returning motion
wave from the system is measured and is added to the launch
wave, and this combination forms the input to the trolley mo-
tion controllers.

The returning-wave component has two important effects.
Firstly, it causes the trolley to absorb the vibration (that is,
reduce the load swing) both during the manoeuvre and on
arrival at the final position. Secondly, in the absence of sig-
nificant external, disturbing forces, the net motion associated
with the absorbing motion will exactly equal the net motion
of the launch wave, so that it makes up the second half of
the reference displacement. It will be shown that this fairly
simple idea produces rapid, robust control, which is easy to
implement, of low order, and which does not depend on hav-
ing a precise system model, or ideal actuator response, or
position sensing at the load.
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Fig.1: Representation of the 3D double pendulum gantry crane 
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Figure 1. Representation of the 3-D double pendulum gantry crane.

2 3-D model of system dynamics

Figure 1 represents the entire physical system as modeled,
including trolley, rails, cable, hook and hanging rigid body
payload.

The trolley can move in bothx andy directions simulta-
neously, so that it can follow an arbitrary path in theX−Y
plane in response to input signals to the trolley position sub-
controllers. The reference system with coordinatesX1Y1Z1

is attached to the trolley, withZ1 vertically downwards. The
hook is connected to the trolley by a light, flexible cable, with
the cable mass considered negligible in comparison with that
of the hook and the load. The hook is modeled as a point
mass (m1), the kinetic energy of which is therefore purely
translational. Also since cable hoisting is ignored, the cable
length is taken as a constant,l1, so the exact position of the
hook can be determined by the angle of the cable in space.
This angle is measured by two variables,θ1x andθ1y, which
are the projections of the cable onto theX−Z plane andY−Z
planes, respectively. A second reference frame with coordi-
nates systemX2Y2Z2, parallel to the first, has its origin at the
hook, and is used to describe the swing rotation of the load,
again using two angles,θ2x andθ2y, which are projections of
the load angle onto theX−Z andY−Z planes, respectively.

The instantaneous location of hook with respect to an in-
ertial (space) coordinate system is given by

xH = xT + l1 sinθ1x

yH = yT + l1 cosθ1x sinθ1y

zH = l1 cosθ1x cosθ1y

(1)

wherexT andyT are the trolley’s position in the inertial refer-
ence frame. The position of the mass centre,G, of the swing-
ing load is given by

xG = xT + l1 sinθ1x+
l2
2 sinθ2x

yG = yT + l1 cosθ1x sinθ1y+
l2
2 cosθ2x sinθ2y

zG = l1 cosθ1x cosθ1y+
l2
2 cosθ2x cosθ2y

(2)

The equations of motion are obtained from Lagrange’s equa-
tion

d
dt

(
∂L
∂q̇i

)
−

(
∂L
∂qi

)
= 0 (3)

The generalized coordinates,qi , are here taken as the four in-
dependent variablesθ1x, θ1y, θ2x andθ2y. The trolley position
variablesxT andyT are considered as input variables, used
to control the attached flexible system, so four equations of
motion are required. Ifm1 is the mass of the hook andm2 the
mass of the load, total potential energy is

U =m1gl1
(
1− cosθ1x cosθ1y

)
+m2g[

l1
(
1− cosθ1x cosθ1y

)
+

l2
2

(1− cosθ2x cosθ2y)

]
(4)

whereg is the acceleration due to gravity. The total kinetic
energy may describe as

T =
1
2

m1
⇀
vH

⇀
vH +

1
2

m2
⇀
vG

⇀
vG +

1
2
ω̃ [IG] ω̃ (5)

where⇀vH is the hook velocity,⇀vG is the velocity of pointG,
and ω̃ is the total angular velocity of the load. The linear
velocities are the derivatives of Eqs. (1) and (2), which may
be expressed in the form

⇀
vH :


ẋH=ẋT + l1θ̇1x cosθ1x

ẏH=ẏT − l1θ̇1x sinθ1x sinθ1y+ l1θ̇1y cosθ1x cosθ1y

żH=− l1θ̇1x sinθ1x cosθ1y− l1θ̇1y cosθ1x sinθ1y

(6)

⇀
vG :


ẋG=ẋH +

l2
2 θ̇2x cosθ2x

ẏG=ẏH −
l2
2 θ̇2x sinθ2x sinθ2y+

l2
2 θ̇2y cosθ2x cosθ2y

żG=żH −
l2
2 θ̇2x sinθ2x cosθ2y−

l2
2 θ̇2y cosθ2x sinθ2y

(7)

To quantify the rotational kinetic energy of the load requires
its angular velocity ˜ω and moment of inertia tensor,[IG], to
be expressed in a common coordinate system. The load in-
ertia tensor is most conveniently expressed using a coordi-
nate systemX2cY2cZ2c fixed to the load and along its principal
axes, so that

[IG] =

 Ixx 0 0
0 Iyy 0
0 0 Izz


X2cY2cZ2c

(8)

If so, ω̃ should also be expressed in the same coordinate sys-
tem. As shown in Fig. 2, the coordinate systemX2aY2aZ2a
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Fig.2: Representation of successive rotations to reach the body coordinates of the hanging load  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: WBC plan for gantry crane with planar-moving trolley  
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Figure 2. Representation of successive rotations to reach the body coordinates of the hanging load.

moves through two rotations about the main axes to become
aligned to the load body axisX2cY2cZ2c. The angular velocity
(ω̃) according to Fig. 2 is defined as

ω̃ = −θ̇2yî2b+ θ̇2x ĵ2c (9)

The transformation fromX2bY2bZ2b to X2cY2cZ2c or T2b→2c

is

T(2b→2c) =

 cosθ2x 0 −sinθ2x

0 1 0
sinθ2x 0 cosθ2x

 (10)

So finallyω̃ can be expressed inX2cY2cZ2c as

ω̃ =

 −θ̇2y cosθ2x

θ̇2x

−θ̇2y sinθ2x


X2cY2cZ2c

(11)

The rotational kinetic energy of the hanging load,Tω, is then
expressible as

Tω =
1
2
ω̃ [IG] ω̃ =

1
2

Ixx(θ̇2y)
2
(cosθ2x)

2+
1
2

Iyy(θ̇2x)
2

+
1
2

Izz(θ̇2y)
2
(sinθ2x)

2 (12)

Substituting Eqs. (6), (7) and (12) into Eq. (5) gives the total
kinetic energy of system. Then thisT from Eq. (5) minusU
from Eq. (4) gives the Lagrangian,L = T −U to be used in
Eq. (3), withqi equal, in turn, to each of the four anglesθ1x,
θ1y, θ2x andθ2y, giving four equations of motion, which after

simplification become(
m1l21+m2l21

)
θ̈1x+ (m1+m2) l1ẍT cosθ1x− (m1+m2) l1ÿT

sinθ1x sinθ1y+ (m1+m2)l21(θ̇1y)
2
cosθ1x sinθ1x+

1
2

m2l1l2θ̈2x

cosθ1x cosθ2x−
1
2

m2l1l2(θ̇2x)
2
cosθ1x sinθ2x+

1
2

m2l1l2θ̈2x

sinθ1x sinθ2x cos(θ1y− θ2y)+
1
2

m2l1l2(θ̇2x)
2
+ (θ̇2y)

2
sinθ1x

cosθ2x cos(θ2y− θ1y)+
1
2

m2l1l2θ̈2y sinθ1x cosθ2x sin
(
θ2y− θ1y

)
+m2l1l2θ̇2xθ̇2y sinθ1x sinθ2x sin

(
θ1y− θ2y

)
+ (m1+m2)gl1

sinθ1x cosθ1y = 0 (13)

(m1+m2) l21(cosθ1x)
2θ̈1y−2(m1+m2) l21θ̇1xθ̇1y sinθ1x cosθ1x

+ (m1+m2) l1ÿT cosθ1x cosθ1y+
1
2

m2l1l2θ̈2y cosθ1x cosθ2x

cos(θ1y− θ2y)+
1
2

m2l1l2
(
θ̇2x

)2
+

(
θ̇2y

)2
cosθ1x cosθ2x

sin
(
θ1y− θ2y

)
+

1
2

m2l1l2θ̈2x cosθ1x sinθ2x sin
(
θ1y− θ2y

)
−m2l1l2θ̇2xθ̇2y cosθ1x sinθ2x cos(θ1y− θ2y)+ (m1+m2)

gl1 sinθ1y cosθ1x = 0 (14)
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Figure 3. Dynamic response of 3-D double pendulum gantry crane with 4 degree of freedom.

m2
l22
4
+ Iyy

 θ̈2x+
1
2

m2l2ẍT cosθ2x−
1
2

m2l2ÿT sinθ2x

sinθ2y+
1
2

m2l1l2θ̈1x cosθ1x cosθ2x−
1
2

m2l1l2(θ̇1x)
2

sinθ1x cosθ2x+
1
2

m2l1l2θ̈1x sinθ1x sinθ2x cos
(
θ1y− θ2y

)
+

1
2

m2l1l2
(
θ̇1x

)2
+

(
θ̇1y

)2
cosθ1x sinθ2x cos(θ1y− θ2y)+

1
2

m2l1l2θ̈1y cosθ1x sinθ2x sin(θ1y− θ2y)−m2l1l2θ̇1yθ̇1x sinθ1x

sinθ2x sin
(
θ1y −θ2y

)
+m2

l22
4

(
θ̇2y

)2
cosθ2x sinθ2x+ (Ixx− Izz)(

θ̇2y

)2
cosθ2x sinθ2x+m2g

l2
2

sinθ2x cosθ2y = 0 (15)

m2
l22
4

(cosθ2x)
2+ Ixx(cosθ2x)

2+ Izz(sinθ2x)
2

 θ̈2y−m2
l22
2
θ̇2xθ̇2y

cosθ2x sinθ2x+
1
2

m2l2ÿT cosθ2x cosθ2y+
1
2

m2l1l2θ̈1x sinθ1x

cosθ2x sin(θ2y− θ1y)+
1
2

m2l1l2
{(
θ̇1x

)2
+

(
θ̇1y

)2
}

cosθ1x cos

θ2x sin(θ2y− θ1y)+
1
2

m2l1l2θ̈1y cosθ1x cosθ2x cos(θ1y− θ2y)

−m2l1l2θ̇1xθ̇1y sinθ1x cosθ2x cos(θ2y− θ1y)+ (Izz− Ixx)

θ̇2xθ̇2y sin(2θ2x)+m2
l2
2

gcosθ2x sinθ2y = 0 (16)

These four, highly coupled, equations of motion capture the
full system dynamics. In the modeling, no small-angle ap-
proximations were made to keep the model accurate even for
large swing angles. These four equations can be integrated
numerically from given initial conditions to describe the time
evolution of the system. The trolley motion components are
considered as inputs, defining ¨xT and ÿT in these equations.
As an example, Fig. 3 shows the behavior of the system for
an arbitrary planar movement of the trolley with no damping

Table 1. Values chosen for the 3-D double pendulum system.

m1 (kg) m2 (kg) l1 (m) l2 (m)

1 50 1 2

or control action. The chosen system parameters (which can
be arbitrarily chosen) are given in Table 1.

While the input motion of the trolley takes no longer than
two seconds, the system keeps swinging indefinitely, with
multiple frequency components. Alternatively, rather than by
trolley motion, the system can be set in motion by giving it
initial angular displacements and/or velocities, with the trol-
ley stationary. If desired this can be done in such a way that
the subsequent motion corresponds to the mode shapes, at
each of four natural frequencies.

With the crane model behaving as expected, the WBC
ideas are now developed and used to control the swinging
load by controlling the trolley motion.

3 Wave-based approach to crane control

From a control perspective, the trolley is a single actuator
attempting to control a flexible system of relatively complex
dynamics. The system is under-actuated, with more degrees
of freedom than actuators. The actuator does not act directly
on the load position and orientation, but must work through
the intervening flexible dynamics, of cable and hook, to try
to achieve a target motion of the load. The actuator motion is
in two perpendicular directions, the load can swing in 3-D,
and the motion components are strongly coupled.

The control method adopted here, wave-based control, is a
generic approach, which does not depend on having an accu-
rate system model. It uses feedback, but the feedback mea-
surements are taken not at the system output (here, the load
position and orientation) but at the actuator (the trolley, in
this case). Thus the actuator and sensing are collocated, with
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Fig.2: Representation of successive rotations to reach the body coordinates of the hanging load  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: WBC plan for gantry crane with planar-moving trolley  
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Figure 4. WBC plan for gantry crane with planar-moving trolley.

the consequent stability advantages. To date WBC has been
used successfully to control 1-D rectilinear lumped flexible
systems, 2-D flexible mass-spring arrays either beam-like or
arranged in a grid, laterally flexing manipulators, and a sim-
ple pendulum gantry crane as already mentioned (O’Connor,
2003).

In the current case, there are two inputs actuating the trol-
ley motion in two orthogonal directions. So the trolley should
be given two reference displacements, in thex andy direc-
tions, and two corresponding returning waves,bx andby, to
achieve wave absorption in the two directions under WBC.
Figure 4 illustrates a version of a general scheme for posi-
tioning the trolley, along with the payload, to a target position
in the plane.

Here the returning displacement waves are defined and
measured as

bx =
1
2

xT −
1
Zx

t∫
0

Fx dt

 (17)

by =
1
2

yT −
1
Zy

t∫
0

Fy dt

 (18)

wherexT andyT are the trolley position coordinates,Fx and
Fy are the horizontal components in thex andy directions
of the cable force measured at the trolley, andZx, Zy are
impedance terms. References O’Connor (2003) and McKe-
own (2009) outline how such expressions for the returning
waves can be developed. Here we simply note the following
two features.

First, for rest-to-rest motion, from timet = 0 to some final
time t, as the initial and final momenta are zero, the force
integrals must be zero. So the final values ofbx andby will be
half the trolley displacements, or 1/2xT and 1/2yT . Note that

this result holds regardless of the values of the impedances
Zx andZy. The second observation is that whileFx and Fy

are changing, the effect of addingbx andby to the trolley’s
motion is to make the trolley act as a viscous damper with
damping coefficientZx, Zy in response to the cable forces.

The values of impedance are not critical to the control
scheme. In this work both impedances were set to

Z = (m1+m2)
√

g
(l1+ l2)

(19)

Variations in the values ofZ cause small variations in the
transient part of the responses. SoZ can be used as a pa-
rameter with which to fine-tune the transient, for example
to improve a specific performance measure (e.g. rise time,
overshoot, or settling time), as appropriate for a given ap-
plication, invariably at the cost of a slight degradation of
some other transient performance measure (although always
retaining the zero steady-state error).

The force componentsFx and Fy should ideally corre-
spond to the horizontal components of the cable tension, in-
cluding the dynamic effects of the acceleration of the load
mass. For most purposes, however, they can be approximated
by assuming that the cable tension is equal to the load weight,
and thenFx andFy from Fig.1 can be taken as

Fx =
− (m1+m2)gtanθ1x

cosθ1y
(20)

Fy = −(m1+m2)gtanθ1y (21)

These approximations were used in obtaining the results be-
low.
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Figure 5. Gantry crane response to a 1 m displacement inx direction using WBC.

Figure 6. Response to planar trolley motion under WBC (subG: mass centre of distributed load).

4 Results

In the first manoeuvre the reference is a simple ramp (or con-
stant velocity) displacement of one meter in thex direction,
with no motion in they direction. Figure 5 depicts the re-
sponse of both the trolley and the centre of mass of the pay-
load,G, under the control system of Fig. 4. Also the swinging
angles of the cable (in both directions) and of the load due to
this excitation are displayed in radians. The trolley can be
seen to settle quickly at the target displacement with an ini-
tial overshoot of less than 10 %. The centre of mass of the
hanging load, at 2 m from the trolley, comes to rest rapidly,
with little swing as shown byθ1x andθ2x, and with an over-
shoot of about 10 %. Clearly the suspension swinging dies
out soon after the trolley reaches the target. Also shown is
the returning wave,bx, which provides the swing absorption

and settles at half the target displacement. (In this case there
is noby as all the motion is in thex direction.)

In the next example, the reference input is a simultaneous
combination of a ramp up to 2 m in thex direction and a
ramp of a different slope up to one meter in they direction.
Figure 6 shows the response. The trolley comes to rest gently
with no steady-state error while quickly absorbing all oscil-
lations. Figure 7 shows how the swing angles of the double
pendulum are actively damped. As the model has no damp-
ing built in, the damping is being achieved entirely by the
trolley motion which is simultaneously moving the system to
the target displacement as seen in Fig. 6. The periodic time of
the lowest mode of vibration is of the order of 4 s. After 10 s,
that is within two and a half times the periodic time after ar-
rival at the target, all oscillations have been reduced from the
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Figure 7. Swing angles for manoeuver of Fig. 6, showing active damping.

Figure 8. Reduction of forces acting on trolley through WBC process.

maximum value of about 10 degrees to less than 2 degrees
and they are decaying steadily.

Figure 8 shows the horizontal force components between
trolley and cable for the same manoeuvre. The main acceler-
ations and decelerations occur within 4 s, and after about 6 s
the force amplitudes diminish to less than 3 % of the initial
peaks. Again WBC is using the forces to combine position
control and active vibration damping very effectively.

Figure 9 shows the effect of choosing different values of
the impedance parameterZ, as the only control parameter
to be tuned, for the single-input manoeuvre of Fig. 5. The
reference impedanceZ = Zeq is as in Eq. (19), which is the
value used to obtain the results presented above. Despite a
12-fold range in impedance values, the responses are good
for all cases, showing a stable response, rapid transit and
zero steady-state error in the final position. The best choice
of Z will depend on the priorities in the desired response.

For example, perhaps a good compromise between minimum
overshoot and shortest settling time is whenZx = (0.75)Zeq.
For Zx ≥ 2Zeq the various responses become almost indistin-
guishable (except around the half-way point). More could
have been added for other values ofZx, but they would have
fallen on top of the curves shown. On the other hand for low
values of impedance, sayZx < (0.5)Zeq, the trolley has a slow
transient and slow convergence to the target position.

The robustness of the control response to variations inZ
also indirectly illustrates the robustness of WBC to changes
in the system under control, whether these are known or un-
known, whether modeled or not. For example, if incorrect
values of masses or lengths are assumed in using Eq. (19), or
these parameter change during operations, the control system
still copes well.

In producing these results, the trolley was assumed to
have ideal dynamics, that is, that it reproduces exactly and
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Figure 9. Trolley response to 1 mx direction input with differentZ values in the WBC.

Figure 10. Trajectory tracking, plan view, showing the paths of the mass centre of the load.

immediately the motion requested by the WBC system of
Fig. 4. However the system has also been tested with realis-
tic trolley dynamics, where the trolley response shows some
dynamic delay in achieving the requested motion. The con-
trol system still works well, with comparable results to those
presented, provided that the steady state trolley error is zero.
This robustness to the trolley’s dynamic performance can be
explained in part because the measurements used in the WBC
control system, including Eqs. (17, 18) comeafter the trolley
(see Fig. 4), using the values of position,xT , yT , and forces,
Fx, Fy, actually achieved and experienced by the trolley.

Finally, in addition to the point-to-point manoeuvres
above, input tracking and obstacle avoidance are considered.
Figure 10 shows a plan view of a desired input trajectory, and
the resulting path of the mass centre of the load,G, both un-

der WBC and with no control. As can be seen, under WBC
the tracking is very satisfactory.

5 Conclusions

The double-pendulum, distributed mass, gantry crane model
assumed in this work has non-trivial dynamics, and repre-
sents a considerable advance on the simple pendulum model
often used. A model was developed to capture these dynam-
ics in three dimensions. The 2-D trolley motion has limited
control authority over the 3-D suspended system. This pa-
per explores how well a simple version of WBC can work
to achieve load position control while damping the swinging
in 3-D. The control strategy does not require details of the
system model, and all the required measurements are taken
at the trolley. The control law has one tuning parameter, a
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mechanical impedance term, whose value is not critical, but
can be used to fine-tune the transient response as desired.

The results illustrate the power, simplicity, effectiveness
and robustness of the control approach. For point to point
manoeuvres in the plane, WBC proves very effective. It also
performs well in trajectory tracking, often required for obsta-
cle avoidance.

Future work will extend the approach to cranes with cable
hoisting, to tower cranes in which the trolley moves on a
rotating arm, and to jib or luffing cranes in which the arm ro-
tates in the vertical plane. Initial results suggest that the same
WBC strategy can be extended successfully to all such cases.

Edited by: A. Müller
Reviewed by: two anonymous referees
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Milo ševíc, M.: Anti-Swing Fuzzy Controller Applied in a 3D
Crane System, Engineering, Technology & Applied Science Re-
search (ETASR), 2, 196–200, 2012.

August, W., Ren, J., Notheis, S., Haase, T., Hein, B., and Wörn, H.:
3D Pendulum Swinging Control by an Industrial Robot Manipu-
lator, 1–7, in: Proceeding of: ISR/ROBOTIK 2010, Proceedings
for the joint conference of ISR 2010 (41st Internationel Sympo-
sium on Robotics) und ROBOTIK 2010 (6th German Conference
on Robotics), 7–9 June 2010, Munich, Germany, 2010.

Chen, H., Gao, B., and Zhang, X.: Dynamical Modelling and Non-
linear Control of a 3D Crane, International Conference on Con-
trol and Automation (ICCA2005), Budapest, Hungary, 1085–
1090, June 2005.

Cheng-jun, D., Ping, D., Ming-lu, Z., and Yan-fang, Z.: Double In-
verted Pendulum System Control Strategy Based On Fuzzy Ge-
netic Algorithm, in: Proceedings of the IEEE International Con-
ference on Automation and Logistics Shenyang, China, 1318–
1323, August 2009.

Cheng-Yuan, C., Kou-Cheng, H., Kuo-Hung, C., and Guo-En, H.:
An Enhanced Adaptive Sliding Mode Fuzzy Control for Posi-
tioning and Anti-Swing Control of the Overhead Crane System,
IEEE International Conference on Systems, Man, and Cybernet-
ics, Taipei, Taiwan, 992–997, October 2006.

Dan, Y. and Li, Z.: The Structure of HSIC System and Its Applica-
tion on Arbitrary Switch Control of Double Pendulum, in: Pro-
ceedings of the 7th World Congress on Intelligent Control and
Automation, Chongqing, China, 2810–2815, June 2008.

Forest, C., Frakes, D., and Singhose, W.: Input-Shaped Control of
Gantry Cranes: Simulation and Curriculum Development, The
18th ASME DETC Biennial Conference on Mech. Vib. and
Noise, 2001.

Kenison, M. and Singhose, W.: Input Shaper Design for Double-
Pendulum Planar Gantry Cranes, in: Proceedings of the I999

EEE International Conference on Control Applications, Kohala
Coast-Island of Hawai’i, Hawai’i, USA, 539–544, August 1999.

Kim, D. and Singhose, W.: Reduction of Double-Pendulum Bridge
Crane Oscillations, The 8th International Conference On Motion
And Vibration Control (MOVIC 2006), Atlanta, GA, USA, 300–
305, 2006.

Kim, D. and Singhose, W.: Performance Studies Of Human Op-
erators Driving Double-Pendulum Bridge Cranes, Control Eng.
Pract., 18, 567–576, 2010.

Maghsoudi, M. J., Mohammed, Z., Pratiwi, A. F., Ahmad, N., and
Husain, A. R.: An Experiment for Position and Sway Control of
a 3D Gantry Crane, The 4th International Conference on Intelli-
gent and Advanced Systems (ICIAS2012), 497–502, 2012.

Manning, R., Clement, J., Kim, D., and Singhose, W.: Dynam-
ics and Control of Bridge Cranes Transporting Distributed-
Mass Payloads, J. Dyn. Syst.-T. ASME, 132, 014505,
doi:10.1115/1.4000657, 2010.

Masoud, Z. N. and Nayfeh, A. H.: Sway Reduction on Container
Cranes Using Delayed Feedback Controller, Nonlinear Dynam.,
34, 347–358, 2003.

McKeown, D. J.: Wave based Control of Elastic Mechanical Sys-
tems, Ph.D. Thesis, Department of Mechanical Engineering,
University College Dublin, Ireland, 189 pp., 2009.

Neupert, J., Arnold, E., Schneider, K., and Sawodny, O.: Tracking
and anti-sway control for boom cranes, Control Eng. Pract., 18,
31–44, 2010.

O’Connor, W. J.: A Gantry Crane Problem Solved, J. Dyn. Syst.-T
ASME, 125, 569–576, 2003.

O’Connor, W. J.: Wave-Based Analysis and Control of Lump-
Modeled Flexible Robots, IEEE T. Robot., 23, 342–352, 2007.

O’Connor, W. J. and Fumagalli, A.: A Refined Wave-Based Control
Applied to Nonlinear, Bending, and Slewing Flexible Systems, J.
Appl. Mech., 76, 041005, doi:10.1115/1.3086434, 2009.

O’Connor, W. J. and McKeown, D. J.: A new approach to modal
analysis of uniform chain systems, J. Sound Vib., 311, 623–632,
2008.

O’Connor, W. J., Ramos, F., McKeown, D. J., and Feliu, V.: Wave-
based control of non-linear flexible mechanical systems, Nonlin-
ear Dynam., 57, 113–123, 2009.

Sawodny, O., Aschemannb, H., and Lahres, S.: An automated
gantry crane as a large workspace robot, Control Eng. Pract., 10,
1323–1338, 2002.

Schulze, T. and Chang, T. N.: Zero Vibration Position Control of a
Spherical Pendulum for Control Systems Demonstration, Amer-
ican Control Conference, Marriott Waterfront, Baltimore, MD,
USA, 738–743, July 2010.

Singhose, W. E. and Towel, S. T.: Double-Pendulum Gantry Crane
Dynamics and Control, in: Proceedings of the 1998 IEEE In-
ternational Conference on Control Applications Trieste, Italy,
1205–1209, September 1998.

Sun, N., Fang, Y., and Zhang, X.: Energy coupling output feed-
back control of 4-DOF underactuated cranes with saturated in-
puts, Automatica, 49, 1318–1325, 2013.

Tanaka, S. and Kouno, S.: Automatic measurement and control of
the attitude of crane lifters; Lifter-attitude measurement and con-
trol, Control Eng. Pract., 6, 1099–1107, 1998.

Todd, M. D., Vohra, S. T., and Leban, F.: Dynamical measurements
of ship crane load pendulation, in: Oceans 97 MTS/IEEE: Con-
ference Proceedings, Hailfax, Canada, 2, 1230–1236, 1997.

Mech. Sci., 4, 251–261, 2013 www.mech-sci.net/4/251/2013/

http://dx.doi.org/10.1115/1.4000657
http://dx.doi.org/10.1115/1.3086434


W. O’Connor and H. Habibi: Gantry crane control of a double-pendulum 261

Vaughan, J., Karajgikar, A., and Singhose, W.: A Study of Crane
Operator Performance Comparing PD-Control and Input Shap-
ing, American Control Conference, San Francisco, CA, USA,
545–550, June 2011.

Yang, J. H. and Yang, K. S.: Adaptive Control for 3-D Overhead
Crane Systems, in: Proceedings of the 2006 American Control
Conference, Minneapolis, Minnesota, USA, 1832–1837, June
2006.

Zhong, B.: Load’s 2-Degree of Freedom Swing Angle Model and
Dynamic Simulation for Overhead Crane or Gantry Crane, En-
ergy Procedia, 11, 1217–1223, 2011.

www.mech-sci.net/4/251/2013/ Mech. Sci., 4, 251–261, 2013


