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Parallel Growing and Training of Neural Networks
Using Output Parallelism

Sheng-Uei Guan and Shanchun Li

Abstract—in order to find an appropriate architecture for a
large-scale real-world application automatically and efficiently,
a natural method is to divide the original problem into a set of
subproblems. In this paper, we propose a simple neural-network
task decomposition method based on output parallelism. By
using this method, a problem can be divided flexibly into several

subproblems as chosen, each of which is composed of the whole

input vector and a fraction of the output vector. Each module (for
one subproblem) is responsible for producing a fraction of the
output vector of the original problem. The hidden structure for the
original problem’s output units are decoupled. These modules can
be grown and trained in parallel on parallel processing elements.
Incorporated with a constructive learning algorithm, our method
does not require excessive computation and any prior knowledge
concerning decomposition. The feasibility of output parallelism
is analyzed and proved. Some benchmarks are implemented
to test the validity of this method. Their results show that this
method can reduce computational time, increase learning speed
and improve generalization accuracy for both classification and
regression problems.

how to recombine the individual modules into a solution to the
original task. Up to now, various task decomposition methods
have been proposed [15]-[18], [27]-[29], [31], [32]. These
methods can be roughly classified into the following classes.

» Functional Modularity Different functional aspects in a
task are modeled independently and the complete system
functionality is obtained by the combination of these indi-
vidual functional models [24].

» Domain DecompositianThe original input data space
is partitioned into several subspaces and each module
(for each subproblem) is learned to fit the local data
on each subspace. Such data partitioning is often more
effective than training on the whole input data space
[18]. In the mixture of experts architecture [15], expert
networks learn to specialize on subtasks, or subspaces,
and cooperate via a gating network. The hierarchical

mixtures of experts architecture [32] and neural trees [26]
partition the input space recursively. In the multisieving
neural network [31], patterns are classified by a rough
sieve at the beginning and they are reclassified further by
finer ones in subsequent stages. [16] describes a method
for dividing the training set into subsets recursively using
hyperplanes until all the subsets become linearly sepa-
rable. [17] constructs neural networks where the first unit
introduced on each hidden layer is trained on all patterns
and further units on the layer are trained primarily on
patterns not already correctly classified.

Class Decompositiar problem is broken down into a set

of subproblems according to the inherent class relations
among training data [23], [25]. & -class problem can be

Index Terms—Constructive learning algorithm, multilayered
feedforward networks, output parallelism, parallel growing, task
decomposition.

|. BACKGROUND

ULTILAYERED feedforward neural networks are

widely used for classification, regression, and other
applications. However, when applied to larger scale real-world
tasks (problems), they are still suffering some drawbacks, such
as, the inefficiency in utilizing the network resources as the task
(and the network) gets larger, and the inability of the current
learning schemes to cope with high-complexity tasks [14].
Large networks tend to introduce high internal interference be- 1%
cause of the strong coupling among their hidden-layer weights ~ divided intoX or | °,
[15]. Internal interference exists during the training process, the class relations.

whenever updating the weights of hidden units the influence . gtate DecompositiorDifferent modules are learned to
(desired outputs) from two or more output units cause the yeg| with different states in which the system can be at
weights to compromise to nonoptimal values due to the clashin = gy time [29].
their weight update directions. A natural approach to overcomec|ass decomposition method is proposed for solinglass
these drawbacks is to decompose the original task into Sevgfﬂiblems. The method proposed in [25] is to splifaclass
subtasks based on the “divide-and-conquer” technique. Fabplem into K two-class subproblems and each module
task decomposition methods, the most important issues g&irained to learn a two-class subproblem. Therefore, each
how to divide a task into smaller and simpler subtasks, hqyoqule is a single-output feedforward network which is used
to assign a network module to learn each of the subtasks, 3§djiscriminate one class of patterns from patterns belonging
to the remaining classes. The method proposed in [23] divides
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integrating all of the trained modules into a min—max modul:
network.

There are still some shortcomings to these proposed cli
decomposition methods. Firstly, these algorithms use the p
defined network architecture for each module to learn ea
subproblem. Secondly, these methods are only applied to cl
sification problems. A more general approach applicable
not only classification problems but also other application
such as regression, should be explored. Thirdly, they usue
divide the problem into a set of two-class subproblems. TF
will be an obvious limitation: when they are applied to
large-scale and complei -class problem wher& is large, a
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very large number of two-class subproblems will have to Y — represents previously added connections to network output units.

learned.
In this paper, we propose a simple neural network task
composition method based on output parallelism to overcome

c!:eig. 1. Training a new hidden unit in CBP learning.

these shortcomings mentioned above. Using output parallelism 1) Initialization: The network has no hidden units. Only bias

a complex problem can be divided into several subproblems as
chosen, each of which is composed of the whole input vector
and a fraction of the output vector. Each module (for one sub-
problem) is responsible for producing a fraction of the output
vector of the original problem. These modules can be grown
and trained in parallel. This method reduces the internal inter-
ference of hidden layers, consequently, reduces computational
time and improves performance and accuracy. Our approach is
general in the sense that it is not application-dependent, i.e., itis
applicable without using application-specific knowledge in task
decomposition. Furthermore, by using a constructive approach,
our approach overcomes the shortcoming of using a predefined
structure as seen in most existing decomposition methods [1],
[2]. This method can be effectively applied to classification
and regression problems. In Section II, we will briefly recall
the constructive learning algorithm especially the CBP algo-
rithm. Then, output parallelism will be depicted in Section IIl.
The experiments based on output parallelism are implemented
and analyzed in Section IV. The conclusions are presented in
Section V.

Il. CONSTRUCTIVE BACKPROPAGATION (CBP)
LEARNING ALGORITHM

The constructive learning algorithms include the dynamic
node creation (DNC) method [6], cascade-correlation (CC)
algorithm [8] and its variations [7], [11], [31], constructive
single-hidden-layer network [9], and constructive backpropa-
gation (CBP) algorithm [10], etc. In this paper, we adopt the
CBP algorithm. The reason why CBP is selected is that the
implementation of CBP is simple and we do not need to switch
between two different cost functions like in the CC algorithm.

weights and shortcut connections from the input units to
the output units feed the output units. Train the weights
of this initial configuration by minimizing the sum of
squared errors

1)

r K

b= Z Z(Opk —tpk)?

p=1k=1

where P is the number of training patterng is the
number of output unitsy, is the actual output value of
the kth output unit for thepth training pattern and, is
the desired output value of thgh output unit for thepth
training pattern.

2) Training a new hidden unitConnect inputs to the new

unit (let the new unit be thé&h hidden unitg > 0) and
connect its output to the output units as shown in Fig. 1.
Adjust all the weights connected to the new unit (both
input and output connections) by minimizing the modi-
fied sum of squared errors

2

r K i—1
= E a E WikOpj + Wik0pi | — Tpr (2
p=1 k=1 =0

wherew;;, is the connection from thgth hidden unit to
thekth output unit {ugx. represents a set of weights which
are the bias weights and shortcut connections trained in
step 1)w;; is the connection from thah hidden unit to
thekth output unitp,,; is the output of thgth hidden unit

for the pth training patternd,o represent inputs to bias
weights and shortcut connections), atfe) is the activa-
tion function. Note that in the nevith unit perspective,
the previous units are fixed. In other words, we are only
training the weights connected to the new unit (both input
and output connections).

And we only need to backpropagate the output error through3) Freezing a new hidden uniFix the weights connected to

one and only one hidden layer. This way the CBP algorithm is
computationally as efficient as the CC algorithm [8].

The CBP learning algorithm can be depicted briefly as
follows [10].

the unit permanently.

4) Testing for convergencd the current number of hidden

units yields an acceptable solution, then stop the training.
Otherwise go back to step 2.
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I1l. M ETHOD FORPARALLEL GROWING AND TRAINING OF
NEURAL NETWORKSUSING OUTPUT PARALLELISM

A. Design Goals

In order to reduce excessive computation, increase learnil !
speed, improve generalization accuracy, and enhance flexibili
the proposed method should meet the following design goals

Design goal 1Instead of using predefined network struc-
ture, the neural network must automatically grow to an ag
propriate size without excessive computation.

It is widely known that network architecture is of cru-
cial importance for neural networks. Too small a networl
cannot learn the problem well [1], while a size too large

P-1

will lead to overfitting and thus poor generalization [2]. Sig.

itis a key issue in neural-network design to find appropriate
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2. Problem decomposition based on output parallelism.

network architecture automatically for a given appllcatlom,hereX € RY is the input vector of theth training pattern,

and optimize the set of weights for the architecture. T, € RI‘ is the desired output vector of téh training pattern,
There are mainly three approaches to tackle thg.hdp is the number of training patterns.

problem:pruning regularization and constructive algo- Suppose we divide the original problem mt(subproblems

removed during trammg if they are no longer activelgpace

used. Regularization uses some penalty terms in the cost

function to force the weights to yield smooth approxi-
mations [4]. Constructive algorithms start with a small

S = {(Xn 1)}, @)

network and then grow additional hidden units and we|gh1;<5shereTZ R™: s the desired output vector of tiph training
until a satisfactory solution is found. The constructlvgattem for theth subproblem, as shown in Fig. 2.

algorithms have a number of advantages over pruning and=ach subproblem is solved by growing and training a feedfor-
regularization approaches. Detailed descriptions can Ward neural network (module). A collection of such modules is
found in [5]. As introduced in Section Il, we adopt CBPthe overall solution of the original problem. In the following, we
in this paper. present why this method does work.

Design goal 2Flexible decomposition method. We cande- Many different cost functions (also called error measures) can
compose the original problem into a random number &k used for network training. The most commonly used one is

subproblems as chosen (less than the number of outpwé sum of squared errors and its variations

units).

For a problem that has a high-dimensional output space,
if we always split it into a set of single output subprob-
lems, the number of obtained modules will be very large.

r K
BE=3"3 (ot ©)

p=1 k=1

Instead, we can splititinto a small number of modules ea¥€reop is the actual output value of thgh output unit for
of which contains several output units. Another advantag@epth training pattern and,;, is the desired output value of the
of flexible decomposition is that sometimes we only warftth output unit for thepth training pattern. _

to know some portions of results in the application. For If we divide the output vector inte sections, each of which
example, for classification problems, there are some sité@ntainsk; output unit(s), then (5) can be transformed into

ations where we only want to find out whether the current P K
pattern lies in some particular class or not. E= Z Z Opte — i)
Design goal 3A general decomposition method. The pro- p=1 k=1
posed method can be applied to not only classification P [ K Ki+Ko
problems but also regression problems. = Z Oper — tpin )2 + Z (Opky — tphr )?
p=1 Lk =1 ko=K1+1
B. Task Decomposition K
The decomposition of a large-scale and complex problem into teoet Z (oph, — tpr, )’

a set of smaller and simpler subproblems is the first step to im-
plement modular neural network learning. Our approach is to
split this complex problem with high-dimensional output space
into a set of subproblems with low-dimensional output spaces.
Let & be the training set for a problem wit -dimensional
output space

= {(Xp, Tp)}JI::1 (3)

kr=Ki1+Ko+-+K,._1+1
Ki+Ko

K
Z Oply — tp +Z > (opke — 1)’

p=1ko=K{+1

IIFllﬂ’ﬁ

K

+eet Z Z (Opkr - tpkr)Q

p=lk,=K1+Kp+-+Kr_1+1
=B+ B+ + E; (6)
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whereK; > 1,i=1,2,...,randK; + Kx +---+ K, = K. Module [
We can seeb, F», ..., E,. is independent of each other —

and the only constraint among them is their sihshould be

small enough (acceptable). We can make each module’s el —s»| —>

small enough to gurantee the overall error small enough. \™ ™| e Module

can divide the original problem into subproblems. Each sub- — S re Y

problem is composed of the whole input vector and a fractic
of the output vector to produce the corresponding fractic ;) Non-modular network
of the output vector for the original problem. Obviously, th
collection ofr modules (for- subproblems) is equivalent to the
nonmodular network. Furthermore, the hidden structures 1 (b) Modular network based on output
the original problem’s output units are decoupled. This allow parallelism
the hidden units in modularto act more as feature detectors
for the K; output units than in a classic nonmodular networlgig 3. Nonmodular and modular network architecture.
Consequently, weight modification in each module is guided
by only one portion of output units and learning is likely to be
more efficient and the error to be smaller.

Output parallelism to its extreme can be free from intern, Di"iS:O‘hres“’]fg_g;':z:ﬂl’erx‘em
interference caused from output clash as each output is deri

independently so that there is no way for the hidden units A/A/\

Module
r —

receive contradictory signals from two or more output unit:

. e . Construct Construct Construct Construct
Output parallelism partitioning the output units into subsets Ci|  odule 1 modale2 | module 7 -1 module 7
still reduce internal interference caused from output clash
each output subsetis a portion of the original output units, whi \/
means any internal interference within the subset will be le Merge the results of
likely and will be a subset of the internal interference in the oric ¥ modules

inal network. The internal interference from each subset com-
bined will be less than the internal interference from the full sgltg

. . . 4. The parallel growing and training procedure.
of original output units.

D. Some Definitions and the Stopping Criteria for Growing
C. Parallel Growing and Results Merging and Training Modules

After problem decomposition, the original problemis divided As mentioned in Section Il, Sections I1I-A—C, the reason why
into r subproblems. Each subproblem is solved by growing aBP is selected is that the implementation of CBP is simple and
training a module. So the original neural network (nonmodul@fe do not need to switch between two different cost functions
network) for the original problem is replaced by the moduldike in the CC algorithm. And we only need to backpropagate
network, as shown in Fig. 3. In the modular network architegae output error through one and only one hidden layer. This
ture, each module can grow and be trained in parallel, in difray the CBP algorithm is computationally as efficient as the
ferent processing elements. When we apply the modules ©€ algorithm [8].
new input data, each module is responsible for calculating aalthough constructive learning algorithms have many advan-
fraction of the output and their results are merged to generaéges [1], [12], they are very sensitive to changes in the stopping
the final output for the given data. The procedure for parallgtiteria. If training is too short, the components of the network
growing and training modules to solve the original problem i&ill not work well to generate good results. If training is too
shown in Fig. 4. First, divide the original problem intsub- long, it costs much computation time and may result in overfit-
problems. Then construetmodules for the subproblems. Theting and poor generalization. Referring to [13], [14], we adopted
procedure for growing and training each module will be dehe method okarly stoppingusing a validation set to prevent
scribed in Section I1I-D. Last, merge the results of subproblemserfitting.
to form the solution for the original problem. The set of available patterns is divided into three sets: a

In our method, communication overhead is very little sincgaining setis used to train the network \alidation sets used
each module is constructed independently. Before learning, teeevaluate the quality of the network during training and to
need to deliver a copy of the training patterns for each moduheeasure overfitting, andtast seis used at the end of training
However, during the learning process, no communication s evaluate the resultant network. The size of the training,
needed among the modules. In the recall phase, to obtain ¥agdation, and test set is 50%, 25%, and 25% of the problem’s
results for the incoming patterns, we only need to merge thefal available patterns.
collection of modules to form a modular network, as shown in The error measur& used isthe squared error percentage
Fig. 3(b). [13], derived from the normalization of the mean squared error
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to reduce the dependency on the number of coefficients in the IV. EXPERIMENTAL RESULTS AND ANALYSIS

problem representation and on the range of output values us&d The Experiment Scheme

Omax — Owmin K ) Five benchmark problems, namely, Bgilding1, Flarel, Di-
E=100- ———— SO (opk — tor) (7)  abetes]Glass1 andVowelproblem, are used to evaluate the
p=1k=1 effectiveness of parallel constructing neural networks based on

whereo,, ... ando,.., are the maximum and minimum values oputput parallelism. The first foqr problems are all taken from the
output coefficients in the problem representation. PROBEN1 benchmark collection [22] and the vowel problem is

E,.(t) is the average error per pattern of the network Ovéqken from University of California at Irvine (UCI) repository
the training set, measured after epdciThe valueE,.(t) is of machine learning databases. Buildingl and Flarel are two re-

the corresponding error on the validation set after egoghd gression problems and the others are classification problems.
is used by the stopping criterio.(¢) is the corresponding . W& used the RPROP algorithm [20] to minimize the cost

error on the test set; it is not known to the training algorithm b&llmctlonsd In tk:jezsoet of ex_ﬁ)_ﬁrlmRe;sou;dTrtaI.(in, eacr(lj pLobeerIn
characterizes the quality of the network resulting from trainin/@S conducte runs. 1he algorithm used the Tol-

i + — - —_ 0K — _
The valueFE,,:(t) is defined to be the lowest validation se owing parametersy™ = 1.2,7 -~ = 0.5, Ao = 0.1, Amax =
error obtained in epochs up to epath 50, Apin = 1.0e — 6 with initial weights from—0.25...0.25

randomly. In all experiments, the hidden units and output units
Eopi(t) = min By, (). (8) alluse sigmoid activation function ard,, is setto 0.1. When a
vt hidden unit needs to be added, eight candidates are trained and
The generalization los§13] at epocht is defined as the rela- the best one is selected. All the experiments are simulated on a

tive increase of the validation error over the minimum so farentum I11-650 PC. The subproblems are solved sequentially
(in percent) and their CPU times expended are recorded, respectively.

B. Results and Analysis

E(t
GL(t) =100 - < ®) — 1) . 9)
Several issues are of particular importance: generalization

Eopt (2)
A high generalization loss is one candidate reason to Stgﬁcuracy, learning speed, and network complexity. As to gen-

training because it directly indicates overfitting. alization accuracy, for classification problems, we pay more
To formalize the notion of training progressraining strip of attention to classification error than test error; for regression

lengthm [13] is defined to be a sequenceafepochs numbered problems, we pay attention only to test error. It should be
n+1...n-+mwheren is divisible bym. The training progress noted that each module might have different number of output

measured after a training strip is units and the nonmodular network has more output units than
a module. Therefore, the computational cost of one epoch

E..(t) can differ significantly among the modules and nonmodular
P, (t) = 1000 - tetomtl.t —1]. (10) network. Comparing the number of epochs solely will be
m-Mily et pmyi..t B () misleading. So for learning speed, we place the emphasis on

training time instead of epochs. As far as network complexity is
It is used to measure how much larger the average training erconcerned, the number of independent parameters (the number
is than the minimum training error during the training strip. of weights and biases in the net) is more significant than the

During the process of growing and training individual modaumber of hidden units due to the same reason.

ules, we adopted the following heuristic overall stopping cri- 1) Buildingl: The Buildingl problem predicts the energy
teria: Eope < Ey,OR (Reduction of training set error due toconsumption in a building. It tries to predict the hourly con-
the last new hidden unit is less than 0.02%b Validation set sumption of electrical energy, hot water, and cold water, based
error increased due to the last new hidden unit). The first pam the date, time of day, outside temperature, outside air hu-
(Eop: < Fi,) means that the optimal validation set error isnidity, solar radiation, and wind speed. It has 14 inputs, three
below the thresholdE;,) and the result has been acceptableutputs, and 4208 patterns.
The other part means the last insertion of a hidden unit resultedBuildingl is divided into three subproblems and each has only
in hardly any progress. The criteria for adding a new hidden umibe output unit. Each subproblem is solved by growing and
are as follows: At least 25 epochs reached for the current ne&ining one module. From Table I, we can see that test error
work AND (Generalization los&L(t) > 5 ORTraining progress obtained by the modular network (0.483) is much smaller than
Ps(t) < 0.1). The first part means that the current networthat obtained by the nonmodular network (0.612). The max-
should be trained for at least a certain number of epochs befareim training time consumed for the three modules is 79.80 s,
a new hidden unit is installed because the error curves mayrhach less than that for the nonmodular network (122.50 s). To
turbulent at the beginning. The second part means that the aulstain this performance figure, a parallel computer is required
rent network has been overfitted or training has little progressith each processing element (PE) being a Pentium 111-650 PC
It is a bit unsatisfactory that all of these criteria are heuristiéor each module. It is noted that the amount of time expended
However, as mentioned by Prechelt [7], there is no theory thfat merging the modules to form the modular network and deliv-
would allow the derivation of criteria that are both efficient andring the test patterns for obtaining the overall solution is very
effective. little, about only 0.35 s (80.15 s—79.80 s). It is also noted that
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TABLE | TABLE 1l
RESULTS FORBUILDING 1 RESULTS FORFLAREL
Problem Epochs  T.Time  Hidden Indp. Ete C. Error Problem Epochs  T.Time  Hidden Indp. Ete C. Error
) Units Param. (%) (s) Units Param. (%)
Module 1 1558 6925  4.45 86 0.248 B Module 1 8780 131.84  35.63 951 1257 -
499 (22.08)  (2.04) (40) 41 - @27) (63.98)  (18.02) (703) {0026 -
Module 2 1613 68.65 295 62 0360 . Module 2 3236 60.89 11.58 363 {(.184 -
(943) 43.25)  (1.94) (46) ©,12%) - (729) (13.36)  (3.98) (131) (0.003) .
Module 3 1775 79.80 7.75 138 0.841 - Modular - 132.84 4721 1314 0.542* -
(1195) (53.74)  (5.98) (126) (0.203; - - (64.48)  (28.27) 37y (0.009) -
Modular - 80.15 15.15 287 0.483* " Non-modular 11174 226.10 35.60 1072 0.555 -
- (53.80)  (9.27) (149) (0.092) - (4485) (90.08)  (15.92) (579) (0.019) -
Non-modular 1891 122.50 6.80 167 0.612 -

*Percentage of test error reduction by modular network (0.542) versus non-
(676) (4299)  (3.50) 63) (0.309) N modular network (0.555): 2.34%.

*Percentage of test error reduction by modular network (0.483) versus non-
modular network (0.612): 21.8%.

Note: 1. In the Problem column, “modular” stands for modular network,
i.e., the collection of all the modules. It is the overall solution for the original
problem based on output parallelism. “Nonmodular” stands for nonmodul
network. It is the solution for the original problem using the convention:
method. 2. “T.Time” stands for training time, the CPU time taken by growin ©) Units  Param. (%)
and training each module or nonmodular network. For the modular netwo
“T. Time” equals to the maximum “T. Time” of the modules plus the time
expended for merging the modules to form the modular network and deliveri (1744) 9.25) (202 (28) w421y
the test patterns to obtain the overall solution. 3. “Ind. Param.” stands for t
number of independent parameters (the number of weights and biases in
net. 4. “Ete” stands for the test error and “C. Error” stands for classificatic (1531) (830)  (236) (33) 11.337) -
error. For regression problems (Building 1 and Flarel), we consider test er

TABLE 1l
RESULTS FORDIABETESL

Problem Epochs T. Time Hidden Indp. Ete C. Error

Module 1 8053 42,50 9.20 101 16.011 B

Module 2 6975 37.00 8.40 93 16.084

. ) . Modul - 4255 1760 194 16.047*  23.359%*
only. 5. For the date, the first row is the average and the second row is ocar

standard deviation. - (9.30)  (4.76) (48) 0.281)  (1.031)

Non-modular 8870 6200  10.15 130 16115  23.932

the experiment results show that our approach improves g aesn (170 069 @) @37 (0917

erahzatl'on qccuracy, regardless whether training time Is SaVquercentage of test error reduction by modular network (16.047) versus non-
or not (i.e., if there is no parallel computer to run our proposesbdular network (16.115): 0.42%.
method). **Percentage of classification error reduction by modular network (23.359)

. . . versus nonmodular network (23.932): 2.39%.
As to network complexity, the maximum number of inde- ( ) °

pendent parameters among the three modules is 138 while the
nonmodular network has 167 independent parameters. It is édl-inputs are continuous. Its attributes are: number of times
fair to compare the total number of independent parameterspségnant, plasma glucose concentration, diastolic blood pres-
the modular network with that of the nonmodular network. Asure, triceps skin fold thickness, 2-h serum insulin, body mass
we anticipated that the former would usually be larger than tivedex, diabetes pedigree function, and age.
latter. However, each module has a distinctly different number of We divide the Diabetesl problem into two subproblems each
independent parameters, which explains why we should adomtfavhich has one output unit. As shown in Table Ill, each module
constructive learning algorithm instead of a predefined netwoskends much less training time and has simpler network than the
architecture. nonmodular network. The modular network obtained smaller
2) Flarel: Flarel is a regression problem. It predicts solarassification error and test error also compared with the non-
flares by trying to guess the number of solar flares of smathodular network.
medium, and large sizes that will happen during the next4) Glassl: This data set is used to classify glass types. The
24-hour period in a fixed active region of the Sun surface. Itesults of a chemical analysis of glass splinters (percentage of
input values describe previous flare activity and the type ameihht different constituent elements) plus the refractive index
history of the active region. Flarel has 24 inputs, three outpudse used to classify a sample to be either float processed or non-
and 1066 patterns. float processed building windows, vehicle windows, containers,
The Flarel problemis divided into two subproblems. The firéableware, or head lamps. This task is motivated by forensic
one (module 1) has one output unit and the second one (moduéeds in criminal investigation. This data set consists of nine
2) has two output units. From Table II, we can see the modulaputs, six outputs, and 214 patterns.
network spends only about half the training time of the nonmod- The Glass1 problem is divided into two subproblems each of
ular network. And the former obtains smaller test error as wellthich has three output units. The classification error is signifi-
3) Diabetesl: The Diabetesl problem diagnoses diabetes oantly reduced from 40.236% to 34.906% as we use the modular
Pima Indians. It has eight inputs, two outputs, and 768 patterngtwork instead of the nonmodular network.
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TABLE IV TABLE V
RESULTS FORGLASS1 RESULTS FORV OWEL
Problem Epochs T.Time  Hidden Indp. Ete C. Error Problem Epochs  T.Time  Hidden Indp. Ete C. Error
(s) Units Param, (%) s Units Param, (%)
Module 1 3836 2290 13.90 211 : Module 1 6586 5132 18.16 229 1.688 B
(2411) (629)  (4.81) (78) {0,655 B (4442) (36.44)  (18.33) (220) 0.912) -
Module 2 4676 125 1150 180 3952 . Module 2 18578 14616 1432 183 2835 -
(2415) (645  (7.85) (142)  (0.296) - (10542)  (84.35)  (6.08) (73 (1.515) -
Modular - 2295 25.40 390 9233 34.906%* Module 3 23497 18458 1889 238 1755 -
B} ©35 (218 (158) ©381)  (3.39) (7345) (5749)  (6.85) (82) (0.547) -
Module 4 16487 12826 1642 208 2,549 -

Non-modular 8446 36.25 14.75 296 9.881 40.236

(3221) (13.16) (4.33) (127) (0.643) (3.882) (6803) (53.49) (8.56) (103) (0.905) -

Module 5 20965 164.74 17.26 218 3674 -

*Percentage of test error reduction by modular network (9.233) versus nc
modular network (9.881): 6.56%.

**Percentage of classification error reduction by modular network (34.901 Module 6 8056 6353 1116 145 7351 -
versus nonmodular network (40.236): 13.25%.

(9638) (76.22)  (10.29) (123) (0.783) -

(6920 (54.42)  (6.46) an (0.874) -
5) Vowel: The data set used in this example were obtaine o :::; :;410; ::16; ;171) :z:) ]
from the University of California at Irvine (UCI) repository of oduies o103 o 1s0s 0 2o )
machine learning databases. The input patterns are ten elen
real vectors representing vowel sounds which belong to o (Hn @y ele s e ’
of 11 classes. It has 990 patterns in total. The patterns w Module o7 SALII s a8 :
normalized and scaled so that each components lies witl (@95 466 Gsy 0B (-
[0’ 1] Module 10 20195 159.11 32.26 398 1.788 -
We divide the Vowel problem into 11 subproblems and ea« Ualrs) (L2 (850 @27 030 :
has one output unit. From Table V, we can see that traini Module 11 15135 1874 1516 193 5206 -
time for the modular network is 184.63 s, less than one third (11486)  (8932) (1L.62)  (139)  (2284) -
that for the nonmodular network, 622.55 s. At the same tim Modular - 18463 18563 2349 36104 24355
the classification error obtained by the modular network - (5751) (LI (380)  (0401)  (4.382)
24.355%, much smaller than that of the nonmodular netwol Non-modular 19264 62255 2665 707 4557 34737
34.737%. As a contrast, the classification error obtained in [2 77 1574) (905 (199)  (0.800)  (7413)

is 44.7%.
From the experiments, we can see that our method is estPercentage of test error reduction by modular network (3.610) versus non-
pecially g_OOd for those problems that have a large numberrBtgllDJIeE;E:gr?ttZ\V;ékogtéss?sﬁifecl)t.iZJﬁO/eol.’ror reduction by modular network (24.355)
output units, e.g., the Vowel problem and the Glass1 problearsus nonmodular network (34.737): 28.89%.
Their classification error and test error are reduced dramatically
based on output parallelism. This is because conflicting sig-
nals from different output units retard learning in a nonmodular
network. However, in modular network, the hidden structures This paper presents an approach to grow and train neural net-
for the original problem’s output units are decoupled and comworks based on output parallelism. Feasibility of output par-
sequently the internal interferences reduce. Therefore, weiglielism is analyzed and proved by (6). A problem can be di-
modification in each module is guided by only one portion ofided into several subproblems, each of which is composed of
output units and learning is likely to be more efficient and thihe whole input vector and a fraction of the output vector. Each
error to be smaller. module (for one subproblem) thereby is responsible for pro-
In our experiments presented abo¥g;, is set to 0.1. For ducing a fraction of the output vector of the original problem.
some problems (validation set errors obtained by some inditich modules can be grown and trained in parallel. Based on
vidual modules are below 0.1), we can actually set a smalleutput parallelism, a complex problem can be divided into sev-
Fyn. The results obtained whehy, is set to 0.01 for Buildingl eral simpler subproblems as chosen, and internal interference
and Glassl are displayed in the Appendix. From the results, i8egreatly reduced. This is because the hidden structure for the
can see that their test errors and classification errors are redussdinal problem’s output units are decoupled. Efficient and ef-
further compared to the results in Tables | and IV. Note that tifiective learning is consequently achieved. It should be men-
test errors and classification errors from the nonmodular néibned that problems that have only one output unit cannot be
work remain the same for these two problems. The cost of doidgcomposed using our method. And as we can see from the ex-
this is that some modules will have a few more independent gaeriments, our method is especially good for the problems that
rameters than the previous results. have a large number of output units.

V. CONCLUSION
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TABLE VI TABLE ViII
RESULTS FORBUILDING 1 (E4, 1S SET T00.01) RESULTS FORGLASSL (E4, 1S SET T00.01)
Problem Epochs T. Time Hidden Indp. Ete C. Error Problem Epochs T. Time Hidden Indp. Ete C. Error
) Units Param. (%) ) Units Param. (%)
Module 1 1558 69.25 445 86 0.248 - Module 1 8336 22.90 13.90 211 [ERREN -
(499) (22.08) (209 (40) (0.041) - (2411) (6.29)  (4.81) (78) -
Module 2 1873 80.20 320 66 ©.335 - Module 2 7540 20.40 22.70 325 -
(767) (35.32)  (1.90) (45) w196} - (2745) (7.54)  (10.80) (173) -
Module 3 1385 62.10 5.80 108 0.841 - Modular - 2295 36.60 536 9.177* 34.528%*
(864) (39.04) (4.32) (86) (.263) - - (6.35)  (15.05) (196) (0.383) (3.509)
Modular - 80.35 1345 260 0.481* - Non-modular 8446 36.25 14.75 296 9.881 40.236
- 3539 (754 1zn (0.115) - (3221) (13.16)  (4.33) (127) (0.643) (3.882)
Non-modular 1891 122.50 6.80 167 0.612 -

*Percentage of test error reduction by modular network (9.177) versus non-
(676) 4299  (3.50) (63) (0.309) - modular network (9.881): 7.12%.
**Percentage of classification error reduction by modular network (34.528)
*Percentage of test error reduction by modular network (0.481) versus naersus nonmodular network (40.236): 14.19%.
modular network (0.612): 21.41%.

) ) APPENDIX
From the results obtained by our experiments, we can sum- ) ] ] .
marize the advantages of output parallelism as follows: In this section, we present the results obtained whgnis

) set to 0.01 for Buildingl and Glass1 problem (see Tables VI
1) A problem can be decomposed into a set of subproblems VII).

as chosen without any prior knowledge concerning the
decomposition of the problem.

2) In a nonmodular network, conflicting signals from
different output units retard learning. Modular learning The authors thank the reviewers for their valuable comments.
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