
Self-Beliefs in the Introductory

Programming Lab and

Game-Based Fantasy Role-Play

Michael James Scott

Department of Computer Science

Brunel University London

A thesis submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

May 2015

mailto:adrir@adrir.com
http://www.brunel.ac.uk/cedps/computer-science
http://www.brunel.ac.uk

An nescis, mi amicis, quantilla prudentia mundus educatis?

Abstract

It is important for students to engage in adequate deliberate practice

in order to develop programming expertise. However, students often

encounter anxiety when they begin to learn. This can present a

challenge to educators because such anxiety can influence practice

behaviour. This thesis situates this challenge within the Control-

Value Theory of Achievement Emotions, emphasising a need for

domain-specific research and presenting new research tools which can

be used to investigate the area. Analysis of data collected from three

cohorts of introductory programming students on web programming

(2011-12) and robot programming (2012-13 and 2013-14) courses show

that programming self-concept and programming aptitude mindset

can predict programming anxiety and that programming anxiety is

negatively correlated with programming practice. However, levels

of anxiety remained consistently high across this period. A method

to enrich these psychological constructs through a multimedia-rich

learning environment is proposed. Drawing upon the interplay

between narrative reinforcement and procedural rhetoric that can be

achieved in a fantasy role-play, students’ self-concept can be enhanced.

A double-blind randomised controlled trial demonstrates promising

results, however small effect sizes suggest further research is needed.

Contents

List of Tables ix

List of Figures xi

Acknowledgements xiii

Declaration xiv

1 Introduction 1

1.1 Overview . 1

1.2 Aims and Objectives . 3

1.3 Philosophy and Approach . 4

1.4 Structure of the Thesis . 5

2 Challenges in the Introductory Programming Lab 10

2.1 Introduction . 10

2.2 Barriers to Programming Practice 13

2.3 The Control-Value Theory of Achievement Emotions 18

2.4 Need for Further Research . 20

2.5 Summary . 22

3 Computing Education Research: A Pragmatic Design Approach 24

3.1 Introduction . 24

iii

CONTENTS

3.2 Scholarship in Computing Education 25

3.2.1 The Science of the Artificial 26

3.2.2 The Boyer Model of Scholarship 27

3.2.3 The Empirical Approach 28

3.2.4 Aspirations in Computing Education Research 29

3.3 A Pragmatic Design Approach . 31

3.3.1 Philosophical Underpinnings 31

3.3.1.1 Ontological Position 31

3.3.1.2 Epistemological Position 32

3.3.1.3 Methodological Position 34

3.3.1.4 Axiological Position 34

3.3.2 Research Strategy . 37

3.3.2.1 The ‘Twin Spiral’ Model 37

3.3.2.2 On the Choice of Methods 38

3.3.3 On Validity . 40

3.3.4 On Ethics . 41

3.3.5 Data Collection Techniques 41

3.3.6 Data Analysis Techniques 42

3.3.7 Datasets Presented in the Thesis 42

3.4 Summary . 45

4 On the Domain-Specificity of Mindsets 46

4.1 Introduction . 46

4.2 Background . 47

4.3 Research Questions . 49

iv

CONTENTS

4.4 Hypotheses . 50

4.5 Method . 51

4.5.1 Data Collection . 51

4.5.2 Participants . 53

4.6 Measurement . 53

4.6.1 Mindset For Intelligence 54

4.6.2 Mindset For Programming Aptitude 54

4.6.3 Regularity of Programming Practice 55

4.6.4 Early Programming Performance 55

4.7 Data Analysis . 56

4.7.1 The Two-Mindsets Factor Structure 56

4.7.2 Consistency Between Different Mindsets 58

4.7.3 Impact of Each Mindset on Practice Behaviour 59

4.7.4 Change in Belief for Each Mindset Over Time 61

4.8 Discussion . 62

4.9 Limitations . 63

4.10 Summary . 64

5 Measuring Enrichment: Assessing Self-Beliefs in CS1 66

5.1 Introduction . 66

5.2 Proposed Conceptual Framework and Instrument Assembly 68

5.3 Research Questions . 70

5.4 Hypotheses . 71

5.5 Method . 73

5.5.1 Data Collection . 73

v

CONTENTS

5.5.2 Participants . 74

5.6 Data Analysis . 75

5.6.1 Descriptive Statistics . 75

5.6.2 Measurement Model . 77

5.6.3 Reliability . 78

5.6.4 Construct Validity . 78

5.6.5 Concurrent Validity . 80

5.7 Discussion . 80

5.8 Limitations . 82

5.9 Summary . 83

6 On Self-Beliefs, Emotions, Practice, and Robots 85

6.1 A Comparison Between Two Courses 85

6.2 Related Work . 87

6.3 Intended Outcomes . 89

6.4 Course Design . 91

6.5 Method . 93

6.5.1 Data Collection . 93

6.5.2 Research Instruments . 94

6.5.2.1 Student Self-Beliefs 94

6.5.2.2 Self-Reported Weekly Programming Practice . . 94

6.5.2.3 Code Quality . 94

6.6 Data Analysis . 95

6.6.1 Differences in Attitude . 95

6.6.2 Greater Practice with the Robot Olympics 96

vi

CONTENTS

6.6.3 Higher Overall Quality with Practice and the Robot Olympics 96

6.6.4 Varying Effects of Practice and the Robot Olympics on

Aspects of Code Quality 97

6.7 Discussion . 102

6.8 Limitations . 104

6.9 Conclusions . 104

7 Games-based Fantasy Role-Play in the Programming Lab 106

7.1 Introduction . 107

7.2 Digital Games in Educational Settings 108

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays 110

7.3.1 Procedural Rhetoric . 113

7.3.2 Narrative Reinforcement 114

7.4 Games in the Programming Lab 116

7.5 Limitations . 126

7.6 Conclusion . 127

8 Exploring the ‘Projective Identity’ Hypothesis 129

8.1 Introduction . 129

8.2 Tool Development . 131

8.3 Method . 133

8.3.1 Sample . 134

8.3.2 Measurement . 134

8.3.3 Procedure . 135

8.4 Results . 136

vii

CONTENTS

8.5 Discussion . 137

8.6 Conclusion . 138

9 Conclusion 140

9.1 Overview . 140

9.2 Key Contributions . 143

9.3 Implications for Practice . 144

9.4 Implications for the Field . 145

9.5 Limitations . 146

9.6 Future Directions . 148

References 150

viii

List of Tables

2.1 The potential influences of those learners with different implicit

conceptions of programming aptitude (Adapted from [Dwe99]). . . 17

4.1 Fit Indices and Criteria for Both Models (Pilot Study) 56

4.2 Fit Indices and Criteria for Both Models (Actual Study) 57

4.3 Mindset Classifications for Individual Students 58

4.4 Programming Aptitude Mindset Regression Model 59

4.5 Intelligence Mindset Regression Model 59

4.6 Model Selection . 61

4.7 Model Selection . 61

4.8 Summary of Findings and Adjusted P-Values 64

5.1 Mean, Standard Deviation, Skewness and Kurtosis of the

Instrument Items . 76

5.2 Fit Indices and Criteria for the Measurement Model 77

5.3 Construct Validity of the Latent Constructs in the Measurement

Model . 79

5.4 Regression Results for Relations in the Proposed Structural Model 80

ix

LIST OF TABLES

5.5 Summary of Findings and Adjusted P-Values 84

6.1 Key Differences between the Web Programming Course and the

Robot-Centred Course . 93

6.2 ANOVA Results For Self-Concept and Anxiety 99

6.3 ANOVA Results For Each Aspect of Code Quality 99

7.1 Types of Procedural Rhetoric used as Persuasive Mechanisms in

Game-based Fantasy Role Plays 111

7.2 Types of Narrative Reinforcement used as Persuasive Mechanisms

in Game-based Fantasy Role Plays 112

7.3 A Content Analysis of Persuasive Mechanics in Programming Games120

8.1 Descriptive Statistics for Each Group in the Experiment 136

8.2 Experimental Results (dv = Post-Test Programming Self-Concept) 136

8.3 Estimated Marginal Means (dv = Post-Test Programming Self-

Concept) . 137

x

List of Figures

2.1 Overview of the Control-Value Theory of Achievement Emotion

with an Embedded Conceptual Framework (Adapted From [Pek06,

PS10]) . 20

3.1 The Cycle of Empirical Research from [McG81, p. 181] 29

3.2 An Adaptation of Gregor’s Taxonomy of Theory Types Applied to

Computing Education Research from [Cle13, p. 29] 36

3.3 The Twin Spiral Model of Design Research in Computing Education 38

3.4 The Three Conflicing Desiderata in Dilemmatic Method Selection

from [McG81, p. 183] . 39

3.5 Datasets Presented in this Thesis 44

4.1 A 3D Scatter Plot Illustrating the Influence of Programming

Aptitude Mindset and Performance on Early Programming

Assignments on Self-Reported Programming Practice. 60

5.1 A Conceptual Framework for Enhancing Students’ Programming

Practice . 68

5.2 Aspects of Validity Drawn From [SBG04, HBBA10, NS13] 72

xi

LIST OF FIGURES

6.1 A clustered bar chart comparing self-reported hours of

programming practice between students enrolled in the Web

Programming and Robot-Centred courses. 100

6.2 A clustered bar chart comparing the overall quality of final

coursework submissions between students enrolled in the Web

Programming and Robot-Centred courses at each level of self-

reported practice. 100

6.3 A pair of scatter plot matrices comparing the relations between

programming practice, aspects of code quality, and student cohort. 101

8.1 Learning to Trace Code. 132

8.2 Integrating Fantasy Role-Play. 133

8.3 A Box-Whisker Plot Illustrating the Gain Scores Within Each

Experimental Allocation. 138

xii

Acknowledgements

I would like to thank my supervisor, Gheorghita Ghinea, for his

patience and support throughout the doctoral programme.

xiii

Declaration

I declare that this thesis is an account of an original research. The

following articles have been produced as a direct or indirect result of

the research discussed in this thesis:

Journal Articles:

1. Scott, M. J. and Ghinea, G., Enriching the Self-Concept and

Mindset of Novice Programmers using Game-based Fantasy

Role-Play: A Review of Existing Games, British Journal

of Educational Technology (Under Review), pp. 1–6, DOI:

10.1109/TE.2013.2288700.

2. Scott, M. J., Counsell, S., Lauria, S., Swift, S., Tucker,

A., Shepperd, M., and Ghinea, G., Enhancing Practice and

Achievement in Introductory Programming with a Robot

Olympics, IEEE Transactions on Education (Accepted, In

Press), pp. 1–6, DOI: 10.1109/TE.2013.2288700.

3. Scott, M. J. and Ghinea, G., On the Domain-Specificity of

Mindsets: The Relationship Between Aptitude Beliefs and

Programming Practice, IEEE Transactions on Education, 57

(2014), pp. 169–174, DOI: 10.1109/TE.2013.2288700.

xiv

http://dx.doi.org/10.1109/TE.2013.2288700
http://dx.doi.org/10.1109/TE.2013.2288700
http://dx.doi.org/10.1109/TE.2013.2288700

Peer-Reviewed Papers:

4. Scott, M. J. and Ghinea, G., Measuring Enrichment: The

Assembly and Validation of an Instrument to Assess Student

Self-beliefs in CS1, Proceedings of the 10th Annual ACM

Conference on International Computing Education Research

(Glasgow, Scotland), August 2014, pp. 123–130.

5. Scott, M. J. and Ghinea, G., Implicit Theories of Programming

Aptitude as a Barrier to Learning to Code: Are They Distinct

from Intelligence?, Proceedings of the 18th ACM Annual

Conference on Innovation and Technology in Computer Science

Education (Kent, UK), July 2013, p. 347.

6. Scott, M. J., Projective Identity and Procedural Rhetoric

in Educational Multimedia: Towards the Enrichment of

Programming Self-concept and Growth Mindset with narrative

reinforcement, Proceedings of the 21st ACM International

Conference on Multimedia (Barcelona, Spain), October 2013,

pp. 1031–1034.

7. Scott, M. J. and Ghinea, G., Educating Programmers: A

Reflection on Barriers to Deliberate Practice, Proceedings of the

2nd HEA STEM Conference (Birmingham, UK), April 2013,

pp. 28–33.

8. Scott, M. J. and Ghinea, G., Integrating narrative reinforcement

into the Programming Lab: Exploring the ‘Projective Identity’

xv

Hypothesis, Proceedings of 43rd ACM Technical Symposium on

Computer Science Education (Denver, CO, USA), March 2013,

pp. 119–122.

xvi

1

Introduction

Programming is an area of challenge within computing education research. This

may be because the progress of some students may be impeded by their emotions

or by their self-beliefs. However, little research shows how such phenomena arise

and can be overcome. Therefore, it is important to explore how self-beliefs and

emotions interact with the way students learn programming. This chapter forms

the foundation for this exploration, outlining the research in this thesis.

1.1 Overview

Educational multimedia is widely used to support learning. Applications include:

instructional videos; visualizations; training simulations; and serious games.

Part of its popularity can be attributed to its availability, as learners in many

parts of the world are able to access multimedia-enabled instruction due to the

growing ubiquity of computer-based tools [MR01]. Furthermore, multimedia

communication is often informed by the principles of cognitive science, so the

1

1.1 Overview

delivery of learning material in such cases is optimized for human information

processing [May08, MCGC11].

However, while retention and transfer of knowledge are highly desirable,

direct instruction is not the only goal of education. At the tertiary level,

in particular, there is a movement towards learner-centred paradigms which

champion autonomy [BT95] and encourage self-regulation [Zim02]. This has

implications for practical disciplines, such as computer programming, where it

is desirable for learners to immerse themselves in a regime of ongoing reflective

practice. This is because at least ten years of such deliberate practice is often

needed to obtain substantial expertise [EKTR93?].

Yet, despite this renewed emphasis, educators do not appear to have

overcome some of the most pervasive challenges in introductory programming

[Guz11, TG11, SBE83, MAD+01]. Many novices do not appear to practice

programming regularly, claiming they experience apprehension and discomfort

when they attempt to do so [KS10b, RS10b]. Some authors even go so far as to

describe this as “programming trauma” [Hug04], and there is some neurological

evidence in the area of mathematics education which suggests such anxiety is

linked with regions of the brain responsible for visceral threat detection and pain

[LB12]. Thus, negative experiences and their impact on avoidance behaviour is

an area of concern for computing educators.

The potential barriers that influence programming avoidance are numerous

and multifaceted (see [BM05, Bor11]). As such, it is important to incorporate

analytical and adaptable approaches into the design of learning environments and,

in particular, in the design of tools that educators use to support these learning

2

1.2 Aims and Objectives

environments. These then permit educators to diagose and solve challenges

associated with these barriers.

Unfortunately, many diagnostic processes and solutions do not trivially scale

to large cohorts of students that many educators are responsible for. Moreover,

the computing educational research literature does not clearly articulate the

pedagogic-content knowledge that educators could use to support individual

programming students more effectively (not to be confused with best practices in

instructional design for which much research exists, e.g., [PS13]).

The means through which these diagnostic techniques and educational

interventions are applied in practice, nevertheless, does not rely solely on teaching

assistants and faculty. Educational multimedia and adaptive hypermedia systems

can be used to support scalability. Therefore, suitable measurement, scaffolding

and feedback for individual learners can be managed by faculty with the support

of virtual learning environments. This enables pedagogies that account for

barriers to deliberate practice.

1.2 Aims and Objectives

The aims of this thesis is twofold: firstly, to understand the relationship between

self-beliefs, emotions, and practice behaviour in the introductory programming

context; and secondly, to understand how to support students’ ability to

overcome non-constructive self-beliefs, to incorporate positive emotions into

learning experiences, and thereby how to improve student practice. As such,

the thesis is broadly separated into four key areas:

3

1.3 Philosophy and Approach

• Constructing a conceptual framework which can be used to understand

the relationship between self-beliefs, emotions, and practice

• Developing valid measurement instruments which can be used to

investigate these relationships

• Assessing the impact of existing teaching practices in the introductory

programming lab on self-beliefs and emotions

• Performing experimental research which investigates how to overcome

non-constructive self-beliefs using new teaching tools

Based on these four key activities, a range of contributions is expected. This

includes the development of research tools (also referred to as “instantiations”)

which can be used as a lens for further research into self-beliefs and emotions in

the introductory programming context. This leads into using these new research

tools to support the development and assessment of new pedagogical tools with

self-belief and emotion requirements, resulting in recommendations which could

be incorporated into the development of future pedagogical tools.

1.3 Philosophy and Approach

This thesis follows the pragmatic philosophy for conducting research in education.

This is centred on a perspective of research which privileges the exploration of

applied contexts and practical utility over theoretical impact. It also emphasises

the ontological position of transactional realism; that is, the notion that reality

exists within ephemeral interaction between organisms and their environment.

4

1.4 Structure of the Thesis

These are, as argued in the methodology chapter, systematic. However, the

evolutionary nature of both organisms and environments can present challenges

to external validity. As such, the research discussed in this thesis focuses on

the development of conceptual models which educators can use to diagnose

and understand problems in their learning environment and then proposes some

potential solutions which educators can use to overcome the challenges they face.

As much valuable qualitative work has already been done in the area of self-

beliefs and emotion, the research contained in this thesis focuses on quantitative

approaches to measuring self-beliefs and emotion. This offers validity and

verification to work already conducted in this area and reveals the significance

of the problem in a way that non-representative samples favoured in qualitative

research cannot.

1.4 Structure of the Thesis

This chapter introduces educational multimedia as a key driver in the success of

learning environments. While the motivational characteristics of such multimedia

is widely studied, both in terms of cognition and affect, opportunities for

further research on its role in preparing students for self-regulated learning are

highlighted. It then illustrates introductory computer programming as an area of

challenge in this respect. The reasons why some students seem to develop negative

emotions, such as anxiety, during their first programming course was questioned.

Several research questions associated with the way educators conceive emotion,

practice, and achievement were raised, leading to the hypotheses associated with

the role of educational multimedia in enriching these self-beliefs.

5

1.4 Structure of the Thesis

The literature review presented in Chapter Two discusses the challenges

associated with the introductory programming lab in further detail, focusing on

complex relationship between belief, emotion, and behaviour. The Control-Value

Theory of Achievement Emotions is introduced as a means to understand these

challenges and how to help individual students overcome barriers to deliberate

practice. It is posited, however, that the theoretic framework may not be

transferable (at least, in a trivial manner) to the programming context and may

require adaptation through the introduction of domain-specific constructs, with

the findings of the review demonstrating that few such explorations have been

conducted.

Chapter Three discusses the pragmatic philosophy which underpins the

research described in this thesis. The process of Pragmatic Design Research, as

a process for computing education research, is then described alongside further

detail on its ontological, epistemological, and axiological underpinnings. Then,

after emphasising the value of the applied contributions this approach makes to

the displicine, the chapter proposes a strategy based on: model development;

design; and experimental evaluation.

The study presented in Chapter Four reinforces the rationale for the research

raised in Chapter Two by demonstrating that a domain-specific approach to self-

belief research can be justified within the computer programming context. The

results of a longitudinal survey supports the hypothesis that a domain-specific

mindset construct (mindset towards programming aptitude) can, when compared

to a more general mindset construct (mindset towards intelligence), have greater

utility for predicting programming behaviours.

6

1.4 Structure of the Thesis

Chapter Five builds upon the work in the previous chapter, introducing a

measurement instrument which has been adapted for use within the domain of

introductory programming in the higher education context. In doing so, the

chapter also presents a number of challenges associated with valid and reliable

measurement. In particular, the importance of validating how psychological

constructs are measured. Thereby building upon the lack of validation research

within the computing education research field through demonstrating one

approach to demonstrating adequate validity.

The analysis presented in Chapter Six evaluates the self-beliefs, emotions,

practice, and performance of two cohorts of students. Two course designs

are compared: a robot-centred course design used in 2012-13 cohort and the

web programming course design used in 2011-12. Despite some improvements

in student outcomes, there were no significant differences between the two

cohorts in terms of self-beliefs or emotion. Nevertheless, relationships between

programming self-concept, programming aptitude mindset, programming anxiety,

programming practice, and three aspects of program quality (i.e., functional

coherence, readability, and sophistication) are observed, suggesting that the

enrichment of student self-beliefs could be a beneficial pedagogic strategy.

As the robots did not have a significant impact on students’ beliefs or

emotions, alternative strategies need to be considered. As such Chapter Seven

presents a literature review on the use of fantasy role-play to support the

introductory programming lab. Namely, narrative reinforcement and procedural

rhetoric. The potential benefits of game-based approaches using fantasy role-

play are discussed in relation to pedagogical theory and then a review of over 50

7

1.4 Structure of the Thesis

programming games is presented. Despite the relatively large number of games

and their diversity in design, few seemed to take advantage of the proposed

techniques and none had been empirically evaluated in terms of student self-

beliefs.

This review revealed little empirical support for the transformation effects

of games claimed by serious game evangelists in the computing education

field. Hence, the study presented in Chapter Eight empirically evaluates the

hypothesis that a projective identity can be used to enhance students’ self-

beliefs. Specifically, programming self-concept. The chapter discusses the theories

associated with the notion of projective identities, focusing on the Proteus

Effect, and describes the development of two experimental e-learning activities:

one integrating fantasy role-play and the other without. The results of an

experimental trial are promising but did not suggest a practically meaningful

effect.

Chapter Nine discusses the overall findings of the research and how they

relate to the aims and objectives presented in Chapter One while emphasising the

contributions made to the fields of computing education research and educational

technology. As with all research, this work has limitations which the chapter

acknowledges, suggesting future work which could be conducted to overcome

these limitations or otherwise improve the validity of the findings. In particular,

opportunities for further development and longitudinal evaluation are considered.

8

1.4 Structure of the Thesis

Declaration

Some of the work presented in this chapter can also be found in the following

publication:

Scott, M. J., Projective Identity and Procedural Rhetoric in Educational

Multimedia: Towards the Enrichment of Programming Self-concept and Growth

Mindset with narrative reinforcement, Proceedings of the 21st ACM International

Conference on Multimedia (Barcelona, Spain), October 2013, pp. 1031–1034

9

2

Challenges in the Introductory

Programming Lab

This chapter reviews a number of the challenges that educators often encounter

in the introductory programming lab. It examines the importance of deliberate

practice and the role that emotions play, anxiety in particular, in inhibiting this

form of practice. A conceptual framework based on the Control-Value Theory of

Achievement Emotions is presented and the potential use of the framework to

develop new pedagogical approaches is discussed.

2.1 Introduction

In recent years, there has been a drive to revitalise computing education in the

United Kingdom [BSCH14], in part due to criticisms by the Royal Society [Fur12],

the Nesta Trust [LH11] as well as various other professional and government

bodies [PJM10, Gov12]. The new curriculum introduced in 2014 includes the

fundamentals of computer programming [fE13]. However, programming can

10

2.1 Introduction

be very challenging to teach [Jen02]. Subsequently, there are concerns that

inexperienced educators will require support in this endeavour [LH11].

While such concerns are not unfounded, it is important to note that even

students taught by those with substantial expertise often fail to progress to more

advanced courses. Notwithstanding those which have shown improvements in

retention and success [PS13], many studies conducted across the last 30 years

show poor outcomes at the introductory level [Guz11, TG11, SBE83, MAD+01].

In addition, while failure is high [BC07], many successful students choose not

to progress [BM05, Car06b]. The reasons for these outcomes are complex and

multifaceted (see [BM05]). Hence, introductory programming is considered a

grand challenge in computing education [MBI+05].

In line with the theory that it can take approximately ten years to become

an expert in software development [?], the discipline demands a substantial

level of deliberate practice in order to achieve mastery [EKTR93?]. As such, a

key issue can sometimes be both the amount as well as the quality of practice

that novice programmers engage in [?]. This means that practice needs to be

ongoing, focused, reflective, and situated at the right level of challenge for any

individual student [EKTR93]. This is supported by evidence within the field of

computing education research which suggests that levels of effort [VJ05], comfort

[WS01, VJ05] and depth [SFS+06] can predict success in the first programming

course. This type of practice, however, is inherently uncomfortable and demands

that learners remain focused and motivated.

Unfortunately, few beginners appear to find writing code easy, with even

fewer being able to maintain their focus and motivation [Jen01, Jen02]. As such,

11

2.1 Introduction

crafting a learning environment which promotes deliberate practice is not a trivial

task. One of the challenges associated with these problems is the level of doubt,

fear and anxiety that students experience as they engage with programming

tasks [KS10b, RS10b]. Despite the best efforts of instructors, learners still report

negative experiences when they engage with programming tasks [KB12, RS10a].

Some authors describe this phenomenon as programming trauma [Hug04] and,

to reinforce such striking language, there is some evidence which indicates that

the type of task anxiety these experiences invoke are related to the activation of

brain regions associated with visceral threat detection and pain [LB12]. Of further

concern, empirical work has shown that such affective states tend to worsen across

the duration of introductory courses [MD04].

It is generally accepted that reducing anxiety can enhance academic

performance [Hat09]. So, to alleviate anxiety, educators often work closely with

students to provide support [Jen01]). However, it is important that educators

intervene to address causes rather than symptoms. It is possible that some of the

anxieties that students experience could be reflective of underlying self-beliefs

which may be non-constructive. As Pajares points out in a review on beliefs

in education: “beliefs are the best indicators of the decisions individuals make

throughout their lives ” [Paj92, p. 307]. Naturally, it follows that beliefs can

inform decisions about instructional and learning strategies [SS80].

The self-beliefs which students develop appear to manifest as a result of the

experiences students have while they engage in programming activities rather

than the resulting quality of the programs they write [KS12]. With this being

the case, the emotions that learners feel may prompt them to reflect on themselves

12

2.2 Barriers to Programming Practice

and their ability in several different ways [KB12]. Potentially, learners may start

to believe that they no longer have the time or the motivation to overcome

these challenges as they cannot envision success in the future [KM06]. In other

words, learners may change their self-beliefs based on their experiences, through a

process of self-appraisal, potentially diminishing the way that they identify with

programming as a discipline and disengaging with deliberate forms of practice

[PP13?]. A consequence of this is that learners claim that they lack time or

have no motivation (as in [KM06]). So, if deliberate practice is a key element in

the acquisition of programming competencies, how do educators create learning

environments that successfully encourage practice?

2.2 Barriers to Programming Practice

In order to appreciate how to facilitate frequent practice, the barriers that prevent

it should be explored. Programming is markedly distinct of other disciplines

because proficiency in other areas does not predict success [BL01, EAK08]

and some believe that there are no effective aptitude tests [MBI+05, CLB07],

assuming that aptitudes for programming even exist [EKTR93, Jen02, AL13].

This is because the learning material sometimes demands something very novel

to new learners, drawing on skills that, at present, are seldom developed prior to

programming instruction:

By means of metaphors and analogies we try to link the new to the

old, the novel to the familiar. Under sufficiently slow and gradual

13

2.2 Barriers to Programming Practice

change, it works reasonably well; in the case of a sharp discontinuity,

however, the method breaks down. [Dij89, p. 1398]

The sudden sense of “radical novelty” [Dij89] creates an unexpected challenge

for many learners, presenting a barrier to learning. This is because those

without prior experience need to adapt to thinking about the intangible and

abstract concepts which are needed to describe the mechanics behind the code

they are writing [Bou86]. Barriers can even arise as early as the first stage of

instruction. Consider how someone new to reading program code might conceive

the mechanics behind an assignment operation, such as:

a = 1;

b = 2;

a = b;

What is the value of a?

Bornat, Dehnadi and Simon found that for “simple” assignment operations

that “hardly look as if they should be hurdles at all” [BDS08, p. 54], students

held many different mental models for how the program may execute. Even after

a few weeks of instruction, some participants failed to apply the correct model

consistently in a diagnostic test. This illustrates that the ways in which learners

conceptualise computer programs can be diverse and incorrect models may persist

without some intervention. Consequently, it is important not to dismiss the early

challenges experienced by individuals as: trivial; a lack of effort; or a lack of

talent. Put elegantly, “if students struggle to learn something, it follows that

14

2.2 Barriers to Programming Practice

this is for some reason difficult to learn” [Jen01, p. 53]. These issues can

be addressed through soft scaffolding, such that individual understandings are

continuously probed to enable the timely delivery of tailored support [SK07a].

Through this, misunderstandings are traced and corrected through the provision

of intermediate learning objectives. When not promptly addressed, such issues

can impede progress as learners are forced to the edge of, or perhaps beyond,

their “zone of proximal development” [Vyg80, p. 86]. Because building mental

models is easier when extending from a firm foundation this can, of course, lead

to significant variation in the types of situation that students encounter and the

speed at which they master the material; a concept known as “learning edge

momentum” [Rob12, Rob10]. Unfortunately, this could be one (of many) drivers

behind the apparent bi-modal distributions of ability (see [DB06] and [Bor14] for

an addendum) which reinforce non-constructive beliefs that teachers hold about

their students and that students may subsequently develop:

If teachers wish to create lasting improvements in the performances

of low ability students, it may not be enough for them to simply

adopt teaching strategies that favour such students. If teachers fail

to revise their evaluations of low ability students or the students

themselves fail to modify any negative self-evaluations they may

have, such students may later revert to their former performance

levels. From this perspective, it becomes easier to understand why

so many (often erroneous) social stereotypes and idiosyncratic social

perceptions are so resistant to change [..] For even if individuals adopt

15

2.2 Barriers to Programming Practice

interaction strategies that produce behavioural dis-confirmation, their

insensitivity to dis-confirmatory information and their tendency

to communicate their expectancies to the targets of their beliefs

may insure that their beliefs ultimately will receive behavioural

confirmation. [SS80, p. 887]

Nevertheless, Kinnunen and Malmi note there can be “individual variety in

how students respond to the same situation” [KM06, p. 107]. Many learners who

encounter such challenges are able to overcome them without assistance, albeit

perhaps after some frustration. So why are some people tenacious while others

seem helpless? A potential candidate for mediating this response is an individual’s

self-beliefs. Notably, implicit beliefs surrounding programming aptitude. Dweck

divides learners into entity-theorists, whom believe their aptitude is a natural

fixed trait, and incremental-theorists, whom believe their aptitude is a malleable

quality which is increased through effort [Dwe99]. These two groups demonstrate

different behaviours when they encounter difficulty as summarised in Table 2.1.

Too often, it is the case that learners start to believe an inherent aptitude

is required to become a programmer. Such beliefs inhibit practice. Thus, it is

important that programming pedagogies reinforce the incremental theory. An

example might include the liberal use of detailed informative feedback. This

approach focuses on improvement through illustrating weaknesses to overcome,

rather than merely labelling learners with summative grades. The latter might

be interpreted as a judgement of aptitude. However, many learners “often focus

on topics associated with assessment and nothing else” [GS04, p. 14] so some

form of formality is often necessary as an extrinsic motivator.

16

2.2 Barriers to Programming Practice

Entity-Theorists Incremental-Theorists

Goal of the student? To demonstrate a high To improve coding ability,

coding ability. even if reveals poor progress.

Meaning of failure? Indicator of low Indicative of lack of effort,

programming aptitude. strategy, or pre-requisites.

Meaning of effort? Demonstrates low Method of enhancing

programming aptitude. programming aptitude.

Challenge strategy? Less time practising. More time practising.

Performance after failure? Impaired. Equal or improved.

Table 2.1: The potential influences of those learners with different implicit

conceptions of programming aptitude (Adapted from [Dwe99]).

While Dweck’s dichotomy is useful in illustrating some differences [Dwe99],

it does not explain why some learners seem far more determined than others.

Potential factors, as Rogerson and Scott affirm [RS10a], are the negative affective

states that learners can experience as they write code. These “states[,] such as

frustration and anxiety[, can] impede progress toward learning goals” [MLL07,

p. 698]. However, while some learners become overtly frustrated with the all or

nothing nature of preparing a computer program for compilation, others press

on without complaint, demonstrating an admirable level of experimentation and

debugging proficiency. This can be somewhat surprising given that anything

short of a completely syntactically correct set of coded instructions will result in

failure and it is unusual for those at an introductory level to write robust code

on their first attempt.

17

2.3 The Control-Value Theory of Achievement Emotions

A potential candidate for mediating how learners are able to overcome

negative affect is academic self-concept. That is, “self-perceptions formed through

experience with and interpretations of one’s environment” [MM11, p. 60].

It is important to note that its effects are domain-specific [Hua11, RAB12]

and so therefore further work in the the computing domain is needed, but it

has demonstrated a reciprocal relationship with general academic achievement

[MM11] as well as interactions with a range of study-related emotions [GCF+10].

This suggests that learners who believe that they will definitely be able to

program, those with a high academic self-concept in programming, are better able

to overcome frustrations and anxiety. Thus, they are able to maintain high levels

of motivation. However, how can self-concept be enhanced? A meta-analysis

of 200 interventions shows that practices which target a domain-specific facet

of self-concept, with an emphasis on motivational praise and feedback alongside

skill development, yield the largest effects [OMCD06]. Other aspects of effective

practice might also place emphasis on learning activities that attempt to nurture

senses of pride, enabling high levels of enjoyment [GCF+10].

2.3 The Control-Value Theory of Achievement

Emotions

A framework that considers the role of self-beliefs and emotions in learning is the

Control-Value Theory of Achievement Emotion [Pek06, PS10]. In this framework,

students’ self-appraisal of ongoing achievement activities, and of their past and

future outcomes, are of key importance. This is because the emotions that they

18

2.3 The Control-Value Theory of Achievement Emotions

experience during a particular task will depend upon whether they feel in control

of the outcome and that the outcome is subjectively important to them.

These emotions then influence academic engagement and performance through

the model shown in Figure 2.1. The model proposes that instruction and support

have an influence on the way in which individuals form the control and value

appraisals. These appraisals then shape the specific achievement emotions that

students may experience based on whether they feel they can control activities

and outcomes that are subjectively important to them. These emotions then

have a direct impact on self-regulated learning and performance. Specifically,

emotions seem to influence cognitive resources, use of strategies, and dependence

on external regulation of learning [Pek06]. The overall model is also reciprocal

in nature, such that outcomes can shape emotions while both emotion and

performance shape the way students form their self-appraisals. In some cases,

instruction and support may also respond to student needs. In particular,

offering a range of interventions which could influence any part of the model.

As this process continues over time, it could have substantial impact on learning

behaviour and subsequently performance; as evidenced through the known co-

variance between self-efficacy beliefs and success [Wie05, WS01].

As each component of the framework represent a broad range of different

constructs, a parsimonious conceptual framework has been embedded within the

model. This example is derived from the challenges hypothesised to influence

programming practice in the previous section and illustrates how learning

activities and feedback influence students’ self-beliefs. Namely: self-concept,

which is is understood to be a composite of “self-perceptions that are formed

19

2.4 Need for Further Research

Instruc!on

 &

Support

 Control-Value

 Appraisals

Ac!vity & Outcome

Emo!ons

Self-Regulated

Learning

&

Performance

Design of Learning and Social

Environments

Appraisal-Orientated

Interven!on

Emo!on-Orientated

Interven!on

Competence-Orientated

Interven!on

Self-Concept

Interest Task Anxiety Avoidance Behaviour

Mindset

Feedback

Learning Ac!vi!es

&

Figure 2.1: Overview of the Control-Value Theory of Achievement Emotion with

an Embedded Conceptual Framework (Adapted From [Pek06, PS10])

through experience with and interpretations of one’s environment” [MM11];

interest, which is the extent to which an individual enjoys engaging with a set of

tasks; and mindset, using Dweck’s [Dwe99] notion of mindsets which claims that

students either have a growth mindset (i.e., they believe their capacities can be

developed through practice) or students have a fixed mindset (i.e., they believe

their capacities are natural, inherent qualities). These, in turn, influence task

anxiety which, consequently, may encourage avoidance behaviour.

2.4 Need for Further Research

Previous research reviews do not discriminate between cognitive and affective

goals in education research (see, .e.g., [Val04, MSS+10]). Indeed, some

authors conclude that the literature reflects “higher interest in determining

what the students can do rather than their behavioural or affective responses

to their learning or teaching experience” [SSHL09, p. 101]. This has been

20

2.4 Need for Further Research

reinforced in a recent review of theoretical frameworks which revealed few

psychological frameworks beyond Bandura’s self-efficacy have been used by

researchers [MSS+14].

Historically, the field has a rich history of developing tools to support

programming education. This is particularly the case with the ACM’s ITiCSE

and SIGCSE conferences. Many papers focus on the dissemination of new tools

to: automate assessment; automate feedback; reduce cognitive load; improve the

usability of introductory programming environments; and many more. However,

the evaluation of these tools is typically limited to the particular problem they are

designed to solve without addressing their impact more holistically (e.g. how the

change in learning environment influences students’ self-beliefs and emotions).

The Control-Value Theory of Achievement Emotions [Pek06, PS10] poses

causal links between self-beliefs, emotion, and action. Therefore, it would seems

pertinent to enrich these self-beliefs in order to help students manage their anxiety

and subsequently help them to engage in deliberate practice regularly. Yet, with

one noted exception of the Cutts experiment ([CCD+10], there has been very

little research on interventions in this area. Thus, this affective dimension of

learning computer programming requires attention.

There are a number of practices which could be applied to address the affective

domain. For example, growth messages can be embedded into assessment rubrics

and feedback [CCD+10], soft-scaffolding can help students to develop a stronger

self-concept [OMCD06], and students can be encouraged to engage in work

that they can take pride in [GCF+10]. There are, however, some limitations

associated with these approaches. In particular, educators in the UK often now

21

2.5 Summary

need to manage the scalability of their teaching responsibilities due to increasing

administrative demands [Tig10] and increasing staff-student ratios [Cou12].

As such, contact-time with students is often constrained [Cou12] in de-facto

lieu of increased workloads and stress [Kin01]. Hence, scalability is addressed

with the use of educational tools. However, these may not be suited to providing

the necessary types of tasks and feedback that will enhance students’ self-beliefs.

In some institutions, this may be supplemented by the use of teaching assistants

who conduct reviews of student work. However, it is not clear whether they

receive the necessary preparation needed to implement the types of interventions

being proposed. An alternative approach would, therefore, be welcome in large

classes. A means to achieve this would be, following tradition in the field, to

embed interventions directly into educational tools and one type of tool that

shows promise, in this respect, is digital games.

2.5 Summary

Learners often need to practice writing code frequently in order to acquire basic

programming competencies. This paper questions how learning environments

can be better designed in order to facilitate deliberate practice, describing three

potential barriers to deliberate practice: the radical novelty of the learning

material; the belief that some inherent aptitude is required; and the emergence of

unfavourable affective states. Overcoming such barriers will facilitate educators

in aiming for excellence, but often require strategies that are analytical and

adaptable. It is proposed that examples of good practice include: soft scaffolding;

ongoing detailed informative feedback; and an emphasis on self-enhancement,

22

2.5 Summary

through motivational feedback and pride-worthy activities, in addition to skill-

development.

Declaration

Some of the work presented in this chapter can also be found in the following

publication:

Scott, M. J. and Ghinea, G., Educating Programmers: A Reflection on

Barriers to Deliberate Practice, Proceedings of the 2nd HEA STEM Conference

(Birmingham, UK), April 2013, pp. 28–33

23

3

Computing Education Research:

A Pragmatic Design Approach

Computing education research lacks a dominant paradigm that defines its approach

to research. This chapter, therefore, discusses the plurality of approaches and

traditions adopted within the field, proposing a ‘twin-spiral’ model of pragmatic

design research. It is argued that the model is appropriate for the exploration of

the problems and the conceptual framework outlined in Chapter 2. In doing so,

it describes the philosophical underpinnings, methodological choices, and research

strategy for the work discussed in this thesis.

3.1 Introduction

The previous chapter highlights the role of self-beliefs when learning computer

programming and presents a conceptual model centred upon two specific aspects

of self-belief, posing a relationship with anxiety and practice. The question

raised, however, is whether the proposed model holds and, if so, how it can

24

3.2 Scholarship in Computing Education

be used to develop new educational interventions, with Chapter 2 demonstrating

opportunities for further research in this area. The work discussed in this thesis,

therefore, firstly aims to alleviate this gap by developing and verifying the utility

of the proposed conceptual model. Secondly, it aims to explore how new practices

and tools could be used to overcome non-constructive self-beliefs. However, the

most appropriate approach for this undertaking is unclear.

This chapter addresses the question: what approach to research is appropriate

for addressing the challenges presented by the emergence of non-constructive

self-beliefs in introductory programming? The following sections will discuss

the role of scholarship in computing education research, leading to a discussion

on its aspirations and the challenges associated with producing high-quality

research under the constraints that novice computing education researchers

experience. The next section proposes a research approach which aims to address

these aspirations. This includes a review of its philosophical underpinnings, its

methodological choice, its research strategy, and the author’s preference for data

collection and analysis techniques. The chapter then closes with a brief summary

of how the approach has been adopted throughout the thesis, its success, and its

practical limitations.

3.2 Scholarship in Computing Education

It is important to discuss approaches to scholarship. Its exploration reveals the

relationship between an author’s work with that of peers within the same field of

interest, exposing a variety of different—sometimes, conflicting—world-views and

biases associated with their origin. Computing education research, in particular,

25

3.2 Scholarship in Computing Education

is characterised as both an interdisciplinary field, owing to its broad and diverse

base from which it synthesises knowledge [TBC12, MSS+10], and an emerging

discipline, owing to its comparatively short existence as a self-contained area and

its lack of widely-adopted theories and research paradigms [MSS+14]. As such,

there is considerable plurality that researchers can draw from when developing

their approach to research.

3.2.1 The Science of the Artificial

Education research deals with the development of learning and the learning

experience. Its goal is the enhancement and enrichment of educational practice.

Subsequently, it is not just natural and behavioural science, which focuses on

explaining what natural and social phenomena are and how they work [Sim96].

There are, indeed, elements of natural science which are useful as the basis

for achieving this aim. However, education is an social institution with many

artificial elements which are manipulated by its many stakeholders. As such, the

research is quite different. Doctoral studies in this area tend to be concerned

with instructional design as well as the design of learning environments and tools

[Mal13, Mal14]. In other words, computing education research is concerned with

the architecture of education — which could, broadly speaking, be considered

the science of the artificial, a form of research that focuses on how to design and

implement artificial systems and artefacts [Car06a, MS95].

This implies two key activities that form research activity: (i) construction

of artificial systems and artefacts; and (ii) the evaluation of artificial systems

and artefacts in order to determine whether or not progress has been made

26

3.2 Scholarship in Computing Education

[MS95]. A review of the literature has claimed, guardedly, that the approach

demonstrates utility [AS12]. However, the goals of the research and the means to

achieve it can be synthesised using a wide variety of other research activities. As

such, this approach to research complements traditional research activities and

discourse (e.g. from psychology, neuroscience, engineering, etc.). The underlying

philosophical perspective would also seem to permit a range of methods, while

being suitable for this area of research and the specific challenge the author aims

to address. Before describing the approach at this deeper level, however, it is

first necessary to discuss the nature of research activities and their respective

contributions.

3.2.2 The Boyer Model of Scholarship

At a basic level, adapting the work of Ernest Boyer [Boy90], there are three key

forms of scholarship in computing education: scholarship of discovery ; scholarship

of application; and scholarship of integration. Discovery is what many would

consider original research activity, that which aims to contribute new knowledge

to the field. Such activities often form a new understanding of a problem, a new

pedagogical approach, or a new way of thinking about theory. Application is

the analysis of engagement in practice. For example, a promising pedagogical

approach is trialled and evaluated in a practical setting. Integration, of course, is

the act of drawing together research findings and giving them new perspectives.

Typically, this takes the form of a literature review or a meta-analysis.

It is important to recognise that knowledge is not first discovered and then

applied. Both forms of scholarship have a dynamic relationship. For example, the

27

3.2 Scholarship in Computing Education

findings from an application can lead to new conjectures and hypotheses which

inform future discovery. Overall, then, scholarship within computing education

research could be conceived as a duality between discovery and application such

that scholars develop and apply new practice so that “theory and practice vitally

interact, and one renews the other” [Boy90, p. 23].

It should also be noted that scholarship of integration is a constant process

where: (i) existing knowledge is synthesised from the literature and applied

in research activity; (ii) subsequently, the new knowledge derived from those

activities are disseminated to and integrated into the literature; and (iii) literature

is drawn together, synthesised, and presented again with new insights.

3.2.3 The Empirical Approach

While the scholarship of integration is, by its nature, theoretic in nature,

scholarship of application and discovery tend to privilege empirical evidence in

their presentation and defence. This is because our access to reality is through our

senses and so sensory data which can be independently verified and replicated is

needed to support claims made by researchers in the field [Cha13]. As such, many

contributions to the computing education research discipline use an approach to

research which relies on systematic observation [Mal13, Mal14]. Such systematic

collections of observations are typically analysed and interpreted to determine

the conclusion. The process is shown in Figure 3.1.

While the diagram seems to show a closed circle, starting with a problem

and ends with a problem, it does not. Rather, it begins a series of spirals. This

is because new problems often arise out of previous research. However, these

28

3.2 Scholarship in Computing Education

Figure 3.1: The Cycle of Empirical Research from [McG81, p. 181]

problems may not necessitate the same approach and some conclusions may lead

to further work with broader claims.

3.2.4 Aspirations in Computing Education Research

Given that educational research is a design science that aims to improve an

artificial architecture and consists of multiple activities—mostly, following the

empirical approach—what are the products of the research activity and how can

they be judged? According to March & Smith [MS95], there are four types of

research output: constructs; models; methods; and instantiations. Constructs

form the vocabulary for a domain, constituting the conceptions used to design

29

3.2 Scholarship in Computing Education

problems and specify their solutions. Models are sets of propositions expressing

relationships between constructs, often representing situations or laws from which

problems are articulated and solutions are derived. Methods are synonymous with

algorithms, such that they are guidelines for achieving a particular outcome. An

instantiation is the realisation of an artefact. In the area of computing education

research, this includes both research tools, such as data collection instruments,

and educational tools, often some form of software.

While the products of this approach to research are varied, they share a set

of common characteristics from which quality can be judged and aspired to.

While quality is difficult to define and quantify, as the outputs are artificial in

nature, quality should not be measured in terms of reality, but rather in terms

of practical utility. It is, therefore, important that characteristics which form

utility are embedded into the approach. Lincoln and Guba [LG85] define several

characteristics of quality, in this sense: credibility, the level of confidence in the

findings; transferability, whether or not the findings have broad applicability;

dependability, whether or not the findings are consistent with other venues and

can be repeated; and confirmatory ability, the extent to which the findings

are shaped by the phenomena under investigation and not bias. Historically,

there have been many challenges to achieving quality in these areas within

education research. The Tooley Report [TD98] warns of several pitfalls relevant

to educational research which should be avoided: partisanship, a threat to

confirmability in which authors become over-committed to a particular theory or

otherwise fail to make a rigorous attempt at falsification; reliance on non-empirical

sources, which can be appropriate for generating hypotheses but conclusions are

30

3.3 A Pragmatic Design Approach

subject to nearly all threats to quality; research focus, a threat to transferability,

where the relevance is not to a pertinent problem in the field or the proposed

solution has idiosyncratic impact; and lack of methodological rigour, a threat to

the credibility of the research.

Rigour is of particularly concern in computing education research. Reviews of

the literature have shown that, although quality is consistent in both conferences

and journals [RJBS07, FCSC10], there is inadequate description in research

reports and many projects contain methodological flaws [RJSL08b]. Given the

prominent philosophies of the educators that the computing education research

community aims to serve [Cle01], such weaknesses need to be addressed in order

for their work to have impact.

3.3 A Pragmatic Design Approach

It is important to recognise that there is no single dominant paradigm within

the physical and social sciences which adequately address all of the aspirations

for computing education research. So, what will appropriate research look like?

The following section describes an approach to design research for computing

education research situated within the pragmatic philosophy.

3.3.1 Philosophical Underpinnings

3.3.1.1 Ontological Position

Ontology refers to ones beliefs about the nature of reality. Guba & Lincoln

[GL+94] suggest there are three primary ontologies: critical realism, in which

reality is independent of the knower and is assumed to exist but can only

31

3.3 A Pragmatic Design Approach

be imperfectly comprehended; relativism, in which reality exists as multiple

intangible mental constructions which are socially and experientially based; and

historical realism, in which reality is believed to be plastic and is shaped by a

variety of socio-cultural forces and crystallised into what, for practical purposes,

is a real immutable structure. The latter, of which, is the position taken in

this thesis, although Herron & Reason [HR97, p. 258] extends the notion of

this transactional realism by noting that “what can be known about the given

cosmos is that it is always known as a subjectively articulated world, whose

objectivity is relative to how it is shaped by the knower. But this is not all:

its objectivity is also relative to how it is inter-subjectively shaped”. Thus, a

meta-reality independent of all observers is assumed to exist, which mediates the

subjective conceptions of reality formed by observers, suggesting that multiple

mediated realities are formed through a system of complex transactions between

them (also see Dewey’s work in this area [BB03]).

3.3.1.2 Epistemological Position

Epistemology refers to ones beliefs about the nature of knowledge and what

constitutes acceptable contributions. Orlikowski & Baroudi [OB91] analyse the

Information Systems literature and discuss three typical positions. These are:

the positivist position, which is “premised on the existence of a priori fixed

relationships within phenomena which are typically investigated with structured

instrumentation”; the interpretativist position, which “assumes that people create

and associate their own subjective and inter-subjective meanings as they interact

with the world around them [...] attempting to understand phenomena through

32

3.3 A Pragmatic Design Approach

accessing the meanings that participants assign to them”; and the critical

position, which “aim[s] to critique the status-quo through the exposure of what

are believed to be deep-seated, structural contractions within social systems”.

Drawing on these three different positions, it is important to recognise that

knowledge itself can be defined in different ways and what constitutes knowledge

for one audience may not constitute knowledge for another. As such, the

pragmatic epistemological position emphasises utility [BB03]. Hence, different

forms of evidence are needed to demonstrate utility in different contexts and for

different audiences.

This socio-cultural aspect to the conception of knowledge needs to be

considered by education researchers. In particular, computing education

researchers serve a community of computing educators whose dominant

philosophies are grounded in the positivist tradition. Thus, the validity of

observations is placed under key scrutiny and the hypo-deductive reasoning

is privileged over the inductive and the abductive. It is the position of the

author, therefore, to adopt a dual-epistemology in which evidence for utility

for practitioners (e.g. the evaluation of constructs, models, methods, and

instantiations) follow the positivist position (as defined by Orlikowski & Baroudi

[OB91]), however a more pragmatic stance shifting between this position and

the interpretive/critical positions is acceptable in the design stages where such

knowledge is likely to only be shared within the computing education research

community.

33

3.3 A Pragmatic Design Approach

3.3.1.3 Methodological Position

Ones methodological position refers to ones beliefs about the nature of how

knowledge should be constructed. The position taken in this thesis is collaborative

action inquiry, as defined by Herron & Reason [HR97]. This states that knowledge

construction is situated within a participative world-view in which critical

subjectivity is enhanced by critical inter-subjectivity. Hence, the construction

of knowledge is situated in practical activities and is constructed through a

discourse between investigators, co-investigators, and practitioners. Within the

framework of the ontological and epistemological position, this suggests that

individual studies reveal knowledge both about our own respective realities as

well as provide insight into our shared meta-reality and the key ways in which

it mediated. Through discourse, insights are then provided into practice which

improve the utility of our actions.

In line the ontological and epistemological framework, however, while advances

in the design of artefacts can use a wide variety of approaches, there is a need to

incorporate approaches that emphasise standardised measurement (in the form

of quantitative data) and objectivity (e.g. survey and experimental methods) in

their evaluation.

3.3.1.4 Axiological Position

The axiological position refers to what a researcher believes is intrinsically

worthwhile. That is, what serves as the valued end. In an earlier section, the

utility position was assumed such that it was stated that education research

deals with the development of learning and the learning experience with the goal

34

3.3 A Pragmatic Design Approach

of enhancing and enriching educational practice. Herron & Reason put it as

follows:

The axiological question can also be put in terms of the ultimate

purpose of human inquiry, since any ultimate purpose is an end-

in-itself, a state of affairs that is intrinsically valuable. In

the participative world-view the ontological account of reality as

subjective-objective, as co-created with the given cosmos, leads over

into the axiological question. For what purposes do we co-create

reality? The answer to this is put quite simply by Fals-Borda: to

change the world; or as Skolimowski points out, participation implies

engagement which implies responsibility. The participative world-

view is necessarily leads to an action orientation; not a impulsive

action which, as Bateson describes it, cuts through the circuits of

that natural world, but a reflective action, a praxis, grounded in our

being in the world. [HR97, preprint, p. 4]

To expand upon this point, there are specific forms of research which have

value in different ways. Clear illustrates, drawing on the work of Gregor

[Gre06, Gre09], different types of theoretic contribution of, which is reproduced

in Figure 3.2.

35

3.3 A Pragmatic Design Approach

F
ig
u
re

3
.2
:

A
n

A
d

ap
ta

ti
on

of
G

re
go

r’
s

T
ax

on
om

y
of

T
h

eo
ry

T
y
p

es
A

p
p

li
ed

to
C

om
p

u
ti

n
g

E
d

u
ca

ti
o
n

R
es

ea
rc

h
fr

o
m

[C
le

13
,

p
.

29
]

36

3.3 A Pragmatic Design Approach

While not all forms of theory shown above will lead directly to practical utility

for practitioners, this combination of approaches helps researchers understand

more about learning and the learning experience, ultimately leading to such

contributions in the future.

3.3.2 Research Strategy

3.3.2.1 The ‘Twin Spiral’ Model

The core strategy used in the studies presented in this thesis is design research

(see [MR+13] for details). It is fundamentally iterative and follows a two-stage

design and evaluation approach with both being based on the empirical method.

However, as outlined in the earlier section, there are different types of contribution

which design research can make with respect to computing education field.

Firstly, the understanding of constructs and models. Secondly, the application

of methods and instantiations. As such, the research strategy constitutes two

spirals, as shown in Figure 3.3 below.

The first spiral can be thought as being scholarship of discovery, where the

focus is to improve constructs and models. The second spiral can be thought

as being scholarship of applications, which is concerned with methods and

instantiations when applied in practical contexts. The vortex produced, naturally,

represents scholarship of integration. This enables contributions to pass between

one scholar to another, or indeed, one contribution to another by the same scholar.

As is common in pragmatic research, when a goal is achieved or a new goal is

identified, the spirals can be pivoted in order to address the new goal. Thus,

37

3.3 A Pragmatic Design Approach

RESEARCH GOAL

Constructs and Models

(Scholarship of Discovery)
Methods and Instantiations

(Scholarship of Application)

Research Programme

(Scholarship of Integration)

Design

Evaluation

Design

Evaluation

Figure 3.3: The Twin Spiral Model of Design Research in Computing Education

several pivots are possible to re-align objectives based on findings made in any of

the three parts of the strategy.

3.3.2.2 On the Choice of Methods

Within each spiral, a different research method can be used in each iteration of

the spiral based on the findings of the previous iteration and the needs of the

design. This is because different research methods serve different aims. They are

tools to help researchers solve problems. Subsequently, the choice of method is

based upon these different goals, for example: maximising generalizability with

38

3.3 A Pragmatic Design Approach

respect to populations; precision in control and measurement; and authenticity of

the participants and context within which the research is conducted (also known

as “existential realism”) [McG81]. This is shown in Figure 3.4.

Figure 3.4: The Three Conflicing Desiderata in Dilemmatic Method Selection

from [McG81, p. 183]

The maxima which can be achieved for these different goals are illustrated

in Figure 3.4. McGrath [McG81] shows that by attempting to maximise one

goal, the choice and operations made undermine the other two; and attempting

39

3.3 A Pragmatic Design Approach

to optimise two will minimise the third. Thus, every choice within the research

strategy constitutes a “three horned dilemma” [p. 184] and research in this area

must be plural and iterative in order to serve these different goals using different

methods at different stages of the research project.

It can be seen in the table that some methods will more likely be used in the

spiral that addresses the development of constructs and models (e.g. surveys),

while others are more likely to be used in the development of instantiations

(e.g. focus groups, experiments). Additionally, while less pronounced, different

methods may be used in development stages and others may be used in evaluation

stages.

3.3.3 On Validity

Clarifying Lincoln and Guba’s [LG85] notions of credibility, dependability, etc. is

the concept of validity. This concept represents an assessment of the extent

at which a claim can be considered sound in terms of logical reasoning and

available evidence. It is a unitary concept [NS13] which exists upon a spectrum

(i.e., validity can be strong or weak) but has many different aspects. Notably,

the notions of internal and external validity introduced by Cook and Campbell

[SCC02]. Internal validity refers to the design of a study, discerning whether

or not claims are based on sound judgement. This implies that research

methodologies need to endeavour to eliminate confounding factors and eliminate

bias to ensure that sound reasoning can be derived from them. External validity,

on the other hand, refers to issues of generalisability: can the findings from a

particular study be assumed to apply to other similar contexts? Different research

40

3.3 A Pragmatic Design Approach

methods vary in terms of internal and external validity based on their design and

the way participants are selected, respectively. It is generally accepted that the

more probabilistic a design (e.g., random allocation) and a sampling method (e.g.,

random sampling) there is a lower possibility of bias and consequently the results

are said to be more valid because the sample is more likely to representative.

3.3.4 On Ethics

Ethical approval will be sought for each work package from the Ethics Committee

within the Department of Computer Science at Brunel University. The project

will be conducted in line with ethical guidelines provided by the British

Educational Research Association (BERA) and all relevant U.K. legislature.

3.3.5 Data Collection Techniques

Data collection is an important process in the research, irrespective of the

choice of overall research strategy. A variety of methods can be used to collect

qualitative and quantitative data, including observation, interview, focus group

and questionnaire. Typically, in the pragmatic philosophy, a variety of data

collection techniques are used from the broader range of two key types of

data: quantitative or qualitative data. Notwithstanding the potential utility

of qualitative data in the design of models and instantiations, the evaluation

of models and instantiations often relies on quantitative data. The choice of

quantitative data helps to provide standardised measurement of well-defined

variables, enabling different designs to be compared and the relative size of

41

3.3 A Pragmatic Design Approach

differences between them to be calculated. Thus, providing some insight into

the practical relevance and impact of any intervention.

In order to collect this data, questionnaires are used. This is because the use

of Likert scales and Likert-type items are useful in measuring latent variables

(i.e., not directly measurable) such as the attitudes, beliefs and emotions of

participants [Lik32].

3.3.6 Data Analysis Techniques

The analysis of the work contained in this thesis focuses on quantitative data

analyses which are based in the frequentist tradition. The choice of frequentist

analysis techniques (e.g. t-test, χ2 test, ANOVA, etc.) [GS90]. To this end,

Predictive Analytics Software (PASW) v18 for Windows has been used to conduct

these analyses throughout the research presented in this thesis.

3.3.7 Datasets Presented in the Thesis

The research described in the following chapters spans several years and as

such several datasets were constructed using different samples. Many different

measurement instruments were used, and in some cases participants completed

multiple measurement instruments. Figure 3.5 illustrates the different samples

collected, indicating the measurement instrument used as well as the times at

which data collection was conducted. Different colours indicate different groups

of participants.

Note that while some studies concluded in 2012 and 2013, the validation of

42

3.3 A Pragmatic Design Approach

measurement instruments did not conclude until 2014. As such, measurement

validation was post-hoc.

43

3.3 A Pragmatic Design Approach

F
ig
u
re

3
.5
:

D
at

as
et

s
P

re
se

n
te

d
in

th
is

T
h

es
is

44

3.4 Summary

3.4 Summary

In summary, this chapter has discussed the role of scholarship in computing

education and proposed an approach to research which aims to solve the problems

outlined in Chapter 2. This is based on design research and the pragmatic

philosophy, aiming to produce artefacts including constructs, models, methods,

and instantiations which educators can use to enhance their practice, and thereby

the learning and learning experience of their students.

45

4

On the Domain-Specificity of

Mindsets

Research shows that those with different “mindsets” believe that either their

traits can or cannot change. Focusing on mindset as a single construct,

however, may not be appropriate in the computing context. This chapter presents

findings from two surveys of undergraduate students, revealing that beliefs about

intelligence and programming aptitude form two distinct mindsets. Additionally,

the programming aptitude mindset has greater utility predicting programming

practice. Consequently, these results suggest a domain-specific approach to future

research on self-beliefs in computing education research.

4.1 Introduction

The conceptual model presented in Chapter 2 presumes a general model of beliefs

which interact with emotions. However, it may be the case that a more domain-

specific approach is needed because these beliefs will have a more domain-specific

46

4.2 Background

form. If so, such a form could likely have a more pertinent impact on the

development of students’ practice behaviour.

As such, this chapter will explore whether or not constructs such as mindset

are domain-specific. The following section will introduce some additional

background on mindsets and discuss how the theory has been used in the

computing education research field. The next sections will then describe the

research questions and the hypotheses. This leads into a description of two studies

which consisted of a round of questionnaires in 2011-12 and two further rounds

of questionnaires in 2012-13. The chapter then closes with a brief overview of the

findings and a discussion on their implications for furture research.

4.2 Background

Educators often situate high levels of scaffolding and formative feedback within

the introductory programming lab [Jen01]. Despite such efforts, however,

many beginners do not practice regularly. Often, such students claim they

experience apprehension and discomfort when they attempt to do so [RS10b].

These emotional responses can prompt students to stop working on difficult

assignments [KS10b]; it has been reported that such affective factors worsen over

a course of programming instruction [MD04]. However, not all students react

this way when they encounter problems. For example, some perceive compilation

errors as a challenge to be overcome rather than as an indication of failure

[MT08]. A potential reason for such conflicting perspectives is that students have

different ways of reflecting upon their learning [KS10b, KS12]. These differences

47

4.2 Background

may correspond to students’ self-beliefs [MT08], presenting an opportunity for

educators to nurture particular mindsets.

According to the self-theories proposed by Dweck [Dwe99], individuals hold

beliefs about the nature of their personal traits, referred to as their mindset,

which can be classified into one of two core beliefs. Those with the fixed mindset

believe their traits are an entity that cannot be changed. Conversely, those with

the growth mindset believe their traits are flexible and can be enhanced through

effort.

These beliefs have implications for the way that students engage in self-

regulated learning. This is because the learning strategies that students apply

depend on whether they believe such strategies are necessary for learning, and are

effective at addressing problems [DM08]. As a result, those with a fixed mindset

tend to adopt a helpless response when they encounter difficulty. In contrast,

those with a growth mindset tend to persevere, adopting a mastery-orientated

strategy [DD78, YD12].

In order to nurture a growth mindset, educators embed growth messages

such as “the brain is like a muscle, it develops through exercise” into their

teaching practice. However, this advice is often framed in terms of intelligence

[MT08, KS12, SHCD09]. Do students generalize such messages? The human

mind can be conceived in terms of multiple intelligences [Gar06], and self-theories

have been adapted for areas as varied as shyness [Bee02], maths-ability [GRD12]

and willpower [JDW10]. Therefore, it is conceivable that students do not associate

their programming ability with a general sense of intelligence, but rather to a

sense of programming aptitude.

48

4.3 Research Questions

Programming has been described as a discipline that presents radical novelties

to beginners [Dij89]. This is because new students often need to adapt their way of

thinking to accommodate the abstract and intangible concepts that are applied in

program creation [CB07], as such thinking is seldom developed prior to their first

programming course [Jen02]. Hence, the discipline can feel distinct, potentially

promoting a separate mindset for programming aptitude.

This has implications for the design and evaluation of teaching practice.

A “saying is believing” exercise required students to “describe a time when

(they) learned something other than programming (...) but with practice and

perseverance (they) were able to succeed” [SHM+08b, p. 176]. However, this

was shown to lack practical impact. This may be because students can hold a

separate mindset for programming, in which case reflecting on past success in

another discipline may not succeed.

Another intervention attempted a rich combination of mindset-informed

training and feedback practices [CCD+10]. This was shown to have some success,

but only for students who also received a programming-specific crib-sheet which

contextually reinforced the growth belief. This could indicate an advantage

in applying educational practices that are designed to change a more specific

mindset, as opposed to a general mindset for intelligence [c.f. [FVC09]]. However,

only a single measure was used in the study.

4.3 Research Questions

Following this line of reasoning, a mindset scale can be adapted to form two

distinct sub scales: items about programming aptitude and items about general

49

4.4 Hypotheses

intelligence. However, the constructs may be correlated, which raises several

research questions (RQs) about the implications of separate mindsets for teaching

practice in the introductory programming context:

RQ1. Is mindset for programming aptitude empirically distinct from mindset

for general intelligence?

RQ2. Can students have a mindset for programming aptitude that is

substantially different to their mindset for general intelligence?

RQ3. Does the mindset for programming aptitude have more utility for

predicting programming practice compared to the mindset for general

intelligence?

RQ4. Does the mindset for programming aptitude change differently to

the mindset for general intelligence over a period of programming

instruction?

4.4 Hypotheses

To explore the relative merits of modelling separate mindsets, there is a need to

establish the differences between them.

The first research question examines one hypothesis relating to the factor

structure of the measurement instrument. It is predicted that a confirmatory

factor analysis will show that a two-factor model will not be significantly different

to the observed factor structure (H1).

50

4.5 Method

The second research question examines two hypotheses: firstly, that a model

with programming aptitude mindset and intelligence mindset as two distinct, but

slightly correlated factors (H2); secondly, for the notion of separate mindsets to

have utility for educators, the classification of each mindset (being either fixed or

growth) should not have a high level of consistency (H3).

The third research question then explores the impact of each mindset on

programming practice behaviour. It is hypothesized that both programming

aptitude mindset and mindset for intelligence (H4 and H5) are related to

programming practice behaviour. Given their relation to resilience [DD78, YD12],

each relationship will be moderated by early performance (H6 and H7), such that

those achieving high grades will not be as strongly influenced by their mindset.

However, each will have a different level of explanatory power on programming

practice behaviour (H8).

The fourth research question investigates change in mindset over time. As

there could be elements of programming instruction that induce a fixed mindset

[MT08, CCD+10], it is hypothesized that mindset for programming aptitude will

become more fixed over a period of programming instruction (H9). Mindset for

intelligence may also change (H10), but less so than programming aptitude (H11).

4.5 Method

4.5.1 Data Collection

A pilot survey addressing RQ1 was conducted in 2011-12 to examine these

hypotheses. Participants were recruited from two core programming modules

51

4.5 Method

at the authors’ institution. The study was promoted via pre-registered email,

institutional email, notices on BlackBoard Learn, and through a course-related

Facebook Group. The survey was also distributed in the final laboratory session

of the year in April 2012.

A two-wave survey addressing RQs 1-4 was conducted in 2012-13 to examine

these hypotheses. Participants were recruited from two core programming

modules at the authors’ institution. The study was promoted via pre-registered

email, institutional email, notices on BlackBoard Learn, and through a course-

related Facebook Group.

The questionnaires were distributed using SurveyMonkey, and were available

for 11 days across the 8th and 16th week of the semester, respectively.

Participation was voluntary. In order to identify programming assessments

corresponding to each respondent, student identification numbers were either

concealed and encoded into hyperlinks, or reported. The sampling frame

consisted of 296 first- and second-year undergraduate students on programming

modules within the authors’ institution. To be eligible, students had to be at

least 18 years of age and had to have submitted their first three lab assignments,

the deadlines for which were prior to the date the survey was conducted. In the

first wave of the survey 73 students completed all of the items, giving an initial

response rate of 24%. However, there was some attrition between the first and

second wave of the survey, with only 63 students responding to both. Thus, the

attrition rate was 14%.

52

4.6 Measurement

4.5.2 Participants

Participants were first and second year undergraduate students following the

sequential pathway for “Computer Science” or “Business Computing”. The

descriptive statistics for the second sample show that approximately 24.3% of the

respondents were female, and that the average age was 20 years (x̄ = 20.48, σ =

2.42,max = 30), with 17.6% of respondents being over the age of 23 at entry.

As the response rate was low and the early programming scores for the sample

indicated that many were performing at a high merit level (x̄ = 6.61, σ =

1.71,max = 9.00), there was concern about response bias. However, performance

did not significantly differ across the cohort (x̄ = 6.35, σ = 1.58, t[72] = 1.291, p =

.201). Furthermore, the proportion of mature (age > 23) (χ2 = 2.647, p = .103)

and female students (χ2 = 1.372, p = .241) was typical of the cohort.

Admission to the pathway required at least 300 UCAS Points (University

& College Admission System Points), with a strong preference for STEM

subjects (science, technology, engineering, and mathematics). Prior programming

experience was not required (44.6%). However, students without a relevant STEM

qualification, or the required points, could opt to pursue a relevant foundation

course (9.6%).

4.6 Measurement

The questionnaire measured three latent variables: mindset for intelligence

(INTEL); mindset for programming aptitude (APT); and programming practice

behavior (PRACT). Common factor analysis techniques were used to generate

53

4.6 Measurement

these scores, rather than principle components analysis, to explore how the

underlying structure of items shared variance reflected the latent variables

of interest (see [BLR+13] for a discussion). Early programming performance

(GRADE) was measured using the first three assignments in each module.

4.6.1 Mindset For Intelligence

To measure mindset for intelligence, items were drawn from Dweck’s mindset

scale [Dwe99]. Five items were used, including three statements that endorsed

the fixed belief (such as “my intelligence is something about me that I can’t

change very much”) and two statements that endorsed the growth belief (such as

“I can always substantially change how intelligent I am”). These were presented

as a 7-point Likert scale, ranging from strongly disagree to strongly agree. The

order in which items were displayed was randomized alongside items measuring

mindset for programming aptitude. Composite scores were generated using a

regression method based on the factor score matrix generated by a maximum-

likelihood analysis. A high score indicated a fixed belief.

4.6.2 Mindset For Programming Aptitude

To measure mindset for programming aptitude, items were again drawn from

Dweck’s mindset scale [Dwe99], but adapted to the programming context. Five

items were used: three of these statements endorsed the fixed belief, for example:

I have a fixed level of programming aptitude, and not much can be done to change

it; the remaining two items endorsed the growth belief, for example: I believe I

am able to achieve a high level of programming aptitude, with enough practice.

54

4.6 Measurement

The items were presented as a 7-point Likert scale, with responses ranging from

strongly disagree to strongly agree. The items were presented randomly, alongside

items measuring mindset for intelligence. Composite scores were generated using

a regression method based on a factor score matrix produced by a maximum-

likelihood analysis. A high score on this scale indicates a fixed belief.

4.6.3 Regularity of Programming Practice

A measure of programming practice was created for this survey using a 7-point

and a 4-point item. These were presented as Guttman-type items, providing

an indication of frequency of practice and the typical duration of each practice

session. The questions were: in a typical week of study I find myself writing code

during the closed-labs / at least 1-5 day(s) a week / every day and in a typical

session I concentrate on programming for up to 30 minutes / at least 30 minutes

/ at least one hour / at least two hours. Responses were compiled into a single

composite score using principal axis factoring. As this was a retrospective self-

report measure, potential self-report biases mean it should be interpreted with

caution and not treated as actual practice [DGV02a].

4.6.4 Early Programming Performance

As the core programming modules used the same assessment structure,

early programming performance was measured using existing assessment data.

Assignments were assessed as code reviews by a team of Ph.D. students covering

the modules, who typically had good consistency (ICC = 0.73) based on six

submissions. Grades reflected the functional coherence of solutions, the presence

55

4.7 Data Analysis

of common pitfalls, and a judgement on quality according to a rubric. They were

recorded as 1 (pass), 2 (merit), and 3 (distinction). The results of the first three

assessments were added together to form a composite score.

4.7 Data Analysis

The data was analyzed using PASW 18.0.3 and AMOS 21.0.0 for Windows. All

cases were included. Cases with missing data were removed list-wise. All reported

p-values are two-tailed with significance determined at the .05 level. As multiple

hypotheses were explored, p-values were adjusted to control for the false discovery

rate (FDR = .05) using the Benjamini-Hotchberg Procedure [BH95]. Note, H7

and H10 are not associated with a null hypothesis significance test.

4.7.1 The Two-Mindsets Factor Structure

The data collected for the pilot study was analysed using the generalized least

squares method of confirmatory factor analysis in AMOS 21.0.0, with all cases

included in the analysis. The results are shown in Table 4.1.

Table 4.1: Fit Indices and Criteria for Both Models (Pilot Study)

Fit Index 1-Factor Model 2-Factor Mode Adequete Fit Criteria [HBBA10]

SRMR .146 .077 < .08

CFI .507 .959 > .90

RMSEA .092 .027 < .08

Bollen-Stein p .062 .369 > .05
Note: SRMR: Standardized Root Mean Square Residual; CFI: Comparative Fit Index; RMSEA: Root Mean Square Error of

Approximation; N = 94.

The results show that the single factor model, based on the notion of a single

56

4.7 Data Analysis

dominant self-theory, was significantly different to the data (χ2 = 64.330, df =

36, p = .003). In contrast, the two-factor model, where intelligence and

programming aptitude are distinct self-traits, had adequate fit (χ2 = 36.382, df =

34, p = .358). This is further illustrated by the fit indices presented in Table 4.1.

This suggests that conceptions towards different self-traits should be considered

separately when extending self-theories to specific domains, such as programming

education.

As with the pilot study, the data collected in the second survey was analysed

using confirmatory factor analysis. However, in this case as no heteroskedasticity

was found and the likelihood of a Haywood-case was low, the maximum-likelihood

method was used. The results are summarized in Table 4.2:

Table 4.2: Fit Indices and Criteria for Both Models (Actual Study)

Fit Index 1-Factor Model 2-Factor Mode Adequete Fit Criteria [HBBA10]

SRMR .108 .078 < .08

CFI .728 .928 > .90

RMSEA .117 .061 < .08

Bollen-Stein p .015 .313 > .05
Note: SRMR: Standardized Root Mean Square Residual; CFI: Comparative Fit Index; RMSEA: Root Mean Square Error of

Approximation; N = 73.

The results show that a two-factor model had better fit (χ2 = 43.094, df =

34, p = .136) than a single-factor model (χ2 = 69.619, df = 35, p = .000).

Furthermore, the items used to measure mindset for intelligence (α = .73)

and mindset for programming aptitude (α = .61) demonstrated marginal, but

adequate reliability.

57

4.7 Data Analysis

4.7.2 Consistency Between Different Mindsets

Participants were classified using a two-step clustering procedure that was applied

separately to APT and INTEL. Each showed the expected two-cluster solutions,

based on the log-likelihood distance and the Bayesian information criterion.

The average silhouette coefficient was used to evaluate the clustering solutions,

yielding values greater than 0.7 for both analyses indicating that the solutions

were a ‘good’ fit. The classification of each individual student is shown in Table

4.3:

Table 4.3: Mindset Classifications for Individual Students

Fixed

Intelligence

Growth

Intelligence
κ p

Fixed Programming

Aptitude
10 13

Growth Programming

Aptitude
11 39 .220 .060

The correlation between factor scores was significant (r = .248, p = .034).

However, the level of agreement between each classification scheme, based on

the kappa statistic, indicated only fair agreement (p = .060) [LK77]. It can be

seen that 23 students were classified as fixed APT (31.5%), while 21 students

were fixed INTEL (28.7%). Inconsistency occurred in 24 cases (32.9%), where

students held different beliefs for the two domains. This was most prominent

for those with fixed APT, where 13 cases maintained growth INTEL (56.5%).

However, 11 cases with a growth APT also had inconsistent beliefs (28.8%).

58

4.7 Data Analysis

4.7.3 Impact of Each Mindset on Practice Behaviour

Two linear regression analyses compared the independent impact of APT and

INTEL on PRACT. Assumptions of residual normality, independence, and

homoskedasticity were verified prior to each analysis. The model exploring APT

was significant (p = .003) and is described below in Table 4.4.

Table 4.4: Programming Aptitude Mindset Regression Model

Construct β σx̄ t p

Programming Aptitude Mindset (APT) -.249 .109 -2.225 .025

APT * GRADE .245 .101 .2.254 .027

Early Programming Performance .248 .108 .2.281 .026

Note: Adjusted R2 = .141; N = 73; F [3, 70] = 4.985, p = .003.

The relationship, illustrated in Figure 4.1, reveals that those with fixed APT

and low GRADE tended to practice less than their peers. However, students with

high GRADE were not as strongly influenced by their APT. This interaction,

however, was not found in the model exploring INTEL, shown in Table 4.5.

Table 4.5: Intelligence Mindset Regression Model

Construct β σx̄ t p

Intelligence Mindset (INTEL) -.253 .114 -2.222 .030

INTEL * GRADE .135 .107 .1.194 .237

Early Programming Performance .283 .113 .2.490 .015

Note: Adjusted R2 = .089; N = 73; F [3, 70] = 3.385, p = .023.

The expected interaction with GRADE was not significant (p = .237).

Nevertheless, using INTEL to predict PRACT was significant (p = .023). Thus,

both models had utility for predicting PRACT. However, the comparison shown

below in Table 4.6 reveals several differences.

59

4.7 Data Analysis

Figure 4.1: A 3D Scatter Plot Illustrating the Influence of Programming Aptitude

Mindset and Performance on Early Programming Assignments on Self-Reported

Programming Practice.

It can be seen that the regression model using the mindset scores for

programming aptitude explained a larger proportion of variance (Adjusted R2 =

.141,∆R2 = .052). Furthermore, there was a noticeable improvement in fit

(∆AIC = 4.246,∆AIC > 2 [BA02]). Thus, the data shows that the APT model

has greater utility for predicting PRACT.

60

4.7 Data Analysis

Table 4.6: Model Selection

Model Adjusted R2 AIC PC BIC

Programming Aptitude Mindset Model .141 -9.037 0.895 -2.166

Intelligence Mindset Model .089 -4.791 0.948 2.081
Note: AIC: Alkaike Information Criterion; PC: Prediction Criterion; BIC: Bayesian Information Criterion.

4.7.4 Change in Belief for Each Mindset Over Time

A series of paired t-tests examined whether students’ mindsets had changed

between the first wave of the survey and the second wave. The results are shown

in Table 4.7:

Table 4.7: Model Selection

Mindsetl x̄w=0 x̄w=1 x̄∆ σ∆ t p d

Intelligence -0.15 -0.09 .059 .508 0.927 .358 n.s.

Programming Aptitude -1.16 -0.90 .267 .856 2.475 .016 0.62
Note: N=63; df = 62; w: survey wave (8 weeks between each wave); d: Cohen’s d effect size.

There was a non-significant decrease in mean INTEL score (p = .358). Thus,

students’ INTEL remained stable across the eight-week period. However, there

was a significant increase in APT score (p = .016). This suggests that students

beliefs towards programming aptitude had become more fixed, with medium effect

(d = 0.62) [Coh92]. In context, however, the mean difference (x̄∆ = .267) does

not represent a large shift for the entire cohort. Only 30.2% of the respondents

came to believe more strongly in a fixed perspective, with only 18% of cases

changing distinctly from the growth belief.

61

4.8 Discussion

4.8 Discussion

The literature on self-beliefs and motivation shows that mindsets can influence

resilience [DD78, YD12]. Students with growth beliefs tend to continue to

practice when they encounter difficulty. Those with fixed beliefs do not. Thus,

it is important that educators inspire growth beliefs, as ongoing practice is

important for developing expertise [EKTR93, Win96]. However, mindset may

not reflect a single general construct focused on intelligence. This chapter shows

some evidence that students may develop domain-specific beliefs in the area of

computer programming.

The first research question examined whether students’ beliefs about their

intelligence and their beliefs about their programming aptitude could be

substantially different. Although a significant correlation was found, the

classification schemes showed low levels of agreement. Most students with the

fixed belief for programming aptitude had the growth belief for intelligence. This

suggests that students can have markedly different mindsets across domains.

The second research question explored the relationships between each mindset

and programming practice behaviour. Although the results were modest, the

regression model based on aptitude beliefs had a closer fit to the data and

explained a greater proportion of the variance. Furthermore, while early

performance in programming moderated the relationship between practice and

aptitude beliefs, this was not found in intelligence model. These results seem to

reinforce the notion that students do not associate their performance in computer

programming with their sense of intelligence and suggest that the mindset for

62

4.9 Limitations

programming aptitude could have greater utility for predicting programming

practice.

The third research question asked whether beliefs changed across an eight-

week period of instruction. Although beliefs about intelligence did not change, it

is a concern that nearly one-third of respondents came to believe more strongly

in the fixed perspective of programming aptitude. The cause, in this case, is

unclear. The literature suggests that many aspects of programming instruction

[MT08, CCD+10] and feedback style [MD98, RGD12] could have contributed to

the change. However, there could be differences in source as well as sensitivity.

Thus, factors that affect domain-specific beliefs should be further explored.

4.9 Limitations

The study presented in this chapter has several limitations; notably, threats to

external validity as students were recruited from two classes at a single institution

and the number of students encountering early difficulties was low. Furthermore,

the sample size constrained statistical power, so interaction effects could not be

investigated. It should also be noted that the reliability of the mindset measure

was marginally adequate, suggesting a need for further scale development (see

[TD13]). In addition, it should be noted that the participants of the pilot

study (2011-12) were exposed to teaching methods centred on exams and web

programming while those in the main study (2012-13) were exposed to teaching

methods centred on worksheet-orientated code reviews and robot programming.

63

4.10 Summary

Table 4.8: Summary of Findings and Adjusted P-Values

RQ Hn Hypothesis p̃ Conclusion

1 H1 χ2 = 0 .136 Supported

2 H2 APT ↔ INTEL .048 —

H3 κ(APT ↔ INTEL) 6= 0 .075 Supported

3 H4 APT → PRACT .048 Supported

H5 INTEL→ PRACT .048 Supported

H6 (APT ∗GRADE)→ PRACT .048 Supported

H7 (INTEL ∗GRADE)→ PRACT .263 —

H8 |AIC(APT)−AIC(INTEL)| > 2 — Supported

4 H9 x̄∆(APT) 6= 0 .048 Supported

H10 x̄∆(INTEL) 6= 0 .358 —

H11 |d(APT)− d(INTEL)| > 0.2 — Supported
Note: Univariate tests for gender have been excluded as no multivariate significance was found in H5; p̃: Benjimini-Hochberg

adjusted p-value; PRACT: Self-Reported Hours of Programming Practice Per Week; QLTY: Overall Code Quality; BOT: Enrolment

in Robot-Centred Course; GEN: Gender; FC: Functional Coherence of Code; RD: Readability of Code; SO: Sophistication of Code.

4.10 Summary

As shown in Table 4.8, this chapter reveals some evidence that mindset for

programming aptitude is not only distinct from mindset about intelligence, but

that it may also have a stronger relationship with programming practice. This

suggests a discipline-specific perspective may be appropriate when extending

self-theory research into the software engineering context. As such, educators

should emphasize the malleability of programming skill directly by, for example,

contextually situating growth messages within relevant programming materials

(e.g., code review rubrics [CCD+10]). Moreover, future work should examine

measures of programming aptitude mindset and further investigate mindset

interventions.

64

4.10 Summary

Declaration

Some of the work presented in this chapter can also be found in the following

publications:

Scott, M. J. and Ghinea, G., Implicit Theories of Programming Aptitude as

a Barrier to Learning to Code: Are They Distinct from Intelligence?, Proceedings

of the 18th ACM Annual Conference on Innovation and Technology in Computer

Science Education (Kent, UK), July 2013, p. 347

Scott, M. J. and Ghinea, G., On the Domain-Specificity of Mindsets: The

Relationship Between Aptitude

Beliefs and Programming Practice, IEEE Transactions on Education, 57 (2014),

pp. 169–174, DOI: 10.1109/TE.2013.2288700

65

http://dx.doi.org/10.1109/TE.2013.2288700

5

Measuring Enrichment:

Assessing Self-Beliefs in CS1

The previous chapter shows that domain-specific approaches to computing

education research are warrented. However, a broad range of constructs are likely

to be important in such work. It is therefore important that these constructs

can be measured in a valid and reliable way. To this end, this chapter proposes

a new research instrument based on four constructs: programming self-concept;

interest in software development; programming anxiety; and mindset towards

programming aptitude. Analysis reveals that the proposed instrument possesses

adequete psychometric properties for use in future research.

5.1 Introduction

Reliable and valid measurement is critically important in educational research.

Variables of interest should be clearly defined and measured with minimal

error in order to make meaningful conclusions from an analysis [DeV12, TD13].

66

5.1 Introduction

However, there is not a strong history of instrument development and validation

in computer science education research. Two systematic reviews of the literature

found that the quantitative research in the field would benefit from improvements

in methodology and reporting [RJSL08a, Val04]. Of particular interest, only 1.5%

of articles published between 2000 and 2005 reported adequate psychometric

information to support the validity, the reliability, and the generalisability of

their claims [RJSL08a].

A number of measurement instruments have since been developed and

evaluated. For example, the Foundations of CS1 Test (FCS1) assesses

students’ performance in the cognitive-domain of introductory computing [TG11].

However, few instruments address the affective-domain of learning computing

(e.g., attitude development [DT13]). In particular, there is a need to explore

the emotive aspects of learning computer programming as, for some students,

programming invokes strong negative feelings [Hug04, KS10a, RS10a] and

shapes their self-beliefs in counter-intuitive ways [KB12]. This is important

to consider because self-beliefs play an important role in academic development

[BTD07, KBM73]. As an example, the previous chapter showed that beliefs about

the nature of programming aptitude, extending Dweck’s mindset theory (see

[CCD+10, Dwe99, DM08, MT08, SHM+08a]), can lead to significant differences

in the time that students report practising programming. However, to pursue

this line of research further, a valid measurement instrument is needed.

As such, this chapter will propose a measurement instrument and will then

address the research question: is the proposed measurement instrument reliable

and valid? The following section will develop the conceptual model in light of

67

5.2 Proposed Conceptual Framework and Instrument Assembly

the findings in Chapter 4, a parsimonious set of key variables is then identified to

include in the measurement instrument. The next section then describes how the

proposed measurement instrument was assembled. This leads into an evaluation

with three cohorts of undergraduate computer students. The chapter then closes

with a brief discussion of the potential uses of the measurement instrument, its

limitations, and a conclusion on its adequacy for future research.

5.2 Proposed Conceptual Framework and

Instrument Assembly

To validate the framework and test such a hypothesis, it is necessary to develop

an appropriate measurement instrument. Therefore, in line with the proposed

conceptual framework shown in Figure 5.1, items for the key variables were

assembled.

 Programming Interest

 Programming Self-Concept

 Programming Ap!tude

 Mindset

 Programming Anxiety
 Programming Prac!ce

 Frequency

Figure 5.1: A Conceptual Framework for Enhancing Students’ Programming

Practice

The measurement model for the proposed measurement instrument consisted

of four constructs: Programmer Self-Concept (PSC); Interest in Software

Development (INT); Programming Anxiety (ANX); and Mindset Towards

Programming Aptitude (APT). Additionally, in order to ensure appropriate

68

5.2 Proposed Conceptual Framework and Instrument Assembly

discriminatory power between constructs, such as differences between self-concept

and self-efficacy [BS03], items relating to software debugging task self-efficacy

are also included (DSE). As existing instruments target similar constructs of

interest, items were drawn from the literature and adapted to the introductory

programming context. A self-report of programming practice behaviour, for the

purpose of establishing the concurrent validity of the proposed framework, is also

included.

The construct debugging task self-efficacy captures learners’ cognitive self-

assessments of whether or not they are confident in their ability to write and

debug simple programs. This is based on the theoretical construct proposed by

Bandura [Ban77], as it relates to how self-assessments influence behaviour change.

The items for this construct were created using guidelines regarding the domain-

specificity of self-efficacy and its association with particular criterial tasks.

The construct of programmer self-concept has some conceptual overlap with

debugging self-efficacy, however there are a range of theoretical and empirical

differences [BS03, FVC09]. It represents a composite of self-perceptions that

one can be a good programmer, which is “formed through experience with

and interpretations of one’s environment”. This construct drives the affective

elements of being a programmer as opposed to a cognitive assessment of success

at programming because “self-concept better predicts affective reactions such

as anxiety, satisfaction, and self-esteem, whereas self-efficacy better predicts

cognitive processes and actual performance” [BS03]. The items for this construct

were adapted from scales used by Ferla et al. [FVC09] and Eccles & Wigfield

[EW95]. These focus on the ability-belief component of self-concept.

69

5.3 Research Questions

The construct for interest in software development measures the extent to

which an individual enjoys engaging with programming-related activities. This

construct is believed to have a reciprocal relationship with self-concept, resulting

in the pursuit of more achievement experiences in a domain [GMB03]. The items

for this construct were adapted from the scale used by Wigfield et al. [WEY+97],

focusing on the enjoyment aspect of interest.

The programming anxiety instrument construct measures the self-reflected

state of experiencing negative emotions, such as nervousness or helplessness, while

writing and debugging programs. The items were drawn and adapted from the

worry-component of the instrument used by Wigfield and Meece [WML88].

The mindset towards programming aptitude instrument construct represents

the strength of a learners’ belief in the notion of a fixed programming aptitude

(e.g., aptitude is inherent and cannot change). The items were drawn from Dweck

[Dwe99].

These items were then put together as a 5-point Likert instrument, with each

item rated from strongly disagree to strongly agree. Each item was reviewed by 2

colleagues and a small convenience sample of undergraduate students, and revised

to improve content validity and readability. This resulted in the instrument shown

in Table 5.1 on page 76.

5.3 Research Questions

Having assembled the instrument, the following research question can be

addressed:

70

5.4 Hypotheses

RQ5. Does the proposed measurement instrument demonstrate adequete

validity?

5.4 Hypotheses

In order to evaluate the proposed measurement instrument, its psychometric

properties must be examined. Namely, based on the recommendations of Straub

et al. [SBG04] and other authors (e.g. [DeV12, TD13]), reliability and validity

need to be established in order to deem a measurement instrument adequate.

However, what does “validity” mean?

Newton and Shaw [NS13] present a history of validity and its use in the

psychological literature. They reveal that, despite appearences, there are a

number of challenges associated with the concept. Notably, that although there

are many ways of evaluating validity using different forms of evidence, many

authors agree that it is a unitary concept and should be treated as such. That

is, each aspect of validity is equally important. Addtitionally, they argue that

validity is based on subjective degrees of confidence rather than absolutes. As

such, the threshold for deciding whether or not an instrument is valid depends

on the context of its use. For example, in the context of measure reliabilty (using

Cronbach α), Nunally poses that the “satisfactory level of reliability is depends

on how a measure is being used. In the early stages of research [...] one saves

time and energy by working with instruments that have only modest reliability,

for which purpose reliabilities of .70 or higher will suffice [...] In contrast to the

standards in basic research, in many applied settings a reliability of .80 is not

nearly high enough” [NBB67, p. 245-246].

71

5.4 Hypotheses

Figure 5.2: Aspects of Validity Drawn From [SBG04, HBBA10, NS13]

With this in mind, what forms of validity are important to make a decision

about overall validity? According to Straub et al. [SBG04], there are three main

forms of validity and reliability which are important in instrument development.

These are shown in Figure 5.2. Content validity is the level at which items

used to measure a construct reflect the meaning of the construct (and breadth

of possible items which could represent the construct) to which the items will be

generalised. Construct validity is the form of validity that deals with the degree

to which items are an effective measure of a theoretical construct. This is often

sub-divided into convergent validity and discriminant validity as evidence for

both imply construct validity [HBBA10]. Convergent validity refers to the level

at which multiple items which theoretically should be related are actually related.

Conversely, discriminant validity assess the extent to which items which should be

unrelated are actually unrelated. Reliability refers to the extent to which parallel

items are consistent in what they are intended to measure (e.g. responses to

a set of related items are internally consistent). Concurrent validity is also a

72

5.5 Method

consideration in cases where constructs should be related. That is, a construct

is related to, or able to predict, another in the same instrument. As such, there

are four hypotheses, relating to: content validity (H1); overall statistical model

fit (H2); reliability (H3); construct validity in the form of convergence (H4) and

discriminance (H5); and concurrent validity (H6).

5.5 Method

This involved a trial of the instrument with three cohorts of students at the

conclusion of their first programming course and an analysis of their responses

using a confirmatory factor analysis technique (see [HBBA10]).

5.5.1 Data Collection

The sampling frame for each cohort was set to all students who had submitted at

least one assignment or code review to ensure participants had indeed attended

the course. The minimally adequete sample size requirements was calculated

using Cochran’s formula for continuous data with finite population correction and

adjusted for anticipated non-response [BKH01]. Additionally, this was compared

to Westland’s Sample Size Calculator tool to determine whether an adjustement

would be needed on other statistical grounds (e.g., insufficent number of cases for

factor analysis) [Wes10].

A random sampling procedure was used to select participants. Data was

collected in three rounds: a paper-based survey was distributed to all students in

the lab environment (unselected cases are not considered in analysis); a digital

version was then advertised on the virtual learning environment and email alerts

73

5.5 Method

were distributed to those whom had not responded to the paper-version; after

ten days, an additional series of follow-up emails were distributed to the non-

respondents. All participants were offered an opt-out for further communication

at each stage.

From 126, 115 and 98 invitations for each respective cohort, 91, 84, and 64

responded. This represents an overall response rate of 70%, noting that 34 cases

in 2011-12, 30 cases in 2012-13, and 21 cases in 2013-14 were classified as late

respondents. This is because their response was elicited after considerable follow-

up during a third round of data collection.

5.5.2 Participants

Participants were all first-year undergraduate students following the sequential

pathway for either ‘Computer Science’ or ‘Business Computing’. The descriptive

statistics show that less than 20% of the respondents were female, while the

average age was 19.5 years, with approximately 15% respondents being mature

students (over the age of 23 at entry).

Admission to the pathway required at least 300 UCAS Points (University

& College Admission System Points), with a strong preference for STEM

subjects (science, technology, engineering, and mathematics). Prior programming

experience was not required. However, students without a relevant STEM

qualification, or the required points, could opt to pursue a relevant foundation

course.

During the introductory programming course, students would learn object-

orientated design and the fundamental constructs of the Java language. This

74

5.6 Data Analysis

was conducted through a sequence of laboratory-based assignments and a

collaborative project. The assignment for the 2011-12 cohort was a website and

a lab-based programming examination. The assignments for the 2012-13 and

2013-14 cohort were robot scripting tasks, where students would program robots

to complete activities such as maze navigation or communication in Morse Code.

These assignments were examined by code review and oral viva.

5.6 Data Analysis

The data was analysed in PASW v20 and AMOS 21. All data was analysed.

Items under consideration were modified to reflect feedback received from the

2011-12 cohort. As a result items are analysed on a pair-wise basis. This section

follows the factor analysis procedure outlined by Hair et al. [HBBA10].

5.6.1 Descriptive Statistics

Descriptive statistics for the three samples are shown in Table 5.1 on the following

page. This shows that learners tended to report high DSE, PSC, and INT. Many

reported low ANX and, as indicated by low APT, many endorsed a growth view

of programming aptitude.

Some analyses require the distribution of the data to follow a normal

distribution. This was verified through an examination of skew and kurtosis,

with skew indices greater than 3.0 and kurtosis indices greater than 10.0 often

indicative of severe non-normality [Kli05]. Table 5.1 shows these indices are

within these guidelines.

75

5.6 Data Analysis

T
a
b
le

5
.1
:

M
ea

n
,

S
ta

n
d

ar
d

D
ev

ia
ti

on
,

S
ke

w
n

es
s

an
d

K
u
rt

os
is

of
th

e
In

st
ru

m
en

t
It

em
s

It
em

It
em

D
es

cr
ip

ti
o
n

M
S

D
S

k
K

D
eb

u
gg

in
g

S
el

f-
E

ffi
ca

cy

D
S

E
1

I
a
m

co
n

fi
d

en
t

th
a
t

I
ca

n
u

n
d

er
st

a
n

d
J
a
v
a

ex
ce

p
ti

o
n

s
(e

.g
.,

N
u

ll
P

o
in

te
rE

x
ce

p
ti

o
n

)
3
.6

5
0
.9

6
-0

.2
7

-0
.6

1

D
S

E
2

I
a
m

co
n

fi
d

en
t

I
ca

n
so

lv
e

si
m

p
le

p
ro

b
le

m
s

w
it

h
m

y
p

ro
g
ra

m
s

3
.4

8
1
.0

2
-0

.1
8

-0
.5

5

D
S

E
3

I
a
m

co
n

fi
d

en
t

I
ca

n
im

p
le

m
en

t
a

m
et

h
o
d

fr
o
m

a
d

es
cr

ip
ti

o
n

o
f

a
p

ro
b

le
m

o
r

a
lg

o
ri

th
m

3
.8

7
0
.9

8
-0

.6
8

-0
.2

6

D
S

E
4

I
a
m

co
n

fi
d

en
t

I
ca

n
d

eb
u

g
a

p
ro

g
ra

m
th

a
t

ca
lc

u
la

te
s

p
ri

m
e

n
u

m
b

er
s

3
.6

8
0
.9

2
-0

.3
5

-0
.3

7

P
ro

gr
a

m
m

in
g

S
el

f-
C

o
n

ce
p

t

P
S

C
1

I
a
m

ju
st

n
o
t

g
o
o
d

a
t

p
ro

g
ra

m
m

in
g

2
.4

4
1
.1

8
0
.4

4
-0

.6
7

P
S

C
2

I
le

a
rn

p
ro

g
ra

m
m

in
g

q
u

ic
k
ly

3
.4

2
1
.1

1
-0

.2
8

-0
.5

8

P
S

C
3

I
h

a
v
e

a
lw

a
y
s

b
el

ie
v
ed

th
a
t

p
ro

g
ra

m
m

in
g

is
o
n

e
o
f

m
y

b
es

t
su

b
je

ct
s

3
.4

1
1
.1

7
-0

.2
8

-0
.8

2

P
S

C
4

In
m

y
p

ro
g
ra

m
m

in
g

la
b

s,
I

ca
n

so
lv

e
ev

en
th

e
m

o
st

ch
a
ll
en

g
in

g
p

ro
b

le
m

s
3
.3

4
1
.1

0
0
.0

7
-1

.0
1

P
ro

gr
a

m
m

in
g

In
te

re
st

IN
T

1
I

en
jo

y
re

a
d

in
g

a
b

o
u

t
p

ro
g
ra

m
m

in
g

3
.6

6
1
.1

0
-0

.4
4

-0
.5

0

IN
T

2
I

d
o

p
ro

g
ra

m
m

in
g

b
ec

a
u

se
I

en
jo

y
it

3
.9

3
0
.9

5
-0

.7
5

0
.1

3

IN
T

3
I

a
m

in
te

re
st

ed
in

th
e

th
in

g
s

I
le

a
rn

in
p

ro
g
ra

m
m

in
g

cl
a
ss

es
3
.7

2
0
.9

8
-0

.5
2

-0
.3

9

IN
T

4
I

th
in

k
p

ro
g
ra

m
m

in
g

is
in

te
re

st
in

g
3
.8

7
1
.0

3
-0

.7
2

0
.6

7

P
ro

gr
a

m
m

in
g

A
n

xi
et

y

A
N

X
1

I
o
ft

en
w

o
rr

y
th

a
t

it
w

il
l

b
e

d
iffi

cu
lt

fo
r

m
e

to
co

m
p

le
te

d
eb

u
g
g
in

g
ex

er
ci

se
s

2
.7

7
1
.0

6
-0

.2
7

-0
.8

5

A
N

X
2

I
o
ft

en
g
et

te
n

se
w

h
en

I
h

a
v
e

to
d
eb

u
g

a
p

ro
g
ra

m
2
.8

3
1
.1

8
-0

.0
8

-0
.9

5

A
N

X
3

I
g
et

n
er

v
o
u

s
w

h
en

tr
y
in

g
to

so
lv

e
p

ro
g
ra

m
m

in
g

b
u

g
s

2
.8

2
1
.1

6
0
.0

6
-0

.9
6

A
N

X
4

I
fe

el
h

el
p

le
ss

w
h

en
tr

y
in

g
to

so
lv

e
p

ro
g
ra

m
m

in
g

b
u

g
s

2
.7

6
1
.2

1
0
.1

1
-0

.8
3

P
ro

gr
a

m
m

in
g

A
p

ti
tu

d
e

M
in

d
se

t

A
P

T
1

I
h

a
v
e

a
fi

x
ed

le
v
el

o
f

p
ro

g
ra

m
m

in
g

a
p

ti
tu

d
e,

a
n

d
n

o
t

m
u

ch
ca

n
b

e
d

o
n

e
to

ch
a
n

g
e

it
2
.0

8
0
.9

7
0
.8

2
0
.3

5

A
P

T
2

I
ca

n
le

a
rn

n
ew

th
in

g
s

a
b

o
u

t
so

ft
w

a
re

d
ev

el
o
p

m
en

t,
b

u
t

I
ca

n
n

o
t

ch
a
n

g
e

m
y

b
a
si

c
a
p

ti
tu

d
e

fo
r

p
ro

g
ra

m
m

in
g

2
.2

2
0
.9

5
0
.3

4
-0

.5
9

A
P

T
3

T
o

b
e

h
o
n

es
t,

I
d

o
n

o
t

th
in

k
I

ca
n

re
a
ll
y

ch
a
n

g
e

m
y

a
p

ti
tu

d
e

fo
r

p
ro

g
ra

m
m

in
g

1
.9

0
0
.9

2
0
.8

7
0
.2

3

N
o
te

:
P

o
o
le

d
S

a
m

p
le

(N
=

1
7
5
);

M
:

m
ea

n
,

S
D

:
st

a
n

d
a
rd

d
e
v
ia

ti
o
n

,
S

k
:

sk
e
w

,
K

:
k
u

r
to

si
s.

76

5.6 Data Analysis

5.6.2 Measurement Model

To verify the structure of the items for the proposed measurement model (i.e.,

checking that it was appropriate to group variables together into meaningful

constructs), the proposed five-construct solution was evaluated using maximum-

likelihood confirmatory factor analysis. As advised in [HBBA10], several fit

indices were used to determine fit. One APT item was eliminated at this stage

due to a low regression weight. Modifications were also made based on the

modification indices to improve overall fit. These fit indices for the final set

of items, shown in Table 5.2, indicate that the hypothesised model was ‘not a

bad fit’ to the data (i.e., accepting the null hypothesis of having no significant

difference between the prediction and the data).

This suggests that the expected model was adequately reflected by the

structure of the data. However, it should be noted that alternative models with

superior fit could still exist. An exhaustive review of alternative candidate models

is beyond the scope of this chapter.

Table 5.2: Fit Indices and Criteria for the Measurement Model

Fit Index Measurement Model Adequate Fit Criteria [HBBA10]

χ2(df = 153) 267.312 N/A

χ2/df 1.747 < 3.00

p 0.000 > 0.05

NNFI 0.950 > 0.90

CFI 0.960 > 0.90

SRMR 0.044 < 0.08

RMSEA 0.056 < 0.08
Note: df: degrees of freedom, NNFI: non-normed fit index, CFI: comparative fit index, SRMR: standardised root mean square

residual, RMSEA: root mean square error of approximation.

77

5.6 Data Analysis

5.6.3 Reliability

Reliability is assessed through examining the Composite Reliability (CR) of each

construct. Values close to 1.0 indicate reliablilty, with 0.7 considered minimal

[HBBA10]. Table 5.3 shows that the values are consistently above 0.7. Thus, the

measurement instrument was reliable with this sample.

5.6.4 Construct Validity

In order to establish construct validity, each construct should demonstrate

convergent and discriminant validity. Adequate convergent validity is

demonstrated by an Average Variance Extracted (AVE) greater than 0.5

[HBBA10]. Table 5.3 shows all values were above this threshold. Adequate

discriminant validity is demonstrated by the
√

AVE being greater than any

correlation with another construct [FL81]. Table 5.3 shows that the
√

AVE of

each construct was greater than its most significant correlation with another

construct. Subsequently, these results imply construct validity.

78

5.6 Data Analysis

T
a
b
le

5
.3
:

C
on

st
ru

ct
V

al
id

it
y

of
th

e
L

at
en

t
C

on
st

ru
ct

s
in

th
e

M
ea

su
re

m
en

t
M

o
d

el

L
o
a
d

in
g
s

R
el

ia
b

il
it

y
V

a
ri

a
n
ce

E
x
p

la
in

ed
C

o
rr

el
a
ti

o
n

s

It
em

s
F

L
C

R
A

V
E

M
S

V
A

S
V

D
S

E
P

S
C

IN
T

A
N

X
A

P
T

D
eb

u
gg

in
g

S
el

f-
E

ffi
ca

cy
0
.8

6
8

0
.6

2
4

0
.5

3
0

0
.4

1
8

(0
.7

9
0
)

D
S

E
1

0
.7

7
6

D
S

E
2

0
.8

0
8

D
S

E
3

0
.6

9
6

D
S

E
4

0
.8

7
0

P
ro

gr
a

m
m

in
g

S
el

f-
C

o
n

ce
p

t
0
.7

0
3

0
.6

5
5

0
.4

9
4

0
.4

1
3

0
.7

0
3

(0
.8

0
9
)

P
S

C
1

-0
.7

1
0

P
S

C
2

0
.8

0
0

P
S

C
3

0
.8

8
2

P
S

C
4

0
.8

3
5

P
ro

gr
a

m
m

in
g

In
te

re
st

0
.8

4
2

0
.5

7
9

0
.5

3
0

0
.3

6
3

0
.7

2
8

0
.6

8
6

(0
.7

6
1
)

IN
T

1
0
.7

8
1

IN
T

2
0
.8

4
7

IN
T

3
0
.8

4
6

IN
T

4
0
.5

2
2

P
ro

gr
a

m
m

in
g

A
n

xi
et

y
0
.8

8
8

0
.6

6
4

0
.4

7
5

0
.3

6
4

-0
.6

8
1

-0
.6

8
9

-0
.5

0
7

(0
.8

1
5
)

A
N

X
1

0
.8

1
7

A
N

X
2

0
.7

6
2

A
N

X
3

0
.8

3
4

A
N

X
4

0
.8

4
4

P
ro

gr
a

m
m

in
g

A
p

ti
tu

d
e

M
in

d
se

t
0
.8

6
5

0
.6

8
2

0
.2

6
2

0
.2

1
4

-0
.4

3
1

-0
.4

6
2

-0
.4

3
9

-0
.5

1
2

(0
.8

2
6
)

A
P

T
1

0
.7

8
2

A
P

T
2

0
.8

5
8

A
P

T
3

0
.8

3
6

N
o
te

:
V

a
lu

e
s

o
n

th
e

d
ia

g
o
n

a
l

re
p
re

se
n

t
√

A
V

E
;

F
L

:
fa

c
to

r
lo

a
d
in

g
,

C
R

:
co

m
p
o
si

te
re

li
a
b
il

it
y
,

A
V

E
:

a
v
e
ra

g
e

v
a
r
ia

n
ce

e
x
p
la

in
ed

,
M

S
V

:
m

a
x
im

u
m

sh
a
re

d
v
a
r
ia

n
ce

,
A

S
V

:
a
v
e
ra

g
e

sh
a
re

d

v
a
r
ia

n
ce

,
D

S
E

:
d
e
b
u

g
g
in

g
se

lf
-e

ffi
ca

c
y
,

P
S

C
:

p
ro

g
ra

m
m

in
g

se
lf

-c
o
n

ce
p
t,

IN
T

:
p
ro

g
ra

m
m

in
g

in
te

re
st

,
A

N
X

:
p
ro

g
ra

m
m

in
g

a
n

x
ie

ty
,

A
P

T
:

p
ro

g
ra

m
m

in
g

a
p
ti

tu
d
e

m
in

d
se

t.

79

5.7 Discussion

Table 5.4: Regression Results for Relations in the Proposed Structural Model

Relationship Estimate
Standard

Error

Critical

Ratio
p

APT → ANX 0.310 0.084 3.685 < 0.001

INT → ANX -0.020 0.149 −0.135 0.893

PSC → ANX -0.534 0.085 −6.301 < 0.001

ANX → PRACT -2.335 0.389 −6.004 < 0.001
Note: APT: programming aptitude mindset, PSC: programming self-concept, ANX: programming anxiety, PRACT: frequency of

programming practice.

5.6.5 Concurrent Validity

Adequate concurrent validity is established through a cursory examination of

the correlation matrix and an examination of hypothesised relationships in a

structural model. Table 5.3 does not show any anomalies within the correlation

matrix. As such, the proposed structural model was assessed along with a self-

report measure of programming practice. The results, shown in Table 5.4, reveal

that most of the expected regression relationships were statistically significant.

However, the regression between INT and ANX was not statistically significant.

This suggests that either there is no relationship or the size of effect is small.

Nevertheless, with the exception of INT, the conceptual model appears to be

valid.

5.7 Discussion

Adequate measurement in computing education research is important. This is

because researchers need to know whether the measures being selected and used

by other researchers are valid. Straub et al. [SBG04] highlight several key

80

5.7 Discussion

concerns that researchers may have: Does the instrument truly represent the

essence or content of the target construct? Is the instrument unidimensional and

therefore only representing the target construct? Has the target construct been

confused with another similar construct? Are the estimates of the true values

of latent constructs appropriate? Rigorous approaches to measurement address

such questions.

Unfortunately, there has not been a strong history of reporting psychometric

information in the field [RJSL08a] and few measurement instruments are readily

available to researchers in the computing education community. Particularly,

measurement instruments that capture constructs concerned with the affective-

domain of learning computer programming. This may be because developing

adequate measurement instruments can be fraught with difficulties [SBG04].

However, there is a strong case for pursuing such work [SBG04, TD13] and

there is a range of literature which can be drawn from for support (e.g.

[DeV12, HBBA10, SBG04]).

This chapter describes the assembly of one such measurement instrument

and demonstrated that it has adequate psychometric properties in terms of

reliability, construct validity, and concurrent validity. This instrument focuses on

student self-beliefs in the introductory programming context and measures five

different constructs: programming aptitude mindset, programming self-concept,

debugging self-efficacy, programming anxiety, and programming interest.

It is interesting to note that interest in software development did not predict

programming anxiety. In hindsight, other value appraisals such as ‘importance of

programming for future prospects’ may have been more appropriate for anxiety.

81

5.8 Limitations

Nevertheless, programming self-concept and mindset towards programming

aptitude were shown to be related to programming anxiety and, subsequently,

programming practice behaviour. These relationships have not been firmly

established as causal relationships nor are the directions of the relationship clear.

This suggests that the measurement instrument will be useful for future work

investigating hypotheses raised by the theory in, for example, longitudinal survey

studies.

The measurement instrument may also be useful in other similar areas of work.

There is a vast range of techniques which educators could attempt to apply in

order to enrich their students’ beliefs, practice, and performance (see [Mac14]).

Using a validated instrument, such as the one proposed here, will improve

the rigor of such explorations. The ongoing development of this measurement

instrument will support future experiments, increasing confidence that such

design experiments present useful and meaningful conclusions. Other uses of

the measurement instrument may include educators using the measurement

instrument to identify potential problems in their introductory programming

classes or researchers evaluating student outcomes across different course designs

and cohorts.

5.8 Limitations

It should be noted that this work only represents a first step and future

development is needed to overcome a number of limitations. Most importantly,

the instrument has only been administered to students at a single institution.

Therefore, it may not generalise to populations from other higher education

82

5.9 Summary

institutions; particularly, those with a different culture. Therefore, there is a

need to further validate the tool beyond the institution. Of particular note,

the cross-cultural validity of the measurement instrument also needs to be

considered in addition to the appropriateness of adapting the framework for

different educational contexts. In its present form, it is not clear whether the

instrument would be suited for a range of programming topics or age groups.

A small number of items have been included in this scale to facilitate the

collection of data from a large group with a short questionnaire. As such, it

should not be used to make fine-grain judgements about any individual student.

However, estimation of the true values of the latent constructs for individual

students would likely improve with additional items.

5.9 Summary

Valid measurement is important, however only a small number of validated

measurement instruments are available to computing education researchers. This

limits research being conducted into educational theory, teaching practice and

the the use of instructional technologies which aim to enrich beliefs and learning

behaviour. The study presented in this chapter contributes to this gap in the

literature through the assembly and validation of a measurement instrument that

could be used for such research. Specifically, for the investigation of student self-

beliefs within the introductory programming context.

Three administrations of the instrument at the author’s institution

demonstrated that the proposed measurement model had a good fit to the data.

Furthermore, there was adequate support for reliability, construct validity, and

83

5.9 Summary

Table 5.5: Summary of Findings and Adjusted P-Values

RQ Hn Hypothesis p̃ Conclusion

5 H1 FaceV alidity — Supported

H2 ModelF it .136 Supported

H3 Reliability — Supported

H4 ConvergentV alidity — Supported

H5 DiscriminantV alidity — Supported

H6 ConcurrentV alidity — Supported
Note: Not all hypotheses are associated with a null-hypothesis significance test.

concurrent validity. This is shown in Table 5.5. However, there are a number

of limitations. Critically, the results may not generalise to different age-groups,

cultures or educational contexts.

The following chapter will attempt to validate the conceptual framework in

addition to exploring appropriate descriptive statistics across two versions of the

introductory programming course delivered at Brunel University London. This

will support further research into teaching practice and instructional technology

used in introductory programming.

Declaration

Some of the work presented in this chapter can also be found in the following

publication:

Scott, M. J. and Ghinea, G., Measuring Enrichment: The Assembly and

Validation of an Instrument to Assess Student Self-beliefs in CS1, Proceedings

of the 10th Annual ACM Conference on International Computing Education

Research (Glasgow, Scotland), August 2014, pp. 123–130

84

6

On Self-Beliefs, Emotions,

Practice, and Robots

This chapter extends the work in the previous chapters used to develop a

domain-specific approach to establish the consistency of the model. A review

of two different introductory programming courses at the authors’ institution is

presented: a web-focused course run in 2011-12 and a robot-centred course run in

2012-13. Although hours of practice and learning outcomes improve in the robot-

centred course, there are no significant differences in the learning experience in

terms of programming self-beliefs or programming anxiety.

6.1 A Comparison Between Two Courses

Previous chapters have highlighted the importance of domain-specific forms of

self-concept and mindset for student learning behaviour. Additionally, as limited

work has been conducted in specialised fields such as computer programming,

a measurement instrument has been presented to further this line of research.

85

6.1 A Comparison Between Two Courses

However, it is important not to privilege an internal view of the causes of practice

behaviour and to recognise the external view. That is, the role of situation and

context. To do otherwise would be a fundamental attribution error. While

a review of external factors that influence practice behaviour is beyond the

scope of the current study, there is sufficient data to examine the consistency

of the proposed model across different educational practices and to examine their

respective influences on the key variables in the model (i.e., self-concept, mindset,

anxiety, and practice).

Key differences in the design of learning environments are often centred upon

learning activities, assessment, and feedback. Many educators provide students

with worksheets. They then provide encouragement and rich feedback to motivate

students as they encounter challenges in practical laboratory sessions [Jen01].

However, such efforts are limited and may not encourage practice beyond the

laboratory environment. An approach that shows promise beyond the laboratory

environment, however, is the use of personal robots [Kay10], whereby each student

is provided with their own programmable robot. In theory, the use of robots

makes learning activities more engaging, motivating students to spend more time

experimenting with their programs [MK10]. They also provide a more intuitive

source of feedback as they reinforce mental models in a visual way [ALM+10],

helping students to fix problems and overcome frustrations in a relatively short

time.

However, while the potential impact of robots is promising, it is not clear how

their use interacts with students beliefs, emotions and practice behaviour. This

is key to preparing an appropriate context for learning that will maximize their

86

6.2 Related Work

potential impact. That is, robots are simply tools that support, complement and

enhance learning environments. As an example, robots frequently grab attention

[MK10, LNH09, ALP10]. Thus, robot can draw upon students’ curiosity to engage

them with an assignment. However, there is little evidence to suggest that the

mere presence of a robot makes an assignment more relevant, better able to inspire

confidence, or more satisfying [McG12].

This chapter evaluates a course centred around a Robot Olympics against

a more traditional web-programming course. In this introductory programming

course, students learn to program their own personal robots during worksheet-

based laboratory sessions. To engage students in practice that leads to

improvements in the quality of their code, their experimentation with their

personal robot is supported through regular code reviews. This prepares students

for an end-of-course event—the Robot Olympics itself—where they program their

own robots to complete a specific task in a dedicated space as an assessed

demonstration.

6.2 Related Work

The use of robots in educational contexts has grown in popularity since the early

millennium [FM02], and robot-centred courses are often positively received by

students [MK10]. Furthermore, a systematic review has shown that robots,

in general, can be effective when teaching computer programming [MKB12].

However, there are questions about the effectiveness of robot-centred courses,

highlighting a need to explore achievement data [Ali13].

87

6.2 Related Work

Where such evidence is available, robot-centred programming courses have

not consistently demonstrated success. A study conducted at the US Air Force

Academy found that scores in a robotics section of a programming course were

lower than in a non-robotics section [FM02]. Limited access to the robots has

been suggested as the potential reason for this result, as students had insufficient

time to reflect and engage in further experimentation [FM02]. Consequently, the

availability of robots could moderate the effectiveness of a robot-centred course.

Now that low-cost robots such as the Finch [LN10] are available, students can

learn using their own personal robots. In order to motivate students to engage in

programming practice with their robots, various strategies can be used [Rob00]. A

popular choice is hosting a Robot Olympics [Mur00, CV13, LH05, VA04]. These

‘games’ often take the form of events where students demonstrate solutions to

a set of well-defined tasks. For example, students in the Trinity College Fire-

Fighting Home Robot Contest explore programming through the development

of a robot that can navigate a mock home to extinguish a candle [VA04]. This

approach would seem to represent a novel and engaging learning environment.

However, the method has not been formally evaluated as a model for an

introductory programming course, so the potential impact is unclear.

It is important to clarify this impact to help those deciding to introduce

robots into a course. For example, Kumar questions “is it worth using robots

for traditional projects in [an] AI course?” and concludes “no, if we consider the

time and effort that robot projects demand” [Kum04]. Such demands range from

storage, locating spare robots when students forget them, diagnosing abnormal

88

6.3 Intended Outcomes

robot behaviours, repairing mechanical failures, and the increased duration of

assessments; which, may not be justified if any positive impacts are marginal.

6.3 Intended Outcomes

The impact of a robot-centred programming course is evaluated through

comparison with a reference group. The reference group was drawn from a

previous year on the same program within the authors’ department. Both groups

had the same entry requirements and followed a similar structure. As typical for

a UK institution, each involved a year-long course structured across two terms

of twelve weeks. However, the earlier cohort focused on web programming as the

robots had not been introduced at that point into the department. As such, the

following research questions were posed in order to determine differences between

the two cohorts:

RQ1. Will the students enrolled on the course leading to the Robot Olympics

report different self-concept, or anxiety compared to those enrolled in

the web programming course?

RQ2. Will the students enrolled on the course leading to the Robot Olympics

report spending more hours per week practising their programming

skills compared to those enrolled in the web programming course?

RQ3. Will the students enrolled on the course leading to the Robot Olympics

produce code of an overall higher quality compared to those enrolled in

the web programming course?

89

6.3 Intended Outcomes

RQ4. Will greater levels of practice and practice within the context of

preparing for a Robot Olympics predict aspects of code quality

differently?

As it is possible that robots may not be equally effective for all students [Froyd,

2013, personal communication], gender differences are also explored. Broadening

participation is an important goal for computing education research because

of under-representation in the workforce stemming from the pipeline shrinkage

problem [GC02, MF03] with some work showing that female high school students

are less likely than male high school students to want to pursue computing

[Pap08]. It is, then, important to ensure that robots do not further undermine

participation in computing programmes. The first research question therefore

examines two hypotheses: male and female students enrolled on the robot-centred

course will report more hours of practice per week (H1-2). The second research

question examines three hypotheses: that practice will have a direct effect on

overall code quality (H3); that enrolment on the robot-centred course will have a

direct effect on overall code quality (H4); and that gender will have a direct effect

on overall code quality (H5). The third research question addresses three core

hypotheses: that gender, course enrolment and more practice will have different

impacts on three different aspects of code quality, namely functional coherence,

readability, and sophistication. As this represents three variables of interest and

three aspects of code quality, this results in an additional nine hypotheses (H6-14).

90

6.4 Course Design

6.4 Course Design

Both courses were practical introductions to computer programming that expect

students to:

LO1. Demonstrate an understanding of the basic concepts of programming

LO2. Analyse a problem and produce a computer program as a solution to

that problem

LO3. Use a simple development environment to produce viable program code

As both cohorts were supervised by a similar team of core teaching staff,

and the robot-centred course built upon existing teaching practice within the

department, both courses followed similar basic structures. This consisted of a

series of lectures introducing concepts to students and laboratory sessions which

then reinforce those concepts through practical programming tasks (similar to

[Gei94]). Laboratory sessions were organized weekly to ensure regular practice.

The web programming cohort had mid-term examinations, while those preparing

for the Robot Olympics had their code formally reviewed by teaching assistants.

This meant that all students received ongoing soft scaffolding [SK07b] and

feedback at regular intervals [GS04] as this strategy is believed to be more effective

for encouraging practice [BED+03].

Both cohorts completed their respective programming tasks as part of a group

project. Thus, students were divided into groups of five or six. Meetings with

group tutors facilitated individual support and helped to prompt students to

reflect on their progress through small group learning activities [SSD99]. This

91

6.4 Course Design

strategy also helps students form learning communities, encouraging mutual

support during challenging tasks and transforming experimentation with robots

into social learning opportunities [Ver13, FO05]. It also reflects and presents (in

a small way) the composition and communication issues found in the IT industry

[She11b].

While there are many similarities between the two courses, there are also a

number of key differences. Table 6.1 presents these differences, showing that

the courses are comparable but also highlighting several contrasts. The earlier

cohort focused exclusively on web programming and the later cohort on the

use of the robots. As the learning objectives were the same, there were many

similarities between the tasks each group member had to undertake: firstly, both

had to be written in Java; secondly, both had to demonstrate the same range of

programming constructs; thirdly, both examined how students separated the user

interface (i.e., presentation layer) from the key functionality (i.e., domain logic

layer); finally, both validate user input and both demonstrate file processing.

The assessed problems were also designed to be of similar size and complexity.

However, the robot coding problems were different in nature, as they were

designed to capture students’ interest and make use of the robots’ capabilities1.

The web form processing tasks, such as adding content to a file and displaying

it on a web page, were replaced with ‘events’ within the Robot Olympics.

Examples include: Morse code communication, where the robot would use the

light on its beak to communicate Morse code translations; an obstacle course,

1Further details on the Robot Olympics and its assessment method are available at:

http://dx.doi.org/10.13140/2.1.3680.9281

92

6.5 Method

Table 6.1: Key Differences between the Web Programming Course and the Robot-

Centred Course

Course Element Web Programming Robot Olympics

Personal Robot 7 3

JavaServer Page Project 3 7

Robot Olympics Project 7 3

Assessed Worksheets 7 3

Exams 3 7

Oral Viva 7 3

Python Classes 3 7

Java Classes 3 3

where the robot had to navigate across an arena; a robot controller, where the

movement of the robot is controlled directly through a user interface; and tunnel

navigation, where the robot measured the lengths of tunnels with its light sensor.

Another key difference is that the web programming cohort followed a

combined Python and Java curriculum which focused on JavaServer Pages (JSP)

(see [JLTS11, KLMss] for details). As such, new learning content replaced some

of the previous material (i.e., Python and JSP classes) in order to help students

with the new mode of assessment (i.e., using the robots).

6.5 Method

6.5.1 Data Collection

For measuring self-beliefs and practice, the same data that was collected in the

study reported in Chapter 5 was used. Extending this data a measure of student

93

6.5 Method

performance was incorporated into the dataset. Coursework submissions for the

introductory programming course were provided by the respective module leaders

(which were downloaded from the archive in the e-learning environment and had

not been modified in any way). The sample was matched to that used in Chapter

5, such that only the coursework submissions of students who participated in the

prior data collection activities were used.

6.5.2 Research Instruments

6.5.2.1 Student Self-Beliefs

The questionnaire items and model prepared in Chapter 5 were used to

impute scores for programming self-concept, programming aptitude mindset, and

programming anxiety.

6.5.2.2 Self-Reported Weekly Programming Practice

Hours of programming activity per week was assessed using a self-report measure.

The item “in a typical week during term-time, how frequently did you write code

and/or work on programming related activities?” was presented as a 7-point

Guttman-style item. Each response option was labelled “at least {x} hours”

where x increased in multiples of five.

6.5.2.3 Code Quality

Quality of coursework submissions was scored according to a marking scheme

by a single rater. Although tasks were different, both shared a common

set of learning objectives and level of sophistication. Three aspects of code

quality were assessed: functional coherence, which measured whether solutions

94

6.6 Data Analysis

successfully implemented the set requirements; readability, which measured

whether the solution was commented and structured appropriately for future

maintenance; and sophistication, which measured whether an appropriate range

of programming constructs had been used. Each aspect was scored according

to five descriptors, with the lowest indicating inadequate quality. Moderation

of 12 truncated submissions showed that self-consistency (α = .91) and faculty

agreement with marks (α = .72) were adequate [HK07].

6.6 Data Analysis

The data was analysed using PASW 18.0.3 and AMOS 21 for Windows. Cases

with missing data were excluded list-wise. All p-values from null-hypothesis

significance tests are two-tailed with statistical significance being determined at

the conventional level (i.e., α = .05).

6.6.1 Differences in Attitude

Multiple factorial (2 x 2 x 5) between-subjects MANOVA evaluated the impact

of the robot-centred course on each student self-beliefs for each gender and level

of practice reported. As anticipated, the multivariate effect of practice was

significant (F = 2.509, p = .012, η2
p = .068). There were no other significant

multivariate effects, however it should be noted that a complex interaction

between gender, level of practice, and course approached significance (F =

2.328, p = .056, η2
p = .068). Given that there is low power for detecting gender

effects, this warrants further exploration in the future.

95

6.6 Data Analysis

The contribution of each parameter to the model is shown in Table 6.2 below.

As no gender and course differences were found in the multivariate test, no

additional hypotheses tests were conducted and only the observed differences are

shown. The results reinforce the relationship between practice and self-beliefs,

but highlight concerns that anxiety and self-concept remained consistent across

the course designs.

6.6.2 Greater Practice with the Robot Olympics

As self-reported programming practice did not follow a normal distribution, a

Mann-Whitney U Test was conducted to examine the difference between the two

cohorts. This indicated that programming practice was greater in the robot-

centred course compared to the web programming course for both male students

(U = 1404, p = .016, r = 0.21) and female students (U = 73, p = .024, r = 0.40).

This is shown in Figure 6.1, where the proportion of students studying for less

than ten hours per week decreases and those studying for more than ten hours

per week increases. This represents an overall increase of 37.4% based on the

mean difference. However, it should be noted that the median did not change

and 54.8% did not fulfil the expectation of 10-15 hours per week.

6.6.3 Higher Overall Quality with Practice and the Robot

Olympics

A factorial (2 x 2 x 5) between-subjects MANOVA evaluated the impact of the

robot-centred course on the quality of student submissions for each gender and

level of practice reported. Assumptions of normality were supported. However,

96

6.6 Data Analysis

the Box’s and Brown-Forsythe tests only supported equality of variance and

equality of the covariance matrices once readability was collapsed into four

categories (rather than five). As the cell sizes were not equal, Pillai’s Trace

was used to assess significance. Significant multivariate effects for practice

(Trace = .190, F = 2.202, p = .011, η2
p = .063) and for course (Trace =

.134, F = 6.603, p < .001, η2
p = .134) were found. This is illustrated in

Figure 6.2, which shows that overall quality is higher in the robot course and

increases with practice. However, there were no significant effects for gender

(Trace = .019, F = 0.829, p = .480, η2
p = .019).

6.6.4 Varying Effects of Practice and the Robot Olympics

on Aspects of Code Quality

To examine the effects on each aspect of code quality, univariate ANOVAs

were conducted. These are shown in Table 6.3. As no gender differences were

found in the multivariate test, no hypotheses tests were conducted and only

the observed differences are shown. The results suggests that preparation for

the Robot Olympics helped students produce higher quality code in terms of

functional coherence and sophistication. Furthermore, programming practice

predicted functional coherence. Interestingly, however, programming practice

itself did not predict higher code readability or sophistication. Figure 6.3 shows

a pair of scatter matrices illustrating the correlations between practice and each

aspect of code quality alongside the potential interaction these correlations have

with course design. It is important to note that the first column shows that those

with lower levels of practice tended to exhibit increased quality when enrolled on

97

6.6 Data Analysis

the robot course, suggesting that the robots may mitigrate some of the problems

associated with low levels of practice. For example, qualitative differences in the

experience may have lead to deeper (higher quality) learning.

98

6.6 Data Analysis

Table 6.2: ANOVA Results For Self-Concept and Anxiety

Predictors F p η2
p d

Programming Self-Concept

Level of Practice 4.362 .002 .112

Course — — .001 0.00

Gender — — .008 -0.32

Programming Anxiety

Level of Practice 3.134 .017 .083

Course — — .002 0.03

Gender — — .011 0.28
Note: The estimate of Cohen’s d was calculated using the estimated marginal means from the MANOVA and the pooled standard

deviation of each variable.

Table 6.3: ANOVA Results For Each Aspect of Code Quality

Predictors F p η2
p d

Functional Coherence

Level of Practice 5.321 .001 .141

Course 19.268 .000 .129 1.15

Gender — — .003 0.27

Readability

Level of Practice 0.919 .455 .028

Course 1.504 .222 .011 0.36

Gender — — .016 0.39

Sophistication

Level of Practice 0.798 .529 .024

Course 5.426 .021 .040 0.74

Gender — — .011 0.37
Note: The estimate of Cohen’s d was calculated using the estimated marginal means from the MANOVA and the pooled standard

deviation of each variable.

99

6.6 Data Analysis

Programming Practice (Hours Per Week)

> 20 hrs15-20 hrs10-15 hrs5-10 hrs0-5 hrs

P
e

rc
e

n
ta

g
e

 o
f

S
tu

d
e

n
t

C
o

h
o

rt

50%

40%

30%

20%

10%

0%

Error bars: 95% CI

Robot Olympiad Cohort

Web Programming Cohort

Student Cohort

Figure 6.1: A clustered bar chart comparing self-reported hours of programming

practice between students enrolled in the Web Programming and Robot-Centred

courses.

Programming Practice (Hours Per Week)

> 20 hrs15-20 hrs10-15 hrs5-10 hrs0-5 hrs

M
e

a
n

 O
v

e
ra

ll
 Q

u
a

li
ty

 o
f

C
o

u
rs

e
w

o
rk

 S
u

b
m

is
si

o
n

s
(M

a
rk

s)

15

13

11

9

7

5

Error bars: 95% CI

Robot Olympiad Cohort

Web Programming Cohort

Student Cohort

Figure 6.2: A clustered bar chart comparing the overall quality of final coursework

submissions between students enrolled in the Web Programming and Robot-

Centred courses at each level of self-reported practice.

100

6.6 Data Analysis

S
o

p
h

is
ti

ca
ti

o
n

&

 E
le

g
e

n
ce

R
e

a
d

a
b

il
it

y
 &

M

a
in

ta
in

a
b

il
it

y
F

u
n

ct
io

n
a

l
C

o
h

e
re

n
ce

P
ro

g
ra

m
m

in
g

Sophistication
& Elegence

Readability &
Maintainability

Functional
Coherence

Programming

S
o

p
h

is
ti

ca
ti

o
n

&

 E
le

g
e

n
ce

R
e

a
d

a
b

il
it

y
 &

M

a
in

ta
in

a
b

il
it

y
F

u
n

ct
io

n
a

l
C

o
h

e
re

n
ce

S
tu

d
e

n
t

C
o

h
o

rt

R
o

b
o

t
O

ly
m

p
ia

d
W

e
b

 P
ro

g
ra

m
m

in
g

Practice

P
ra

ct
ic

e
P

ro
g

ra
m

m
in

g
P

ra
ct

ic
e

F
ig
u
re

6
.3
:

A
p

ai
r

of
sc

at
te

r
p

lo
t

m
at

ri
ce

s
co

m
p

ar
in

g
th

e
re

la
ti

on
s

b
et

w
ee

n
p

ro
gr

am
m

in
g

p
ra

ct
ic

e,
a
sp

ec
ts

o
f

co
d

e

q
u

al
it

y,
an

d
st

u
d

en
t

co
h

or
t.

101

6.7 Discussion

6.7 Discussion

The findings reinforce the notion that robot-centred learning environments can

encourage programming practice. The frequency of students reporting at least ten

hours of practice per week increased from 22% to 45%. Nevertheless, engagement

remains an issue with more than 50% of students not pursuing the levels of

practice that had been set as an expectation. Further investigation into student

practice could result in improvements to the Robot Olympics by, for example,

considering other potential influences (see Chapter 2).

The results reveal some evidence which suggests that practice within the

context of the robot-centred course can be more effective than alternatives. This

is important to consider, because how students practice is just as, if not more,

important than how long they practice [EKTR93]. Examining overall quality

ratings across different levels of practice revealed that those students involved in

the Robot Olympics consistently outperformed those on the web programming

course at lower levels of practice. However, further research is needed to explain

why this is, because the available data cannot isolate the contribution of any

individual change to the course, such as the use of personal robots.

Enrolment on the robot-centred course predicted functional coherence, even

when accounting for practice as a covariate. This suggests that students fulfilled

the requirements more successfully. Hence, introducing personal robots within an

appropriate context can lead to improvements in student outcomes in a way that

just additional time-on-task does not. An insight is that the physical feedback can

be easily understood by students, whereas a small difference in a web page may

102

6.7 Discussion

not be. Thus, the way in which the nature of the coding interface and its feedback

supports students’ development of mental models warrants investigation.

It was anticipated that the code reviews would help students improve the

readability of their code. However, enrolment on the robot-centred course

did not predict readability. There are several explanations for this, with one

such hypothesis being that students prioritized the functionality of the code as

watching robots complete tasks is more compelling. However, the format of the

reviews could also be a factor.

Enrolment on the robot-centred course predicted sophistication where practice

did not. As such, the challenges presented during code reviews and the robots

themselves could have pushed students to improve. It is interesting to note that

the increase was supported by a higher proportion of those with low levels of

practice receiving higher scores. Perhaps differences in style of cognition, creative

thinking, and reflection promoted this increase. Further work is required to isolate

and explore these hypotheses.

There were no statistically significant differences in terms of gender. However,

there were some potentially meaningful differences in terms of effect size. Most

notably, female students showed greater changes in level of practice based on

course enrolment than did male students. Additionally, there could be small but

meaningful differences in terms of achievement, but this cannot be verified due

to the low statistical power associated with post-hoc analyses.

103

6.8 Limitations

6.8 Limitations

The study was observational in nature, so there may be factors unaccounted

for. For example, the two cohorts could have differed from the outset in

unobserved respects, there may have been differences in teaching quality, and

so on. Furthermore, as several changes were made, it is the entire course that is

assessed, rather than specific differences. The analysis focuses on quantitative

data, excluding potentially useful qualitative data on the use of robots. As

such, it is unclear whether their characteristics encouraged different approaches

to learning and writing code. Caution should be exercised when interpreting self-

report questionnaire data [DGV02b]. Additionally, only those who submitted

code for review were included, thus perhaps excluding those students who failed

to engage with the robots. Finally, the post-hoc hypotheses associated with gender

had a high probability of type-II error.

6.9 Conclusions

Practice and reflection both play important roles in the development of

programming expertise. As such, it is important to design courses that encourage

these activities. This chapter explores a robot-centred approach to promote

these activities that was trialled in an actual course at the authors’ institution.

This reveals some evidence that the use of personal robots in an appropriate

context can inspire students to engage in frequent practice. Enrolment on the

new course also predicted two aspects of code quality: functional coherence

and sophistication. This demonstrates that the robot-centred course improved

104

6.9 Conclusions

student outcomes in a way that just additional time on task does not, suggesting a

qualitatively different learning experience. For example, did the physical feedback

from the personal robot aid in the construction of mental models? As such,

further work is needed to evaluate how students’ reflective activities, meta-

cognition, creativity, attitudes, motivation, and approach to learning changed

as a result of participation in the new robot-centred course.

Declaration

Some of the work presented in this chapter can also be found in the following

publication:

Scott, M. J., Counsell, S., Lauria, S., Swift, S., Tucker, A., Shepperd, M., and

Ghinea, G., Enhancing Practice and Achievement in Introductory Programming

with a Robot Olympics, IEEE Transactions on Education (Accepted, In Press),

pp. 1–6, DOI: 10.1109/TE.2013.2288700

105

http://dx.doi.org/10.1109/TE.2013.2288700

7

Games-based Fantasy Role-Play

in the Programming Lab

To some extent, the previous chapters show that beliefs predict emotions and

emotions predict behaviour. Hence, it is important to help students overcome

non-constructive beliefs so they can engage in deliberate practice. This chapter

proposes that games offer opportunities to help educators to achieve this aim.

The concepts of procedural rhetoric and narrative reinforcement are introduced

as persuasive mechanisms that could enrich students’ beliefs. An analysis of 52

games that teach programming is then presented, illustrating that few of them

target student beliefs or take advantage of these mechanisms. This invites further

research to address the potential utility of these mechanisms for influencing

student self-beliefs.

106

7.1 Introduction

7.1 Introduction

In line with previous research on similar topics [VDC04, JVVDP04], the previous

chapters highlight that programming self-concept and programming aptitude

mindset can predict anxiety in the programming lab. They also show that anxiety

can predict levels of programming practice and, additionally, that practice can

predict (some aspects of) performance. Assuming that these relationships are

causal in nature, following the Control-Value Theory of Achievement Emotions

[Pek06], it would seem pertinent to enrich these self-beliefs in order to help

students manage their anxiety and subsequently help them to engage in deliberate

practice regularly. However, analysis of outcomes across three previous cohorts

at Brunel University has shown that the transition from an exam-based web

programming course to a practice-based robotics course had no statistically

significant effect on anxiety. Thus, this emotive dimension of learning computer

programming has not been adequately addressed by existing teaching practices.

There are a number of practices which could be applied to address the affective

domain. For example, growth messages can be embedded into assessment rubrics

and feedback [CCD+10], soft-scaffolding can help students to develop a stronger

self-concept [OMCD06], and students can be encouraged to engage in work that

they can take pride in [GCF+10]. There are, however, some limitations associated

with these approaches. In particular, educators in the UK often now need to

manage the scalability of their teaching due to increasing administrative demands

[Tig10] and staff-student ratios [Cou12]. Typically this is achieved through the

support of automated marking systems, which may not be suited to providing

107

7.2 Digital Games in Educational Settings

the necessary types of tasks and feedback, and through the support of teaching

assistants, whom may not receive the necessary preparation needed to implement

these interventions. An alternative approach would, therefore, be welcome in

large classes. One such approach is to embed the intervention directly into new

educational tools that educators use with large group teaching and one type of

tool that shows promise, in this respect, is digital games.

7.2 Digital Games in Educational Settings

Digital game-based learning refers to the use of instructional technology to

produce a synergy between fun and learning, often induced through tightly

coupled cycles of action and feedback situated within a “magic cirlce”1. Research

on the potential of games-based learning has continued throughout the past 35

years, growing from early work on the psychology of video games [LL83] and the

serious applications of games [Abt87]. Malone and Lepper’s work during the 1980s

[Mal80, ML87] and their students’ work in the 1990s [PL92, CL96] highlighted

the intrinsically motivating aspects of fantasy games and since then an ever-

increasing body of literature has evolved around discourse on the educational and

psychological potential of digital games (e.g., [RMWW92, D+94, Rie96, Kaf01,

RM01, Squ03, HAB05, Hay05, DF06, Sha06, VVCB+06, Don07, EN07, FT06,

Ke09, Squ11, HCSB11, DSN+11, HH+11, TFDW11, GS12, YSC+12]).

1Castronova defines this as the “shield of sorts, protecting the fantasy world from the

outside world” [Cas08, p. 147]. However, refer to Huizinga [Hui86] for a more comprehensive

introduction to the term and Suits [Sui14] for further philosophical engagement with this notion

and an alternative term “lusory attitude”.

108

7.2 Digital Games in Educational Settings

In more recent years, digital game-based learning has been increasingly

evangelised as a method of teaching and self-improvement (e.g., by Prensky

[Pre05], Gee [Gee03, Gee14], Ritterfeld [RCV09], Schell [Sch10], Zichermann

[ZL10], McGonigcal [McG11a, McG11b], Sheldon [She11a], etc.). There has

been criticism of the lack of evaluation of learning games [RMWW92, CSH07,

TFDW11] and the different approaches taken to gather evidence [CBM+12].

Additionally, not all of the evidence supports their use [AMM+12]. Nevertheless,

there are several meta-analytical reviews suggesting that using digital games for

instruction has some value [Pet09, Sit11, CBM+12, GEM13, WVNVOVDS13].

In particular, some games have been shown to be effective for general computing

instruction from a learning perspective [Pap09, HCSB11].

The games which are successful at instruction tend to have clearly defined

rules, objectives and expected outcomes. They also tend to provide rich

feedback, present an engaging narrative, provide scaffolding through appropriate

levels of challenge in order to drive their deliberate practice. They do, then,

take advantage of educational principles to improve engagement and retention

throughout the learning processes. An area in which games have been shown to

be considerably effective is in applied interdisciplinary contexts, whereby students

utilise a range of knowledge, critical thought, and problem solving towards goals

that they find interesting [SVKT08]. However, the capabilities of games to

manipulate self-beliefs through persuasion is not clearly described or evaluated in

the educational games literature. Instead, the persuasive mechanisms that exist in

games can be derived through examining the literature of media communications

109

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

and psychology (i.e., experimental research on media effects) alongside game

studies (i.e., the use of games as forms of rhetoric).

7.3 Persuasive Mechanisms in Game-based

Fantasy Role Plays

The mechanisms that games can use to persuade are varied and multifaceted.

As with many other forms of multimedia presentation, rhetorics associated with

the oratory and visual traditions can be employed. However, unlike these other

media, digital games distinguish themselves in two key ways. Firstly, games are

highly interactive by definition. This means that players take an active role in

systems and environment that will communicate with them and respond to their

actions; thereby, providing multiple opportunities for persuasion through direct

feedback to actions. Secondly, games are immersive in nature. They enable

players to assume a role that transform their identity; hence, providing a lens

which helps them to consider new perspectives on themselves and the world they

inhabit. Hence, games present two different sets of affordances, falling under the

broad classification of procedural rhetoric, where persuasion is embedded within

process and system, and narrative reinforcement, where persuasion is embedded

within representation and narrative. An overview of the methods is shown in

Tables 7.1–7.2.

110

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

T
a
b
le

7
.1
:

T
y
p

es
of

P
ro

ce
d

u
ra

l
R

h
et

or
ic

u
se

d
as

P
er

su
as

iv
e

M
ec

h
an

is
m

s
in

G
am

e-
b

as
ed

F
an

ta
sy

R
o
le

P
la

y
s

T
y
p

e
o
f

M
e
ch

a
n
is

m
D

e
sc

ri
p
ti

o
n

S
o
u
rc

e
s

E
m

b
o
d
im

en
t

U
se

of
a

v
ir

tu
al

en
v
ir

on
m

en
t

to
tr

an
sf

or
m

th
e

p
er

sp
ec

ti
ve

an
d

id
en

ti
ty

of
a

p
ar

ti
ci

p
an

t

u
si

n
g

an
av

at
ar

[Y
B

07
],

[P
S
A

S
13

]

V
ic

ar
io

u
s

R
ei

n
fo

rc
em

en
t

T
h
e

m
an

ip
u
la

ti
on

of
th

e
ch

ar
ac

te
ri

st
ic

s
of

an

av
at

ar
in

re
sp

on
se

to
p
ar

ti
ci

p
an

t
ac

ti
on

s

[F
B

09
]

G
am

ifi
ca

ti
on

U
se

of
m

ea
n
in

gf
u
l

to
ke

n
ec

on
om

ie
s

an
d

ga
m

e
m

ec
h
an

ic
s

to
q
u
an

ti
fy

an
d

re
w

ar
d

p
ar

ti
ci

p
an

t
ac

ti
on

s

[Z
L

10
],

[S
h
e1

1a
]

P
ro

ce
ss

M
ea

n
in

g
T

h
e

in
te

gr
at

io
n

of
m

ea
n
in

g
an

d
ar

gu
m

en
t

in
to

ga
m

e
m

ec
h
an

ic
s

an
d

ot
h
er

p
ro

ce
ss

es

[B
og

07
]

111

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

T
a
b
le

7
.2
:

T
y
p

es
of

N
ar

ra
ti

ve
R

ei
n

fo
rc

em
en

t
u

se
d

as
P

er
su

as
iv

e
M

ec
h
an

is
m

s
in

G
am

e-
b

as
ed

F
an

ta
sy

R
o
le

P
la

y
s

T
y
p

e
o
f

M
e
ch

a
n
is

m
D

e
sc

ri
p
ti

o
n

S
o
u
rc

e
s

Im
ag

o
E

ff
ec

t
T

h
e

u
se

of
a

n
ar

ra
ti

ve
ly

ri
ch

ch
ar

ac
te

r
as

an

av
at

ar

[T
H

B
08

],
[G

ee
14

]

A
d
ve

n
tu

re
P

ro
gr

am
m

in
g

T
h
e

in
te

gr
at

io
n

of
n
ov

el
ch

al
le

n
ge

s

(w
it

h
p
ar

al
le

ls
to

re
al

-w
or

ld
p
ro

b
le

m
s)

in
to

in
te

re
st

in
g

en
v
ir

on
m

en
ts

[H
an

00
]

E
m

ot
io

n
D

es
ig

n
P

at
te

rn
s

T
h
e

u
se

of
st

or
y,

n
ar

ra
ti

ve
an

d
ap

p
ro

p
ri

at
e

m
ec

h
an

ic
s

to
ev

ok
e

p
os

it
iv

e
em

ot
io

n
s

[L
az

04
],

[F
ro

07
],

[S
w

i0
8]

,
[D

W
N

13
]

A
ge

n
t-

b
as

ed
F

ee
d
b
ac

k
T

h
e

u
se

of
n
on

-p
la

ye
r

ch
ar

ac
te

rs
to

p
ro

v
id

e

en
co

u
ra

ge
m

en
t

an
d

su
p
p

or
t

[L
K

11
]

112

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

7.3.1 Procedural Rhetoric

Gee [Gee03] considered the role of identity in learning. A three-way relationship

was proposed between: real-world identity; virtual identity; and a mediating

projective identity. It was argued that the virtual and projective identities formed

when immersed in a fantasy role could reinforce the real-world identity relating to

the activity of that role. During a separate investigation of self-representation in

virtual reality, Yee and Bailenson [YB07] empirically demonstrated a somewhat

similar phenomenon relating to identity and self-beliefs: the Proteus Effect. Other

studies have also shown that this can influence implicit beliefs [PSAS13]. As

such, manipulation of character mindsets and self-concept could correspond with

changes in player mindsets and self-concept.

Vicarious reinforcement is a concept that was introduced by Jesse Fox [FB09].

It is a form of reinforcement where the consequences of actions are visualised

within the game context. In the first example, players who exercised frequently

would see their avatar lose weight while those who exercised seldom saw their

avatar gain weight. As such, the visual cue served as a reminder for players to

engage in exercise, so as to avoid being represented in a way that they did not

feel comfortable with.

The concepts of gamification and gameful design can be used to quantify

experiences in terms of progress towards a goal or otherwise providing a score.

Part of self-concept development is comparison between ones environment and

ones perceived self. However, it may not be the case that novices can make

accurate judgements about the quality and value of their work. By providing

113

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

adequate quantification and demonstrating to players how they are progressing,

their development of self-concept can be supported in a more deliberate fashion.

That is, they can compare their own ability with externally validated criterion

rather than subjective norm-based comparisons against their peers who may

have prior experience in programming. There is some empirical support for

this technique through its application in a mathematics game [OHB+14], largely

enabling players to level up and pushing them to more advanced challenges.

Process meaning is a concept developed by Ian Bogost in his book Persuasive

Games: The Expressive Power of Videogames [Bog07]. It is described as “the art

of persuasion through rule-based representations and interactions, rather than

the spoken word, writing, images, or moving pictures.” In this way, the concept

can be applied to provide students with growth mindset messages through the

way in which the game is presented.

7.3.2 Narrative Reinforcement

The Imago Effect [THB08], also referred to as projective identity [Gee14], is the

ability of players to relate to characters and situations that are presented to

them. This provides to reflect on their own skills and ability when framed as a

character. It is distinguishable from the Proteus Effect as the Imago Effect may

not be specific to the player avatar and may not even be subject to manipulation.

Adventure programming refers to a technique widely used in secondary

education contexts to improve student’s locus of control2 It refers to the practice

2Locus of control is one of the core self-evaluations constructs. These are sometimes

collectively referred to as “positive self-concept” constructs [JLDK98, JB01]. This is because

these areas of research complement each other.

114

7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays

of exposing students to “real life situations in which they have to employ problem

solving or otherwise creative methods to deal with the environment around them

and the task at hand” [Han00, p. 34]. In the context of game design, this same

concept can be applied to help students apply their skills in a novel fantasy context

whereby they overcome a challenge. Such challenges are, typically, analogous to

the real-world. An example is Space Mission: Ice Moon [DG07], where students

are presented with a science fiction context where they are able to apply their

science skills to help save a team of astronauts in a disaster scenario. Such

role play helps students attach meanings and emotions to their actions, thereby

providing motivation to persist and address any non-constructive beliefs they may

have about their abilities.

There are a range of emotional design techniques [Laz04, Fro07, Swi08]

and design patterns [DWN13] which can be used to effectively as part of an

intervention to reduce negative emotions. For example, the narrative and in-game

tasks can be designed in such a way so as to avoid triggering students’ anxieties.

Additionally, the design of the game can be purposeful so as to facilitate positive

emotions that may enhance students’ self-concept. By, for example, providing

opportunities for students to feel fiore and pride in their efforts as this has a

positive influence on self-concept development [GCF+10].

An agent is a computer program that acts for a user on their behalf. In

this case, the agents aim to support students in ways a teacher otherwise would.

This approach has been shown to be effective; in particular, previous work has

revealed that novices find them helpful when learning to use new items of software

[LK11] and their self-efficacy can increase as a consequence of encouragement.

115

7.4 Games in the Programming Lab

Part of effective self-concept interventions relies upon rich feedback and positive

reinforcement being provided to students in a timely manner. As such, the use

of characters within a narrative setting can help frame feedback and provide a

source of encouragement to learners, thereby supporting their development of

self-concept.

7.4 Games in the Programming Lab

There have been several approaches to the incorporation of digital games

and game-like instructional technologies into the introductory programming

laboratory. Li and Watson [LW11] categorise these games into two types:

authoring-based, taking a constructionist approach which challenges learners to

create games and stories (e.g., ALICE [CDP00, KP07]), and play-based, taking

a guided-instruction approach wherein lessons emerge through systems of play

and puzzle solving which demand programming strategies and code to complete

(e.g., CodeSpells [EFG13]). Additionally, their review highlights games produced

using: a range of technologies (including 2D and 3D); targeting different learners

(in terms of age, knowledge, and prior experience); different forms of coding such

as typing, using graphical objects, and completing pre-defined forms.

Despite the claims made by authors, such as Gee [Gee03, Gee14] and Yee

[YB07], on the transformation potential of games and virtual worlds, there

appears to have been a priority to address cognitive and skill-based objectives,

rather than affective objectives, in the development and evaluation of serious

games. Only 7 of 129 studies surveyed by Connolly et al [CBM+12] address

affective and motivational factors in educational games. Likewise, in the

116

7.4 Games in the Programming Lab

respective evaluation frameworks proposed by Mayer et al [MBH+14] as well

as Connolly et al [CSH08], affective objectives are omitted. As such, previous

reviews do not make it clear whether or not any digital games address the

enrichment of student self-beliefs, never mind those published specifically for

application in computing education. Hence, to remedy this gap in the literature,

a review of existing programming games is presented in this chapter.

As there is no exhaustive list of games used in introductory programming

classes, and several have been produced by professional game developers

rather than academic researchers, a list of candidate games was curated

through a literature search in the ACM Digital Library, IEEE Explore, and

ScienceDirect. Some additional titles were then curated through the DiGRA,

GAMESNETWORK, and IGDA Games Education mailing lists. Other games

were drawn from the review by Li & Watson [LW11] as well as a recently published

reviews by Vahldick et al [VMM14] and Malliarakis et al [MSX14]. This resulted

in 61 games and game-like products being found. Both primary sources (i.e.,

the games themselves) and secondary sources (i.e., reviews and articles about

the games) were used in the analysis. The following inclusion criteria were also

applied to the set:

• Presents a play-based game environment

• Required players to write code or construct a programming artefact

(e.g. write code using text or a drag-and-drop block-language)

• Addressed learning outcomes related to basic programming constructs

(e.g. control flow and variable assignment)

117

7.4 Games in the Programming Lab

• Game available to play in English or information available in English

An analysis of the remaining 52 games is shown in Table 7.3 on the following

pages. The table shows the name of the game, the type of game classified using

in vivo derived genre patterns, and whether or not it contained any persuasive

mechanisms.

While most of the games possessed some persuasive mechanism (66%), self-

belief variables are seldom addressed, with the only game included in this

survey explicitly addressing them being Gidget [Lee13], doing so through process

meaning and agent-based encouragement.

Nevertheless, approximately 62% of the games analysed contained some

persuasive mechanism in the form of narrative reinforcement. Most of these

were in the form of Adventure Programming (38%) and often accompanied

by the context of an Imago Effect (36%) arising through the use of character-

driven narratives which provided context for increasing challenge and mastery-

experiences. Additionally, many games were also supported by the use of agent-

based feedback (47%) even where no narrative was presented within the game

itself. However, it should be noted that the nature of the feedback varied

considerably from static encouragement in response to play choices (e.g. in World

of Variables) to more expressive and purposeful personifications which aimed to

provide rich evaluative feedback (e.g. in Gidget). Surprisingly, few games adopted

common emotion-design patterns (14%). The patterns tend to emerge in the most

narratively-driven games, which tend to be role-playing games (RPG), however,

these were less common. This could be because the most popular types of games

were LOGO Puzzlers.

118

7.4 Games in the Programming Lab

Only around 38% of the games surveyed incorporated some form of procedural

rhetoric. Its usage tended to be more diverse and less synergistic than the

narrative reinforcement strategies, with the Proteus Effect (19%) arose most

commonly in immersive 3D virtual worlds where play was controlled through

an avatar. The use of quantified self principles (17%) arose in RPGs, while the

use of vicarious reinforcement tended to arise in simulation-style games, or those

where success at the game inevitably lead to positive feedback (e.g. MUPPETS

[BP04]). Although less clear to derive, there was only a single game which used

process meanings to provoke reflections.

119

7.4 Games in the Programming Lab

T
a
b
le

7
.3
:

A
C

on
te

n
t

A
n

al
y
si

s
of

P
er

su
as

iv
e

M
ec

h
an

ic
s

in
P

ro
gr

am
m

in
g

G
am

es

G
a
m
e

T
y
p
e

P
E

V
R

Q
S

P
M

IE
A
P

E
P

A
b
E

A
P

IN
[N

ot
A

va
il

ab
le

to
P

la
y
]

-
-

-
-

-
-

-
-

A
tl

an
ti

sQ
u

es
t

3D
A

d
v
en

tu
re

1
0

0
0

1
1

0
1

B
ot

L
og

ic
2D

L
O

G
O

P
u

zz
le

r
0

0
0

0
0

0
0

1

B
ar

al
h

o
d

as

V
ar

ia
v
ie

s
2D

P
u

zz
le

r
0

0
0

0
0

0
0

1

C
ar

go
-B

ot
2D

L
O

G
O

P
u

zz
le

r
0

0
0

0
0

0
0

0

T
h

e
C

at
ac

om
b

s
2D

R
P

G
1

0
1

0
1

1
0

1

C
at

os
H

ik
e

2D
A

d
v
en

tu
re

0
0

0
0

1
1

0
1

C
o
d

d
y

L
u

ck
2D

P
u

zz
le

r
0

0
0

0
0

0
0

0

C
o
d

e
C

om
b

at
2D

A
d

v
en

tu
re

/R
P

G
0

0
1

0
1

1
1

1

C
o
d

e
S

p
el

ls
3D

S
an

d
b

ox
E

n
v
ir

on
m

en
t

1
0

0
0

1
0

0
0

C
o
d

em
an

ce
r

2D
L

O
G

O
A

d
ve

n
tu

re
/P

u
zz

le
r

0
0

0
0

1
1

1
1

C
ol

ob
ot

3D
R

ea
l-

T
im

e
S

tr
at

eg
y

1
0

1
0

1
1

0
1

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

120

7.4 Games in the Programming Lab

T
a
b
le

7
.3

–
C

on
ti

n
u

ed
fr

om
P

re
v
io

u
s

P
ag

e

G
a
m
e

T
y
p
e

P
E

V
R

Q
S

P
M

IE
A
P

E
P

A
b
E

C
M

X
2D

M
u

lt
ip

la
y
er

R
P

G
0

0
1

0
0

0
0

0

D
ai

se
y

th
e

D
in

o
2D

P
et

S
im

0
0

0
0

0
0

0
0

D
re

am
C

o
d

er
s

2D
R

P
G

0
1

1
0

1
1

1
1

E
le

M
en

ta
l:

T
h

e

R
ec

u
rr

en
ce

3D
F

ir
st

-P
er

so
n

P
u

zz
le

r
1

0
0

0
0

1
0

1

E
n
tr

an
d

o
P

el
o

C
an

n
o

[N
ot

A
va

il
ab

le
T

o
P

la
y
]

-
-

-
-

-
-

-
-

E
ra

se
A

ll
K

it
te

n
s

2D
A

d
v
en

tu
re

/P
la

tf
or

m
er

0
0

0
0

0
1

0
0

G
id

ge
t

2D
S

im
0

1
0

1
0

0
0

1

H
ac

k
’n

’S
la

sh
2D

A
d

v
en

tu
re

0
0

0
0

1
1

0
0

IA
G

am
e

3D
R

P
G

1
0

1
0

1
1

0
1

J
av

a
T

ow
er

D
ef

en
se

2D
T

ow
er

D
ef

en
ce

0
0

0
0

0
0

0
0

K
o
d

ab
le

2D
L

O
G

O
P

u
zz

le
r

0
0

0
0

0
0

0
0

M
ac

h
in

ee
rs

[N
ot

A
va

il
ab

le
to

P
la

y
]

-
-

-
-

-
-

-
-

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

121

7.4 Games in the Programming Lab

T
a
b
le

7
.3

–
C

on
ti

n
u

ed
fr

om
P

re
v
io

u
s

P
ag

e

G
a
m
e

T
y
p
e

P
E

V
R

Q
S

P
M

IE
A
P

E
P

A
b
E

M
ac

h
in

is
t-

F
ab

ri
q
u

e
[N

ot
A

va
il

ab
le

T
o

P
la

y
]

-
-

-
-

-
-

-
-

M
ov

e
th

e
T

u
rt

le
[N

ot
A

va
il

ab
le

T
o

P
la

y
]

-
-

-
-

-
-

-
-

M
os

er
’s

G
am

e
T

ex
t

A
d

ve
n
tu

re
0

0
0

0
1

1
1

1

M
U

P
P

E
T

S
3D

M
u

lt
ip

la
y
er

C
om

b
at

S
im

0
1

0
0

0
0

0
0

L
ig

h
tb

ot
2

2D
L

og
o

P
u

zz
le

r
0

0
0

0
0

0
0

1

P
la

y
L

O
G

O
3D

3D
L

og
o

P
u

zz
le

r
0

1
0

0
0

0
0

1

P
ro

g
&

P
la

y
2D

R
ea

l-
T

im
e

S
tr

at
eg

y
0

0
0

0
0

0
0

0

P
ro

gr
am

Y
ou

r

R
ob

ot
[N

ot
A

va
il

ab
le

T
o

P
la

y
]

-
-

-
-

-
-

-
-

P
ro

G
am

e
fo

r

G
re

en
fo

ot
2D

S
im

0
0

0
0

0
0

0
0

P
ro

je
ct

O
ri

on
3D

A
d

v
en

tu
re

1
0

0
0

1
1

0
0

R
A

P
U

N
Z

E
L

3D
D

an
ce

S
im

0
1

0
0

0
0

0
0

R
es

ou
rc

eC
ra

ft
/

K
er

n
el

P
an

ic
3D

R
ea

l-
T

im
e

S
tr

at
eg

y
0

1
0

0
1

0
0

0

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

122

7.4 Games in the Programming Lab

T
a
b
le

7
.3

–
C

on
ti

n
u

ed
fr

om
P

re
v
io

u
s

P
ag

e

G
a
m
e

T
y
p
e

P
E

V
R

Q
S

P
M

IE
A
P

E
P

A
b
E

R
ob

oC
om

2D
S

tr
at

eg
y

0
0

0
0

0
0

0
0

R
ob

ot
L

og
ic

[N
ot

A
va

il
ab

le
T

o
P

la
y
]

-
-

-
-

-
-

-
-

R
ob

ot
im

ov
[N

ot
A

va
il

ab
le

T
o

P
la

y
]

-
-

-
-

-
-

-
-

R
ob

oz
zl

e
2D

L
O

G
O

P
u

zz
le

r
0

0
0

0
0

0
0

0

R
u

b
y

W
ar

ri
or

2D
R

og
u

e-
li

k
e

0
1

0
0

0
0

0
1

S
av

in
g

S
er

a
2D

R
P

G
1

0
1

0
1

1
1

1

S
p

ac
eC

h
em

2D
L

O
G

O
P

u
zz

le
r

0
0

0
0

0
1

1
0

S
p

ac
e

G
oa

ts
2D

T
ow

er
D

ef
en

ce
0

0
0

0
0

0
0

0

S
to

p
T

oi
lw

or
m

D
ia

m
on

d
[N

ot
A

va
il

ab
le

T
o

P
la

y
]

-
-

-
-

-
-

-
-

T
A

L
E

N
T

[N
ot

A
va

il
ab

le
T

o
P

la
y
]

-
-

-
-

-
-

-
-

T
o
on

T
al

k
2D

P
u

zz
le

/
A

d
ve

n
tu

re
0

0
0

0
0

1
0

1

T
ra

in
B

&
P

3D
T

ra
in

S
im

0
0

0
0

0
0

0
0

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

123

7.4 Games in the Programming Lab

T
a
b
le

7
.3

–
C

on
ti

n
u

ed
fr

om
P

re
v
io

u
s

P
ag

e

G
a
m
e

T
y
p
e

P
E

V
R

Q
S

P
M

IE
A
P

E
P

A
b
E

T
y
n

ke
r

L
os

t
in

S
p

ac
e

2D
L

O
G

O
A

d
ve

n
tu

re
/P

u
zz

le
r

0
0

0
0

0
0

0
0

V
ir

go
G

am
e

2D
L

O
G

O
P

u
zz

le
r

0
0

0
0

0
0

0
0

W
or

ld
of

V
ar

ia
b

le
s

2D
Q

u
iz

/
S

im
0

0
0

0
0

0
0

1

W
u

’s
C

as
tl

e
2D

P
u

zz
le

/A
d

v
en

tu
re

0
0

0
0

1
0

0
1

N
o
te

:
P

E
=

P
ro

te
u

s
E

ff
ec

t;
V

R
=

V
ic

a
r
io

u
s

R
e
in

fo
rc

e
m

e
n

t;
Q

S
=

Q
u

a
n

ti
fi

ed
S

e
lf

;
P

M
=

P
ro

ce
ss

M
ea

n
in

g
;

IE
=

Im
a
g
o

E
ff

ec
t;

A
P

=
A

d
v
e
n

tu
re

P
ro

g
ra

m
m

in
g
;

E
P

=
E

m
o
ti

o
n

D
e
si

g
n

P
a
tt

e
r
n

s;
A

b
E

=
A

g
e
n

t-
ba

se
d

E
n

co
u

ra
g
e
m

e
n

t.

124

7.4 Games in the Programming Lab

These results show that a range of persuasive mechanisms exist in games;

however, within those programming games included in the analysis, there is little

coordinated effort to exploit the synergism between these different approaches.

In particular, the use of narrative and characters appears to be more common

than the use of the processes and systems. Notably, many of the most popular

type of game, LOGO Puzzlers popularised by the works of Papert’s [Pap80]

and Bergin [BSRP05], showed little use of these persuasive mechanisms. Hence,

it may be appropriate for future game designers to consider hybridising these

popular approaches to teach programming with elements from other genres. For

example, RPGs were the most likely type of game to combine a range of persuasive

elements. Hence, incorporating a LOGO Puzzler into a broader RPG could

be appropriate to maximise the affective potential of the medium alongside its

apparent popularity as a method of instruction.

While persuasive mechanisms in games present an exciting opportunity,

however, it is important to reflect on the lack of evidence to support their

use. To illustrate, Tobias et al [TFDW11, p. 206] protest that “there is

considerably more enthusiasm for describing the affordances of games and their

motivating properties than for conducting research to demonstrate that those

affordances are used to attain instructional aims [...] This would be a good time

to shelve the rhetoric about games and divert those energies to conducting needed

research”. This assertion is supported by three recent meta-analytic reviews

which presented guarded conclusions due to the diversity of dependent variables

and the perceived lack of methodological rigour in many of the studies included

[Pet09, Sit11, CBM+12, GEM13, WVNVOVDS13]. As such, these results should

125

7.5 Limitations

be taken as descriptive and hypothetical because there is a further need to validate

the utility of the proposed mechanisms with empirical evidence, likely in the form

of future experimental study.

It is also important to note that very few programming games seem

to explicitly address the challenges associated with programming anxiety by

targeting low self-concept or fixed programming aptitude. Yet, such play-based

instructional tools potentially offer well-scaffolded preparatory material in an

engaging manner and just-in-time delivery of learning material which could help

students overcome a low self-concept and even help them to develop a growth

mindset. As such, the conceptual framework and measurement instruments

presented in the previous chapters of this thesis can be used to advance the

work done in this area.

7.5 Limitations

There are two important limitations to note. Firstly, the sample of games

analysed in this chapter were curated rather than sampled. Consequently, the

initial list is not exhaustive in nature as additional works only available outside

of the UK and unpublished works-in-progress may also exist. Additionally, those

games which were analysed did not form a random sample and so may not be

representative of the overall population of programming games. In particular,

those not discussed in academic texts and academic mailing lists will have been

omitted as a result of the curation process. Secondly, no measure of reliability

has been reported alongside the content analysis conducted in this paper (see

126

7.6 Conclusion

[LSDB02], [Kri04], and [HK07] for details on reliability measurement in content

analysis). This is because the games were analysed by a single rater (the author).

7.6 Conclusion

This chapter has proposed that procedural rhetoric and narrative reinforcement

can be used to enrich students’ self-beliefs through eight persuasive mechanisms:

the Proteus Effect; Vicarious Reinforcement; Quantifiable Self; Process Meaning;

Imago Effect; Agent-based Encouragement; Adventure Programming; and

Emotion-orientated Design. An analysis of these mechanisms across fifty games

shows that many games include at least one of these mechanisms in their design,

but there is considerable variance in the way in which each is deployed and their

purpose in doing so. Two key gaps in the literature are revealed. Firstly, none

of the games included in the survey explicitly address the challenges associated

with poor programming self-concept and fixed programming aptitude mindsets.

Secondly, there is little empirical evidence associated with these games which

could be used to verify the utility of the proposed mechanisms. This suggests

that there is an opportunity to study the use of these persuasive mechanisms

through the creation and evaluation of new experimental games that specifically

targets students’ self-beliefs.

127

7.6 Conclusion

Declaration

Some of the work presented in this chapter is also under review for publication

in the following publication:

Scott, M. J. and Ghinea, G., Enriching the Self-Concept and Mindset of

Novice Programmers using Game-based Fantasy Role-Play: A Review of Existing

Games, British Journal of Educational Technology (Under Review), pp. 1–6, DOI:

10.1109/TE.2013.2288700

128

http://dx.doi.org/10.1109/TE.2013.2288700

8

Exploring the ‘Projective

Identity’ Hypothesis

It is hypothesised that the ‘projective identity’ which is created during a fantasy

role-play could help students to develop a stronger self-concept as a programmer.

Two versions of a debugging exercise were developed, with one incorporating

elements of fantasy role-play. This chapter discusses the outcome of a double-

blind parallel-group randomised trial which was used to test the hypothesis.

8.1 Introduction

Positive psychology claims that a reciprocal relationship exists between

achievement and programming self-concept (PSC) [Hua11], defined here as

“a person’s self-perceptions that are formed through experience with and

interpretations of one’s environment” in relation to computer programming

[MM11, p. 61]. Therefore, reinforcing this construct by offering well designed

learnihng experiences could lead to the emergence of more effective learners.

129

8.1 Introduction

However, it is not clear what practices could be applied in learning environments

for introductory programming courses to achieve this. Due to the increasireng

adoption of educational multimedia in such environments, it would seem sensible

to identify how such tools can be leveraged to enhance programming self-concept

effectively.

The use of fantasy role-play [Gee03, Gee14, HAB05] within a dramatic

narrative [Eri96] could be one such practice. It has demonstrated some qualitative

success in Space Mission: Ice Moon, enabling students to “think and act like

scientists” [DG07, p.4]. Among creative learning environments [RFK+09], a

similar approach can also be seen in GameStar Mechanic. There, novice designers

are immersed in a series of story-driven scenarios while they learn basic concepts

and skills before proceeding onto more practical design activities. While the latter

tool addresses games design, rather than programming, a similar approach could

effectively prepare students for creative programming activities, as in [Rep12]—

but conveying the preparatory material in a more timely and engaging manner

to avoid a fast pace. This is because fast paces can be uncomfortable for

some students, which is undesirable because of its potential impact on retention

[BMK09]. Thus, to what extent could the application of fantasy role-play

contribute to the development of programming self-concept?

During an exploration of learning in games, Gee [Gee03, Gee14] considered

the role of identity. A three-way relationship was proposed between: real-world

identity; virtual identity; and a mediating projective identity. It was argued that

the virtual and projective identities formed when immersed in a fantasy role could

reinforce the real-world identity relating to the activity of that role. During a

130

8.2 Tool Development

separate investigation of self-representation in virtual reality, Yee and Bailenson

[YB07] empirically demonstrated a somewhat similar phenomenon relating to

identity and self-beliefs: the Proteus Effect. Using virtual reality headsets

to immerse participants in a 3D virtual world under experimental conditions,

it was shown that manipulating the avatars of participants within the virtual

environment had some impact on their attitudes and behaviour. Subsequently,

some of this difference was maintained when measured a short time after the

experiment. However, the extensibility of this effect to other domains, such as

educational multimedia, is unclear.

If the phenomenon does extend to educational multimedia, it could have

significant implications for the design of learning environments and the

presentation of e-learning material. Thus, this paper describes an initial

experimental study, in which fantasy role-play is integrated into a prototype

virtual lab exercise that aims to enhance debugging skills. It then explores the

following research question: assuming an equal baseline, does the incorporation

of fantasy role-play in an e-learning activity increase its impact on programming

self-concept development for undergraduates enrolled on a programming course?

8.2 Tool Development

The e-learning activity was created by the author specifically for this study.

Because the review conducted in the previous chapter showed that this type

of activity was popular, the design drew inspiration from Logo Geometry [Pap80]

and Karel the Robot [BSRP05] and aimed to increase student confidence by

teaching how to identify and correct simple syntax and logic errors in snippets

131

8.2 Tool Development

of Java code. Students are first shown an instructional video within the tool,

explaining how to trace code to identify errors. A fragment of code containing

faulty instructions to navigate a maze is then displayed. Once a student has

identified and corrected the mistakes, an animation shows an object moving

through the maze, revealing whether all of the errors have been removed.

Advice is offered at various intervals, helping students to improve their ability in

analyzing faulty code and enabling them to identify common mistakes in their

own programs more readily. The interface is shown in Figure 8.1.

Figure 8.1: Learning to Trace Code.

In order to embed virtual and projective identities within the tool, elements

of fantasy role-play were incorporated. In this new version, students would select

an avatar, assuming the role of a computer systems specialist on an advanced

interstellar spaceship. In this role, students would program repair robots to

navigate the ship’s maintenance areas in order to fix all of the problems. A

132

8.3 Method

video is shown as the tool is launched, setting the scene, and several graphical

improvements were added to the user interface, as shown in Figure 8.2.

Figure 8.2: Integrating Fantasy Role-Play.

This version of the tool is almost functionally identical to the original. The

exercises are the same, requiring about 20 minutes to complete, however each

problem is recast into a narrative context. This is conveyed by characters who

relate the learning content, instructions and the story through dialogue. The

virtual environment is also updated with new graphics, similar to those in a

2D computer game. These changes were necessary to make the exercise more

immersive.

8.3 Method

A between-subjects experimental design was adopted due to the potential for

preference to bias the self-belief measure. The design consisted of a parallel-

group double-blind randomised trial, incorporating balanced allocation between

133

8.3 Method

two groups (1:1). Two versions of the virtual lab activity were compared, one

incorporating fantasy role-play (experimental condition) and an ablated version,

omitting elements of fantasy role-play (control condition). Scores were imputed

from a self-completed measurement of academic self-beliefs towards programming,

which were measured at pre-test and post-test. The difference between the two

groups were compared using an ANCOVA on the post-test scores, using pre-test

scores as a covariate.

8.3.1 Sample

An a priori power analysis in G*Power 3.1 showed that for a study of typical

significance (α = .05) attempting to detect a large effect (f = .5) [Coh92, Coh13],

a sample size of 34 would be sufficient to achieve acceptable power (1− β = .80).

A sample size of 36 undergraduate computing students was obtained for this

study.

The participants were recruited from a pool of students that had registered

interest online (http://www.p-shift.org) in April 2012. To be eligible, participants

had to be first or second year undergraduate students enrolled on programming

modules at the authors’ institution. Furthermore, they had to be aged 18 or

over. Although some details were omitted in order to practice blinding, each

participant provided informed consent.

8.3.2 Measurement

The same programming self-concept questions that were incorporated into the

measurement tool developed and presented in Chapter 5 was used. No other

134

8.3 Method

measurement instruments were used for this experiment as the focus is on a

single hypothesis.

8.3.3 Procedure

As participants registered interest in the experiment, they immediately completed

the online pre-test questionnaire. Once an appropriate number had signed up,

each confirmed their interest by email and they were assigned to one of two

groups, of equal size, and then emailed a link to download the relevant version of

the tool.

The allocation procedure was performed in Microsoft Excel 2007 (12.0 SP3).

First, the identity of each participant was obfuscated using an identification

number and arbitrarily allocated a row. The rows were then sorted according

to a RAND() value in a separate column. Then, the worksheet was divided into

two halves, representing each group.

Participants were free to complete the exercise and the online post-test

questionnaire within 10 days. Email reminders were sent after a week, two days

prior to the deadline, and on the day of the deadline. All participants completed

the post-test questionnaire within this period. Although this resulted in less

control over experimental conditions, it is more representative of how a virtual lab

exercise may be used by students in practice, thus enhancing ecological validity.

It should be noted, however, that no formal teaching (such as lectures, seminars,

or labs) occurred during the time period of the trial. Furthermore, while the pre-

test and post-test questionnaires contained the same items, the order in which

they were presented was randomised.

135

8.4 Results

Table 8.1: Descriptive Statistics for Each Group in the Experiment

Variable Mean Std Deviation Upper CI Lower CI

Experimental Group

Pre-Test ASC 1.7056 0.8411 1.2873 2.1239

Post-Test ASC 1.7443 0.8303 1.3313 2.1572

Control Group

Pre-Test ASC 1.5804 0.7807 1.2873 2.1239

Post-Test ASC 1.5991 0.7739 1.3313 2.1572
CI: Confidence Interval.

Table 8.2: Experimental Results (dv = Post-Test Programming Self-Concept)

Source of Variance SS df MS F p η2
p

Pre-Test ASC 21.872 1 21.872 5.679 .000 .999

Allocation .004 1 .004 4.181 .049 .112

Error .032 33 44.326
Adjusted Model R Squared = .998.

8.4 Results

The data was analyzed using PASW 18.0.3 for Windows. All cases were included

in the analysis, with any missing ASC values in the raw pre-test data being

replaced by the sample mean and any missing ASC values in the raw post-test

data being replaced by the allocation mean.

After the allocation, one-way ANOVAs demonstrated that no significant

differences existed in terms of pre-test ASC score (F [1, 34] = .214, p = .646, η2
p =

.006) or academic grade profile (F [1, 34] = .332, p = .568, η2
p = .010) between

the two groups. Descriptive statistics are shown in Table 8.1. An ANCOVA

examined the impact of fantasy role-play on developing programming self-

concept. Assumptions of normality, homogeneity of variance and homogeneity

136

8.5 Discussion

Table 8.3: Estimated Marginal Means (dv = Post-Test Programming Self-

Concept)

Group Mean Std Error Lower CI Upper CI

Experimental Group 1.682 .007 1.667 1.698

Control Group 1.661 .007 1.646 1.676
CI: Confidence Interval; Covariates: Pre-Test ASC = 1.643.

of regression were verified. The results are summarized in Table 8.2. Hence, after

controlling for pre-test scores, there was a significant difference (p < .05) in the

post-test ASC between the two groups, which constitutes a medium-to-large effect

size [Coh92, Coh13]. This difference can be seen more clearly in the estimated

marginal means, shown in Table 8.3. Based on the means presented above (and

assuming a baseline score of 1.643), the gain in programming self-concept for

those allocated to the fantasy role-play condition (2.4%) was greater than those

in the control condition (1.1%).

8.5 Discussion

Although a significant difference was detected (p < .05), the effect was lower

than predicted, resulting in low power (1− β = .54). This effect, estimated from

the η2
p value, being f = 0.355, and, estimated from the observed difference in

gain scores, being d = 0.619. These results support the notion that fantasy role-

play can enhance the development of self-concept, as shown by the gain scores in

Figure 8.3.

However, the impact had no direct practical relevance in that the small-scale

isolated exercise, in isolation, was not sufficient to produce a meaningful change in

137

8.6 Conclusion

Group

ExperimentalControl

A
ca

d
e

m
ic

 S
e

lf
-C

o
n

ce
p

t
G

a
in

 S
co

re

.12000

.10000

.08000

.06000

.04000

.02000

.00000

-.02000

10

Figure 8.3: A Box-Whisker Plot Illustrating the Gain Scores Within Each

Experimental Allocation.

programming self-concept. Nevertheless, if a small effect is present and it can be

sustained, then it may result in a more practically significant gain over multiple

tasks. Thus, a longitudinal trial is proposed as future work. Assuming that the

observed gain remains consistent (f = .031), then perhaps eight activities could

produce a more meaningful change (f ≈ .253).

8.6 Conclusion

A prototype of a debugging exercise that incorporates elements of fantasy role-

play has been shown to strengthen programming self-concept to a greater extent

than a conventional approach. This supports the hypothesis that projective

identities enhance the self-concept development of novice programmers on a

computing course. However, the difference was only of medium size and neither

138

8.6 Conclusion

condition had a practically significant impact. Due to the limited scope of this

initial study, it remains unclear whether such a modest gain could be further

enhanced over time and then maintained. Thus, additional longitudinal study is

appropriate. Moreover, qualitative enquiry is necessary to reveal how the fantasy

role-play could be improved for greater impact. Future research should anticipate

medium effects [Coh92, Coh13].

Declaration

Some of the work presented in this chapter can also be found in the following

publication:

Scott, M. J. and Ghinea, G., Integrating narrative reinforcement into the

Programming Lab: Exploring the ‘Projective Identity’ Hypothesis, Proceedings

of 43rd ACM Technical Symposium on Computer Science Education (Denver,

CO, USA), March 2013, pp. 119–122

139

9

Conclusion

This final chapter of the thesis re-examines the key findings from the research

programme and emphasises the key contributions made to the field of computing

education. A short retrospective addressing the limitations of this programme is

presented. Then the implications for theory and practice are described, leading

into a brief discussion on avenues for further research.

9.1 Overview

It can be notoriously difficult to teach computer programming to undergraduate

students. This is, to some extent, because many students do not develop strong

beliefs in themselves and thereby do not readily engage in self-regulated deliberate

practice. Thus, close support and encouragement is needed to help maintain

students’ level of practice. Such support, however, is not always scalable and

so there is a need for alternative formats which are more scalable. Educational

multimedia presents itself as one such viable format; however, in order to proceed

140

9.1 Overview

with the design and creation of new multimedia-based support tools, a clear

understanding of student practice and the relative affordances of multimedia

technology is needed.

Games have been evangelised as a source of innovation in education, with

a range of hypothesised applications and benefits including the enrichment

of self-beliefs. Thus, the research presented in this doctoral thesis aimed to

address the challenge by, firstly, extending our current understanding of the self-

beliefs of novice programmers and then by, secondly, investigating the impact

of using games-based fantasy role-play to enrich these self-beliefs. The work

was, broadly speaking, conceptually modelled using the Control Value Theory

of Achievement Emotions and focused on four key constructs derived from the

model: programming self-concept; programming aptitude mindset; programming

anxiety; and amount of programming practice.

An initial challenge with this work was the maturity of the computing

education research literature compared to similar fields such as physics and

mathematics. Notably, from the initial literature review, it was not clear

whether or not a domain-focused or general educational theory should be applied.

Therefore, the first study questioned whether a domain-specific approach would

be needed by comparing a self-belief situated in the programming domain with a

self-belief in the intelligence domain. This work revealed that the domain-specific

approach had greater predictive utility.

However, this led into another challenge. It became clear that a domain-

specific measurement instruments would be needed for a programming-specific

approach to self-belief research. As such, the second study proposed a

141

9.1 Overview

novel measurement instrument based on items drawn from several pre-existing

instruments. These modifications were adapted and re-validated in the context of

three cohorts of programming students, revealing adequate psychometric support.

Examination of the relationships provided empirical support for the basic

elements of the Control Value Theory of Achievement Emotions. Notably, that

higher anxiety lowered practice. However, of some concern, was that a comparison

between the web programming course ran in 2011-12 and the robot-centred course

ran in 2012-13 cohort did not reveal any significant differences in terms of self-

concept or anxiety. Additionally, amount of practice was shown not to be the

sole element of programming success, revealing no significant relationship between

code readability or code sophistication.

Given that no significant differences were found, the potential of games-based

fantasy role-play presents itself as a compelling alternative (or complement) to the

use of personal robots in a robot-centred introductory course. However, despite

the promise of games, the claims made by many serious game evangelists, there is

limited empirical evidence. In particular, there are few studies which empirically

explore the impact of games on students’ academic beliefs. To see if this was the

case within the computing education research literature, a review and detailed

analysis of programming games was conducted. This revealed that, indeed, there

was little empirical evaluation of the effect of games on academic beliefs in the

programming context. Additionally, the programming games curated for the

review seldom integrated key features for enhancing such beliefs.

The final experiment presented in the thesis aimed to address this lack of

integration of features for enhancing student self-beliefs into programming games.

142

9.2 Key Contributions

However, as a result of the lack of existing programming games with suitable

qualities, a new programming game embedding some of the principles associated

with the enrichment of self-concept was implemented. An alternative version

for comparison was also created. The results of a randomised trial showed a

modest, but statistically significant, impact on programming self-concept. Thus,

promising that games-based fantasy role-play can be used as a means to improve

student self-beliefs in the programming context. However, that its effects should

not be overestimated.

9.2 Key Contributions

Several contributions to discourse in computing education have been made as a

result of the work carried out in this thesis. Each claim refers to its respective

chapter for ease of reference and is listed as follows:

Claim IV-I: It is important to use domain contexts and domain-

specific measurement in self-belief research.

Claim V-I: The Self-Belief Enrichment Questionnaire offers a valid

approach to measurement in programming self-belief research.

Claim V-II: The Control-Value Theory of Achievement Emotion

is an appropriate conceptual framework for the investigation of self-

beliefs and experiences of novice programmers.

Claim VI-I: Robot-centred programming courses demonstrate no

benefit over web programming courses in terms of programming self-

concept and programming anxiety.

143

9.3 Implications for Practice

Claim VI-II: Instructional strategies centred upon robots can be used

to enrich both the quality and the quantity of programming practice.

Claim VIII-I: Instructional strategies that incorporate games-based

fantasy role-play will (modestly) enhance programming self-concept.

9.3 Implications for Practice

The claims derived from the work presented in this thesis suggest several

implications for educational practice. The study presented in Chapter 4 shows

that a domain-specific mindset construct is a better predictor of programming

practice compared to a domain-general construct. As such, educational

interventions that target more general constructs could have a sub-optimal

impact. Therefore, such interventions should include domain-specific elements.

For example, when providing feedback to students, it is important to tailor

such feedback to include programming-specific aspects. The study presented in

Chapter 5 shows that some aspects of the Control-Value Theory of Achievement

Emotions are relevant within the programming education context. In particular,

that programming anxiety has an inhibiting influence on time spent practising

programming. As such, it is important to minimise programming anxiety. The

study also shows that programming self-concept and programming aptitude

mindset are correlated with such anxiety. Consequently, the application of

self-concept and mindset interventions is to be encouraged. Some methods for

achieving this include providing motivating feedback (as described by [CCD+10])

alongside other strategies such as soft-scaffolding to ensure challenges remain in

144

9.4 Implications for the Field

a students’ zone of proximal development [SK07b] while designing the learning

experience so it evokes a feeling of pride [GCF+10]. The study presented in

Chapter 6 shows that practice can still be improved in spite of the challenges

associated with anxiety. The students using personal robots practiced more and

wrote more sophisticated code. This suggests that an engaging learning context

alongside a immediate visual feedback can improve student engagement as well as

student outcomes. One such environment which can provide this is game-based

fantasy role-play. However, the small effect size found in the trial of the tool

presented in Chapter 8 suggests that these types of tool may need to be used

consistently across a course rather than as a one-off learning activity.

9.4 Implications for the Field

The work presented in this thesis clearly outlines a need for validated domain-

specific research instruments. This is because the work presented in Chapter

4 demonstrates that domain-specific construct can have stronger relationships

with key variables of interest than a domain-general construct. While this does

not invalidate previous findings that did not use validated instruments (e.g., the

trend found in [MD04]), the interpretation of individual results must be made

with care, especially where the effect sizes are small. This is because it may

not be clear what is being measured, the reliability of such instruments may not

have been assured, and the effect size may be an under-estimation compared to

its domain-specific analogue. It is, therefore, hoped that the recommendations

made by Tew and Dorn [TD13] are adopted and that researchers in the field

assess their research instruments in line with the method presented in Chapter 5.

145

9.5 Limitations

The study presented in Chapter 5 demonstrates that the Control-Value

Theory of Achievement Emotion is an appropriate conceptual framework for the

investigation of programming anxiety. However, there are many opportunities

to build on this work in the programming context; both, in terms of studying a

wider range of emotions and in terms of studying a wider range of antecedents.

Additionally, the existing model based on self-concept and mindset can be applied

to different range of problems (i.e., different dependent variables) by extending

the CS1 self-belief questionnaire.

The final experiment presented in Chapter 8 suggests further work is needed

on improving the design and deployment of games-based fantasy role-plays in

the programming context. However, the analysis of games presented in Chapter

7 raises some concern about the small number of programming games which

have been rigorously evaluated; or even just designed to help overcome some

of challenges faced by programming students. While there is evidence for the

efficacy of such games for learning and motivation in related areas ??, it would be

pragmatic for practitioners in the field to focus their designs and evaluation on the

specific challenges faced by students in introductory programming. For example,

the development of non-constructive self-beliefs (as highlighted in Chapter 4) and

their subsequent impact on learning behaviours (as implied in Chapter 5).

9.5 Limitations

In retrospect, there are a range of limitations to this research. The use of a

convenience sample during the early stages of the research (notably, in Chapter 4)

has resulted in lost opportunities for further insight. While this does not threaten

146

9.5 Limitations

the overall validity of the findings, it limited the exploration to relationships

between variables and restricted such exploration to only between those variables

with a full range of responses. As such, interesting questions of a demographic

nature, such as the proportion of fixed mindsets in a typical student cohort had

to be excluded.

Throughout the research, a self-report measure of programming practice has

been used. This was required because no systematic approach to measuring was

available at the institution. Caution must be advised when interpreting such

measures because of the potential for biases (e.q. acquiescence bias) [DGV02a].

Statistical power has been a concern throughout the work because of the

challenges associated with recruiting a large and representative sample of

introductory programming students. Of particular note is the proportion of

female students in the cohort which compromised the power of test between

certain variables (i.e., the effect sizes for differences in gender were as high as

0.3 in Chapter 6 but were non-significant, potentially being Type-II errors).

Additionally, involving students in complex experiences, such as the trial

described in Chapter 8, was particularly difficult. Only a small sample of 36

students was obtained. This resulted in insufficient power to warrant a timely

replication attempt.

Additionally the focus of this research was quantitative methods, excluding

opportunities to gather potentially useful insight on the issues of self-beliefs. This

is largely due to the author’s lack of previous experience using qualitative methods

and significant investment in time which was required to learn educational and

measurement theory. During the initial planning of the research programme,

147

9.6 Future Directions

this was justified on the basis that a lot of qualitative work is already being

conducted in the area of self-beliefs and student emotions within the computing

education research literature. However, there is little in the context of designing

programming games. Participatory design would likely improve the experimental

game presented in Chapter 8.

9.6 Future Directions

In order to overcome some of the limitations of the research, there are several

future directions. Firstly, there is a need to conduct a longitudinal study on

the impact of games-based fantasy role-play, covering a broader range of self-

belief constructs. This is because it is not clear whether there will be interaction

effects, whether the modest observed effect will stack, whether it is the result

of acquiescence bias or a novelty effect, or whether there may be a habituation

effect which arises after a certain period of time. Secondly, the incorporation

of electronic worksheets and automatic marking systems into future studies

(e.g., [SFSR13, SDR+15]) would enable improved measurement of programming

practice. This would provide several advantages over a self-report measure, as it

would provide breakdowns of programming habits that are free of acquiescence

bias and could be adapted to provide insight into the quality of student practice.

Thirdly, additional work is needed to support the cross-cultural validity of the

self-belief measurement instrument by trialling it in other institutions. Such trails

could be tested for factorial validity and invariance, thereby eliciting support for

the tool to be used by a broader population. Fourthly, additional qualitative

148

9.6 Future Directions

work would be useful in shaping the design of future game-based fantasy role-

playing scenarios. Such participatory designs and human-centred approach would

consequently help the experimental prototype to advance beyond the laboratory

and into a usable product.

Further studies could also be conducted to extend the conceptual framework.

Most notably, variables associated with the value component of the theory could

be introduced in order to improve predictive utility. Furthermore, only anxiety

was considered in this thesis so a broader range of achievement and learning

emotions could be added. Further improvements could include integration with

core self-evaluation theory. This is because many of its constructs serve as

antecedents (and formative correlates) to self-concept and their inclusion would

be useful to help monitor the impacts of interventions in their respective aspects.

Additional variables could also be included in the framework in order to support

research into gender, racial, and cultural differences in line with recent efforts to

broaden participation (e.g., [CHH+11, GEME14, RRZMndM15]).

149

References

[Abt87] Abt, C. C., Serious games, University

Press of America, 1987. 108

[AL13] Ahadi, A. and Lister, R., Geek Genes,

Prior Knowledge, Stumbling Points and

Learning Edge Momentum: Parts of

the One Elephant?, Proceedings of the

Ninth Annual International ACM Confer-

ence on International Computing Educa-

tion Research (New York, NY, USA), 2013,

pp. 123–128. 13

[Ali13] Alimisis, D., Educational Robotics: Open

Questions and New Challenges, Themes in

Science & Technology Education, 6 (2013),

pp. 67–71. 87

[ALM+10] Adams, D. B., Louis, R., Morin, B., Cer-

rato, J., Keidel, J., Vincent, J., Mer-

rill, J., Rampelli, D., Gieskes, K., Fel-

lows, S., et al., Explore-create-present: A

project series for CS, Proceedings of the

ASEE North Central Sectional Conference

(ASEE10), 2010, pp. 2B.1–2B.5. 86

[ALP10] Apiola, M., Lattu, M., and Pasanen,

T. A., Creativity and intrinsic motiva-

tion in computer science education: exper-

imenting with robots, Proceedings of the fif-

teenth annual conference on Innovation and

technology in computer science education,

2010, pp. 199–203. 87

[AMM+12] Adams, D. M., Mayer, R. E., MacNamara,

A., Koenig, A., and Wainess, R., Narrative

games for learning: Testing the discovery

and narrative hypotheses, Journal of Edu-

cational Psychology, 104 (2012), p. 235. 109

[AS12] Anderson, T. and Shattuck, J., Design-

Based Research A Decade of Progress

in Education Research?, Educational re-

searcher, 41 (2012), pp. 16–25. 27

[BA02] Burnham, K. P. and Anderson, D. R.,

Model selection and multimodel infer-

ence: a practical information-theoretic ap-

proach, Springer, 2002. 60

[Ban77] Bandura, A., Self-efficacy: Toward a uni-

fying theory of behavioral change, Psycho-

logical Review, 84 (1977), pp. 191 – 215.

69

[BB03] Biesta, G. and Burbules, N. C., Pragma-

tism and educational research, Rowman &

Littlefield Lanham, MD, 2003. 32, 33

[BC07] Bennedsen, J. and Caspersen, M. E., Fail-

ure rates in introductory programming,

SIGCSE Bulletin, 39 (2007), pp. 32 – 36.

11

[BDS08] Bornat, R., Dehnadi, S., and Simon, Men-

tal models, consistency and programming

aptitude, Proceedings of the tenth confer-

ence on Australasian computing education-

Volume 78, 2008, pp. 53–61. 14

[BED+03] Barros, J. P., Estevens, L., Dias, R., Pais,

R., and Soeiro, E., Using lab exams to en-

sure programming practice in an introduc-

tory programming course, ACM SIGCSE

Bulletin, 35 (2003), pp. 16–20. 91

[Bee02] Beer, J. S., Implicit self-theories of shy-

ness, Journal of Personality and Social Psy-

chology, 83 (2002), pp. 1009–1024. 48

[BH95] Benjamini, Y. and Hochberg, Y., Control-

ling the false discovery rate: a practical

and powerful approach to multiple testing,

Journal of the Royal Statistical Society. Se-

ries B (Methodological), 57 (1995), pp. 289–

300. 56

[BKH01] Bartlett, J. E., Kotrlik, J. W., and

Higgins, C. C., Organizational Research:

Determining Appropriate Sample Size in

Survey Research, Information Technology,

Learning, and Performance, 19 (2001),

pp. 43 – 50. 73

[BL01] Byrne, P. and Lyons, G., The effect of

student attributes on success in program-

ming, ACM SIGCSE Bulletin, 33 (2001),

pp. 49–52. 13

[BLR+13] Beavers, A. S., Lounsbury, J. W.,

Richards, J. K., Huck, S. W., Skolits,

G. J., and Esquivel, S. L., Practical con-

siderations for using exploratory factor

analysis in educational research, Practi-

cal Assessment, Research & Evaluation, 18

(2013), p. 2. 54

[BM05] Beaubouef, T. and Mason, J., Why the

High Attrition Rate for Computer Science

Students: Some Thoughts and Observa-

tions, SIGCSE Bulletin, 37 (2005), pp. 103

– 106. 2, 11

[BMK09] Barker, L. J., McDowell, C., and Kala-

har, K., Exploring Factors That In-

fluence Computer Science Introductory

Course Students to Persist in the Ma-

jor, SIGCSE Bull., 41 (2009), pp. 153–157,

DOI: 10.1145/1539024.1508923. 130

[Bog07] Bogost, I., Persuasive games: The expres-

sive power of videogames, Mit Press, 2007.

111, 114

150

http://dx.doi.org/10.1145/1539024.1508923

REFERENCES

[Bor11] Bornat, R., Some problems of

teaching (learning) first-year pro-

gramming (plus a glimmer of

hope), Available from: http://www-

new1.heacademy.ac.uk/assets/Documents/

subjects/ics/11th some%20 problems teach

ing first-year programming.pdf, 2011. 2

[Bor14] Bornat, R., Camels and humps:

a retraction, Available from:

http://eis.sla.mdx.ac.uk/staffpages/r bornat/

papers/camel hump retraction.pdf, 2014.

15

[Bou86] Boulay, B. D., Some difficulties of learning

to program, Journal of Educational Com-

puting Research, 2 (1986), pp. 57–73. 14

[Boy90] Boyer, E. L., Scholarship Reconsidered:

Priorities of the Professoriate, Carnegie

Foundation for the Advancement of Teach-

ing, NJ, USA, 1990. 27, 28

[BP04] Bierre, K. J. and Phelps, A. M., The use

of MUPPETS in an introductory java pro-

gramming course, Proceedings of the 5th

conference on Information technology edu-

cation, 2004, pp. 122–127. 119

[BS03] Bong, M. and Skaalvik, E., Academic Self-

Concept and Self-Efficacy: How Different

Are They Really?, Educational Psychology

Review, 15 (2003), pp. 1 – 40. 69

[BSCH14] Brown, N. C., Sentance, S., Crick, T.,

and Humphreys, S., Restart: The resur-

gence of computer science in UK schools,

ACM Transactions on Computing Educa-

tion (TOCE), 14 (2014), p. 9. 10

[BSRP05] Bergin, J., Stehlik, M., Roberts, J., and

Pattis, R., Karel J Robot: A gentle in-

troduction to the art of object-oriented

programming in Java, Dream Songs Press,

2005. 125, 131

[BT95] Barr, R. B. and Tagg, J., From teaching to

learning—A new paradigm for undergrad-

uate education, Change: The magazine of

higher learning, 27 (1995), pp. 12–26. 2

[BTD07] Blackwell, L., Trzesniewski, K., and

Dweck, C. S., Implicit Theories of Intelli-

gence Predict Achievement Across an Ado-

lescent Transition: A Longitudinal Study

and an Intervention, Child Development, 78

(2007), pp. 246 – 263. 67

[Car06a] Carlsson, S. A., Towards an information

systems design research framework: A

critical realist perspective, Proceedings of

the First International Conference on De-

sign Science Research in Information Sys-

tems and Technology (Claremont, CA),

2006, pp. 192–212. 26

[Car06b] Carter, L., Why students with an appar-

ent aptitude for computer science don’t

choose to major in computer science, ACM

SIGCSE Bulletin, 38 (2006), pp. 27–31. 11

[Cas08] Castronova, E., Synthetic worlds: The

business and culture of online games, Uni-

versity of Chicago press, 2008. 108

[CB07] Caspersen, M. E. and Bennedsen, J.,

Instructional design of a programming

course: a learning theoretic approach, Pro-

ceedings of the third international workshop

on Computing education research, 2007,

pp. 111–122. 49

[CBM+12] Connolly, T. M., Boyle, E. A., MacArthur,

E., Hainey, T., and Boyle, J. M., A sys-

tematic literature review of empirical ev-

idence on computer games and serious

games, Computers & Education, 59 (2012),

pp. 661–686. 109, 116, 125

[CCD+10] Cutts, Q., Cutts, E., Draper, S.,

O’Donnell, P., and Saffrey, P., Manipulat-

ing mindset to positively influence intro-

ductory programming performance, Pro-

ceedings of the 41st ACM technical sympo-

sium on Computer science education, 2010,

pp. 431–435. 21, 49, 51, 63, 64, 67, 107,

144

[CDP00] Cooper, S., Dann, W., and Pausch, R., Al-

ice: a 3-D tool for introductory program-

ming concepts, Journal of Computing Sci-

ences in Colleges, 15 (2000), pp. 107–116.

116

[Cha13] Chalmers, A. F., What is this thing called

science?, Hackett Publishing, 2013. 28

[CHH+11] Crutchfield, O. S. L., Harrison, C. D.,

Haas, G., Garcia, D. D., Humphreys,

S. M., Lewis, C. M., and Khooshabeh,

P., Berkeley Foundation for Opportu-

nities in Information Technology: A

Decade of Broadening Participation,

ACM Transactions on Computing Edu-

cation, 11 (2011), pp. 15:1–15:24, DOI:

10.1145/2037276.2037279. 149

[CL96] Cordova, D. I. and Lepper, M. R., Intrin-

sic motivation and the process of learning:

Beneficial effects of contextualization, per-

sonalization, and choice, Journal of educa-

tional psychology, 88 (1996), p. 715. 108

[CLB07] Caspersen, M. E., Larsen, K. D., and

Bennedsen, J., Mental models and pro-

gramming aptitude, ACM SIGCSE Bul-

letin, 39 (2007), pp. 206–210. 13

[Cle01] Clear, T., Research paradigms and the na-

ture of meaning and truth, ACM SIGCSE

Bulletin, 33 (2001), pp. 9–10. 31

[Cle13] Clear, T., Doctoral work in computing ed-

ucation research: beyond experimental de-

signs, ACM Inroads, 4 (2013), pp. 28–30.

xi, 36

151

http://dx.doi.org/10.1145/2037276.2037279

REFERENCES

[Coh92] Cohen, J., A power primer, Psychological

bulletin, 112 (1992), p. 155. 61, 134, 137,

139

[Coh13] Cohen, J., Statistical power analysis for

the behavioral sciences (Revised Edition),

Academic press, 2013. 134, 137, 139

[Cou12] Court, S., UK Universities and College

Union, 2012. 22, 107

[CSH07] Connolly, T. M., Stansfield, M., and

Hainey, T., An application of games-

based learning within software engineer-

ing, British Journal of Educational Technol-

ogy, 38 (2007), pp. 416–428. 109

[CSH08] Connolly, T., Stansfield, M., and Hainey,

T., Development of a general framework

for evaluating games-based learning, Pro-

ceedings of the 2nd European conference on

games-based learning, 2008, pp. 105–114.

117

[CV13] Cappelleri, D. and Vitoroulis, N., The

Robotic Decathlon: Project-Based Learn-

ing Labs and Curriculum Design for an

Introductory Robotics Course, Education,

IEEE Transactions on, 56 (2013), pp. 73–

81, DOI: 10.1109/TE.2012.2215329. 88

[D+94] Dempsey, J. V. et al., Instructional

Gaming: Implications for Instruc-

tional Technology, Available from:

http://eric.ed.gov/?id=ED368345, 1994.

108

[DB06] Dehnadi, S. and Bornat, R., The

camel has two humps, Available from:

http://www.eis.mdx.ac.uk/research/PhD

Area/saeed/paper1.pdf, 2006. 15

[DD78] Diener, C. and Dweck, C., An analysis of

learned helplessness: Continuous changes

in performance, strategy, and achieve-

ment cognitions following failure, Journal

of Personality and Social Psychology, 36

(1978), pp. 451–462. 48, 51, 62

[DeV12] DeVellis, R. F., Scale Development: The-

ory and Applications, 3rd ed., Sage: Lon-

don, 2012. 66, 71, 81

[DF06] De Freitas, S. I., Using games and simu-

lations for supporting learning, Learning,

media and technology, 31 (2006), pp. 343–

358. 108

[DG07] Daanen, H. and Grant, L., Space Mission:

Ice Moon, ACM SIGGRAPH 2007 educa-

tors program, 2007, p. 19. 115, 130

[DGV02a] Donaldson, S. I. and Grant-Vallone, E. J.,

Understanding self-report bias in or-

ganizational behavior research, Journal

of Business and Psychology, 17 (2002),

pp. 245–260. 55, 147

[DGV02b] Donaldson, S. I. and Grant-Vallone, E. J.,

Understanding self-report bias in or-

ganizational behavior research, Journal

of Business and Psychology, 17 (2002),

pp. 245–260. 104

[Dij89] Dijkstra, E. W., A debate on teaching

computer science: on the cruelty of re-

ally teaching computer science, Communi-

cations of the ACM, 32 (1989), pp. 1398–

1404. 14, 49

[DM08] Dweck, C. S. and Master, A., Self-theories

motivate self-regulated learning, Motiva-

tion and self-regulated learning: Theory, re-

search, and applications, 2008, pp. 31–51.

48, 67

[Don07] Dondlinger, M. J., Educational video game

design: A review of the literature, Journal

of applied educational technology, 4 (2007),

pp. 21–31. 108

[DSN+11] Deterding, S., Sicart, M., Nacke, L.,

O’Hara, K., and Dixon, D., Gamifica-

tion. using game-design elements in non-

gaming contexts, CHI’11 Extended Ab-

stracts on Human Factors in Computing

Systems, 2011, pp. 2425–2428. 108

[DT13] Dorn, B. and Tew, A. E., Becoming ex-

perts: Measuring attitude development in

introductory computer science, Proceeding

of the 44th ACM technical symposium on

Computer science education (SIGCSE ’13),

2013, pp. 183 – 188. 67

[Dwe99] Dweck, C. S., Self-Theories: Their Role

in Motivation, Personality, and Develop-

ment, Psychology Press, Philadelphia, PA,

1999. ix, 16, 17, 20, 48, 54, 67, 70

[DWN13] Dormann, C., Whitson, J. R., and Neu-

vians, M., Once More With Feeling Game

Design Patterns for Learning in the Affec-

tive Domain, Games and Culture, 6 (2013),

pp. 215–237. 112, 115

[EAK08] Erodogan, Y., Aydin, E., and Kabaca, T.,

Exploring the psychological predictors of

programming achievement, Journal of In-

structional Psychology, 35 (2008), pp. 264–

270. 13

[EFG13] Esper, S., Foster, S. R., and Gris-

wold, W. G., CodeSpells: embodying the

metaphor of wizardry for programming,

Proceedings of the 18th ACM conference on

Innovation and technology in computer sci-

ence education, 2013, pp. 249–254. 116

[EKTR93] Ericsson, K. A., Krampe, R., and Tesch-

Römer, C., The Role of Deliberate Prac-

tice in the Acquisition of Expert Perfor-

mance, Psychological Review, 100 (1993),

pp. 363–394. 2, 11, 13, 62, 102

152

http://dx.doi.org/10.1109/TE.2012.2215329

REFERENCES

[EN07] Egenfeldt-Nielsen, S., Third generation

educational use of computer games, Jour-

nal of Educational Multimedia and Hyper-

media, 16 (2007), pp. 263–281. 108

[Eri96] Erion, P., Drama in the classroom: cre-

ative activities for teachers, parents &

friends, Lost Coast Press, 1996. 130

[EW95] Eccles, J. S. and Wigeld, A., In the mind

of the actor: The structure of adolescents’

achievement task values and expectancy-

related beliefs, Personality and Social Psy-

chology Bulletin, 21 (1995), pp. 215–225.

69

[FB09] Fox, J. and Bailenson, J. N., Virtual self-

modeling: The effects of vicarious rein-

forcement and identification on exercise

behaviors, Media Psychology, 12 (2009),

pp. 1–25. 111, 113

[FCSC10] Freyne, J., Coyle, L., Smyth, B., and Cun-

ningham, P., Relative status of journal

and conference publications in computer

science, Communications of the ACM, 53

(2010), pp. 124–132. 31

[fE13] for Education, D., National curriculum

from September 2014, 10

[FL81] Fornell, C. and Larcker, D. F., Evaluat-

ing structural equation models with unob-

servable variables and measurement error,

Journal of marketing research, 18 (1981),

pp. 39–50. 78

[FM02] Fagin, B. S. and Merkle, L., Quantitative

Analysis of the Effects of Robots on In-

troductory Computer Science Education,

ACM Journal of Educational Resources in

Computing, 2 (2002), pp. 1–18. 87, 88

[FO05] Froyd, J. E. and Ohland, M. W., Inte-

grated engineering curricula, Journal of

Engineering Education, 94 (2005), pp. 147–

164. 92

[Fro07] Frome, J., Eight Ways Videogames Gen-

erate Emotion, Proceedings of the 2007

DiGRA International Conference: Situated

Play, September 2007, pp. 831–835. 112,

115

[FT06] Fletcher, J. and Tobias, S., Using com-

puter games and simulations for instruc-

tion: A research review, Proceedings of the

Society for Advanced Learning Technology

Meeting, 2006. 108

[Fur12] Furber, S., Shut Down or Restart? The

Way Forward for Computing in UK

Schools, The Royal Society, 2012. 10

[FVC09] Ferla, J., Valcke, M., and Cai, Y., Aca-

demic Self-Efficacy and Academic Self-

Concept: Reconsidering Structural Rela-

tionships, Learning and Individual Differ-

ences, 19 (2009), pp. 499 – 505. 49, 69

[Gar06] Gardner, H., Multiple intelligences: New

horizons, Basic Books, 2006. 48

[GC02] Gürer, D. and Camp, T., An ACM-W

Literature Review on Women in Comput-

ing, SIGCSE Bull., 34 (2002), pp. 121–127,

DOI: 10.1145/543812.543844. 90

[GCF+10] Goetz, T., Cronjaeger, H., Frenzel, A. C.,

Lüdtke, O., and Hall, N. C., Academic

self-concept and emotion relations: Do-

main specificity and age effects, Contem-

porary Educational Psychology, 35 (2010),

pp. 44–58. 18, 21, 107, 115, 145

[Gee03] Gee, J. P., What video games have to

teach us about learning and literacy, Com-

puters in Entertainment (CIE), 1 (2003),

pp. 20–20. 109, 113, 116, 130

[Gee14] Gee, J. P., What video games have to

teach us about learning and literacy,

Macmillan, 2014. 109, 112, 114, 116, 130

[Gei94] Geitz, R., Concepts in the classroom, pro-

gramming in the lab, ACM SIGCSE Bul-

letin, 26 (1994), pp. 164–168. 91

[GEM13] Girard, C., Ecalle, J., and Magnan, A., Se-

rious games as new educational tools: how

effective are they? A meta-analysis of re-

cent studies, Journal of Computer Assisted

Learning, 29 (2013), pp. 207–219. 109, 125

[GEME14] Guzdial, M., Ericson, B., Mcklin, T., and

Engelman, S., Georgia Computes! An In-

tervention in a US State, with Formal

and Informal Education in a Policy Con-

text, ACM Transactions on Computing Ed-

ucation, 14 (2014), pp. 13:1–13:29, DOI:

10.1145/2602488. 149

[GL+94] Guba, E. G., Lincoln, Y. S., et al., Com-

peting paradigms in qualitative research,

Handbook of qualitative research, 2 (1994),

pp. 163–194. 31

[GMB03] Guay, F., Marsh, H. W., and Boivin,

M., Academic self-concept and academic

achievement: Developmental perspective

on their causal ordering, Journal of Edu-

cational Psychology, 95 (2003), pp. 124 –

136. 70

[Gov12] Gove, M., Digital Literacy and the Future

of ICT in Schools Presentation at the

British Educational Training and Tech-

nology (BETT) Show, Available from:

http://www.education.gov.uk/inthenews/

speeches/a00201868/michael-gove-speech-

at-the-bett-show-2012, June 2012. 10

[GRD12] Good, C., Rattan, A., and Dweck, C. S.,

Why do women opt out? Sense of belong-

ing and women’s representation in math-

ematics, Journal of personality and social

psychology, 102 (2012), pp. 700–717. 48

153

http://dx.doi.org/10.1145/543812.543844
http://dx.doi.org/10.1145/2602488

REFERENCES

[Gre06] Gregor, S., The nature of theory in infor-

mation systems, MIS Quarterly, 30 (2006),

pp. 611–642. 35

[Gre09] Gregor, S., Building Theory in the Sci-

ences of the Artificial, Proceedings of the

4th International Conference on Design Sci-

ence Research in Information Systems and

Technology (New York, NY, USA), 2009,

pp. 4:1–4:10. 35

[GS90] Gigerenzer, G. and Swijtink, Z., The em-

pire of chance: How probability changed

science and everyday life, vol. 12, Cam-

bridge University Press, 1990. 42

[GS04] Gibbs, G. and Simpson, C., Conditions

under which assessment supports students

learning, Learning and teaching in higher

education, 1 (2004), pp. 3–31. 16, 91

[GS12] Gaydos, M. J. and Squire, K. D., Role

playing games for scientific citizenship,

Cultural Studies of Science Education, 7

(2012), pp. 821–844. 108

[Guz11] Guzdial, M., From science to engineering:

Exploring the Dual Nature of Comput-

ing Education Research, Communications

of the ACM, 54 (2011), pp. 37–39. 2, 11

[HAB05] Habgood, M., Ainsworth, S., and Benford,

S., Endogenous fantasy and learning in

digital games, Simulation & Gaming, 36

(2005), pp. 483–498. 108, 130

[Han00] Hans, T. A., A meta-analysis of the effects

of adventure programming on locus of con-

trol, Journal of contemporary psychother-

apy, 30 (2000), pp. 33–60. 112, 115

[Hat09] Hattie, J., Visible learning: A synthesis of

over 800 meta-analyses relating to achieve-

ment, Routledge, 2009. 12

[Hay05] Hays, R. T., The effectiveness of instruc-

tional games: A literature review and dis-

cussion, Tech. report, DTIC Document,

2005. 108

[HBBA10] Hair, J., Black, W., Babin, B., and Ander-

son, R., Multivariate Data Analysis, Sev-

enth Edition, Psychology Press, NJ, USA,

2010. xi, 56, 57, 72, 73, 75, 77, 78, 81

[HCSB11] Hainey, T., Connolly, T. M., Stansfield,

M., and Boyle, E. A., Evaluation of a game

to teach requirements collection and anal-

ysis in software engineering at tertiary ed-

ucation level, Computers & Education, 56

(2011), pp. 21–35. 108, 109

[HH+11] Hilton, M., Honey, M. A., et al., Learning

science through computer games and sim-

ulations, National Academies Press, 2011.

108

[HK07] Hayes, A. F. and Krippendorff, K., An-

swering the call for a standard reliability

measure for coding data, Communication

methods and measures, 1 (2007), pp. 77–89.

95, 127

[HR97] Heron, J. and Reason, P., A participa-

tory inquiry paradigm, Qualitative inquiry,

3 (1997), pp. 274–294. 32, 34, 35

[Hua11] Huang, C., Self-Concept and Academic

Achievement: A Meta-Analysis of Longi-

tudinal Relations, Journal of School Psy-

chology, 49 (2011), pp. 505 – 528. 18, 129

[Hug04] Huggard, M., Programming Trauma: Can

it be Avoided?, Paper presented at the BCS

Conference on Grand Challenges in Com-

puting: Education, 2004, p. 50. 2, 12, 67

[Hui86] Huizinga, J., Homo Ludens Ils 86, Rout-

ledge, 1986. 108

[JB01] Judge, T. A. and Bono, J. E., Rela-

tionship of core self-evaluations traitsself-

esteem, generalized self-efficacy, locus of

control, and emotional stabilitywith job

satisfaction and job performance: A meta-

analysis, Journal of applied Psychology, 86

(2001), p. 80. 114

[JDW10] Job, V., Dweck, C. S., and Walton, G. M.,

Ego depletion—Is it all in your head?

Implicit theories about willpower affect

self-regulation, Psychological Science, 21

(2010), 48

[Jen01] Jenkins, T., Teaching Programming: A

Journey from Teacher to Motivator, Pro-

ceedings of the 2nd HEA Conference for the

ICS Learning and Teaching Support Net-

work (London, UK), July 2001, pp. 53–58.

11, 12, 15, 47, 86

[Jen02] Jenkins, T., On the difficulty of learn-

ing to program, Proceedings of the 3rd An-

nual Conference of the LTSN Centre for

Information and Computer Sciences, 2002,

pp. 1–8. 11, 13, 49

[JLDK98] Judge, T. A., Locke, E. A., Durham, C. C.,

and Kluger, A. N., Dispositional effects on

job and life satisfaction: the role of core

evaluations, Journal of applied psychology,

83 (1998), p. 17. 114

[JLTS11] Jayal, A., Lauria, S., Tucker, A., and

Swift, S., Python for Teaching Introduc-

tory Programming: A Quantitative Evalu-

ation, ITALICS, 10 (2011), pp. 86–90. 93

[JVVDP04] Judge, T. A., Van Vianen, A. E., and

De Pater, I. E., Emotional stability, core

self-evaluations, and job outcomes: A re-

view of the evidence and an agenda for

future research, Human performance, 17

(2004), pp. 325–346. 107

154

REFERENCES

[Kaf01] Kafai, Y. B., The educational potential

of electronic games: From games-to-

teach to games-to-learn, Available from:

https://culturalpolicy.uchicago.edu/sites/

culturalpolicy.uchicago.edu/files/kafai.pdf,

2001. 108

[Kay10] Kay, J., Robots in the Classroom...and the

Dorm Room, Journal of Computing Sci-

ences in Colleges, 25 (2010), pp. 128–133.

86

[KB12] Kinnunen, P. and Beth, S., My Program is

OK – Am I? Computing Freshman’s Ex-

perience of Doing Programming Assign-

ments, Computer Science Education, 22

(2012), pp. 1 – 28. 12, 13, 67

[KBM73] Krathwohl, D. R., Bloom, B. S., and

Masia, B. B., Taxonomy of Educational

Objectives, the Classification of Educa-

tional Goals Handbook II: Affective Do-

main, New York, NY: David McKay Co,

1973. 67

[Ke09] Ke, F., A qualitative meta-analysis of

computer games as learning tools, Hand-

book of research on effective electronic gam-

ing in education, 1 (2009), pp. 1–32. 108

[Kin01] Kinman, G., Pressure points: A review

of research on stressors and strains in

UK academics, Educational psychology, 21

(2001), pp. 473–492. 22

[Kli05] Kline, R. B., Principles and Practice of

Structural Equation Modeling, 2nd ed.,

New York, NY: The Guilford Press, 2005.

75

[KLMss] Koulouri, T., Lauria, S., and Macredie, R.,

Treaching Introductory Programming: A

Quantitative Evaluation of Different Ap-

proaches, ACM Transactions on Computing

Education, x (in press), 93

[KM06] Kinnunen, P. and Malmi, L., Why Stu-

dents Drop Out CS1 Courses?, Proceedings

of the 2006 International Computing Edu-

cation Research Workshop, 2006, pp. 97 –

108. 13, 16

[KP07] Kelleher, C. and Pausch, R., Using Sto-

rytelling to Motivate Programming, Com-

mun. ACM, 50 (2007), pp. 58–64, DOI:

10.1145/1272516.1272540. 116

[Kri04] Krippendorff, K., Reliability in content

analysis, Human Communication Research,

30 (2004), pp. 411–433. 127

[KS10a] Kinnunen, P. and Simon, B., Experiencing

Programming Assignments in CS1: The

Emotional Toll, Proceedings of the 6th In-

ternational Workshop on Computing Educa-

tion Research, 2010, pp. 77 – 86. 67

[KS10b] Kinnunen, P. and Simon, B., Experienc-

ing programming assignments in CS1: the

emotional toll, Proceedings of the Sixth in-

ternational workshop on Computing educa-

tion research, 2010, pp. 77–86. 2, 12, 47

[KS12] Kinnunen, P. and Simon, B., My program

is ok–am I? Computing freshmen’s experi-

ences of doing programming assignments,

Computer Science Education, 22 (2012),

pp. 1–28. 12, 47, 48

[Kum04] Kumar, A. N., Three Years of Us-

ing Robots in an Artificial Intelligence

Course: Lessons Learned, J. Educ. Re-

sour. Comput., 4 (2004), pp. 2–es, DOI:

10.1145/1083310.1083311. 88

[Laz04] Lazzaro, N., Why we play games:

Four keys to more emotion

without story, Available from:

http://www.xeodesign.com/xeodesign why

weplaygames.pdf, 2004. 112, 115

[LB12] Lyons, I. M. and Beilock, S. L., When

math hurts: math anxiety predicts pain

network activation in anticipation of do-

ing math, PloS one, 7 (2012), p. e48076.

2, 12

[Lee13] Lee, M. J., How can a social debugging

game effectively teach computer program-

ming concepts?, Proceedings of the ninth

annual international ACM conference on

International computing education research,

2013, pp. 181–182. 118

[LG85] Lincoln, Y. S. and Guba, E. G., Natural-

istic inquiry, Sage, 1985. 30, 40

[LH05] Ladd, B. and Harcourt, E., Student com-

petitions and bots in an introductory pro-

gramming course, Journal of Computing

Sciences in Colleges, 20 (2005), pp. 274–

284. 88

[LH11] Livingstone, I. and Hope, A., Next Gen:

transforming the UK into the world’s lead-

ing talent hub for the video games and vi-

sual effects industries, Nesta, 2011. 10, 11

[Lik32] Likert, R., A technique for the measure-

ment of attitudes, Archives of psychology,

22 (1932), pp. 5–55. 42

[LK77] Landis, J. R. and Koch, G. G., The

measurement of observer agreement for

categorical data, Biometrics, 33 (1977),

pp. 159–174. 58

[LK11] Lee, M. J. and Ko, A. J., Personifying pro-

gramming tool feedback improves novice

programmers’ learning, Proceedings of the

seventh international workshop on Comput-

ing education research, 2011, pp. 109–116.

112, 115

[LL83] Loftus, G. R. and Loftus, E. F., Mind at

play; The psychology of video games, Ba-

sic Books, Inc., 1983. 108

155

http://dx.doi.org/10.1145/1272516.1272540
http://dx.doi.org/10.1145/1083310.1083311

REFERENCES

[LN10] Lauwers, T. and Nourbakhsh, I., Design-

ing the Finch: Creating a robot aligned to

computer science concepts, AAAI Sympo-

sium on Educational Advances in Artificial

Intelligence, 2010. 88

[LNH09] Lauwers, T., Nourbakhsh, I., and Ham-

ner, E., CSbots: design and deployment

of a robot designed for the CS1 classroom,

ACM SIGCSE Bulletin, 41 (2009), pp. 428–

432. 87

[LSDB02] Lombard, M., Snyder-Duch, J., and

Bracken, C. C., Content analysis in mass

communication: Assessment and report-

ing of intercoder reliability, Human com-

munication research, 28 (2002), pp. 587–

604. 127

[LW11] Li, F. W. and Watson, C., Game-based

concept visualization for learning pro-

gramming, Proceedings of the third interna-

tional ACM workshop on Multimedia tech-

nologies for distance learning, 2011, pp. 37–

42. 116, 117

[Mac14] MacLellan, E., How might teachers enable

self-confidence? A Review Study, Educa-

tional Review, 66 (2014), pp. 59 – 74. 82

[MAD+01] McCracken, M., Almstrum, V., Diaz, D.,

Guzdial, M., Hagan, D., Kolikant, Y. B.-

D., Laxer, C., Thomas, L., Utting, I.,

and Wilusz, T., A multi-national, multi-

institutional study of assessment of pro-

gramming skills of first-year CS students,

ACM SIGCSE Bulletin, 33 (2001), pp. 125–

180. 2, 11

[Mal80] Malone, T. W., What makes things fun

to learn? Heuristics for designing instruc-

tional computer games, Proceedings of the

3rd ACM SIGSMALL symposium and the

first SIGPC symposium on Small systems,

1980, pp. 162–169. 108

[Mal13] Malmi, L., Doctoral Studies in Com-

puting Education Research: Part 1,

ACM Inroads, 4 (2013), pp. 18–19, DOI:

10.1145/2537753.2537760. 26, 28

[Mal14] Malmi, L., Doctoral Studies in Comput-

ing Education Research—part 2, ACM

Inroads, 5 (2014), pp. 26–27, DOI:

10.1145/2568195.2568203. 26, 28

[May08] Mayer, R. E., Applying the science of

learning: evidence-based principles for the

design of multimedia instruction, Ameri-

can Psychologist, 63 (2008), pp. 760–769.

2

[MBH+14] Mayer, I., Bekebrede, G., Harteveld, C.,

Warmelink, H., Zhou, Q., Ruijven, T.,

Lo, J., Kortmann, R., and Wenzler, I.,

The research and evaluation of serious

games: Toward a comprehensive method-

ology, British Journal of Educational Tech-

nology, 45 (2014), pp. 502–527. 117

[MBI+05] McGettrick, A., Boyle, R., Ibbett, R.,

Lloyd, J., Lovegrove, G., and Mander, K.,

Grand Challenges in Computing: Educa-

tion - A Summary, The Computer Journal,

48 (2005), pp. 42 – 48. 11, 13

[McG81] McGrath, J. E., Dilemmatics: The

Study of Research Choices and Dilemmas,

American Behavioral Scientist, 25 (1981),

pp. 179–210. xi, 29, 39

[McG11a] McGonigal, J., Be a gamer, save the world,

Wall Street Journal, 22 (2011), pp. 01–11.

109

[McG11b] McGonigal, J., Reality is broken: Why

games make us better and how they can

change the world, Penguin, 2011. 109

[McG12] McGill, M. M., Learning to Program

with Personal Robots: Influences on Stu-

dent Motivation, ACM Trans. Comput.

Educ., 12 (2012), pp. 4:1–4:32, DOI:

10.1145/2133797.2133801. 87

[MCGC11] Mampadi, F., Chen, S. Y., Ghinea, G., and

Chen, M.-P., Design of adaptive hyperme-

dia learning systems: A cognitive style ap-

proach, Computers & Education, 56 (2011),

pp. 1003–1011. 2

[MD98] Mueller, C. M. and Dweck, C. S.,

Praise for intelligence can undermine chil-

dren’s motivation and performance, Jour-

nal of personality and social psychology, 75

(1998), p. 33. 63

[MD04] McKinney, D. and Denton, L. F., Houston,

we have a problem: there’s a leak in the

CS1 affective oxygen tank, ACM SIGCSE

Bulletin, 36 (2004), pp. 236–239. 12, 47,

145

[MF03] Margolis, J. and Fisher, A., Unlocking

the clubhouse: Women in computing, MIT

press, 2003. 90

[MK10] Markham, S. A. and King, K. N., Us-

ing Personal Robots in CS1: Experi-

ences, Outcomes, and Attitudinal Influ-

ences, Proceedings of the 15th Annual Con-

ference on Innovation and Technology in

Computer Science Education (New York,

NY, USA), 2010, pp. 204–208. 86, 87

[MKB12] Major, L., Kyriacou, T., and Brereton,

O., Systematic literature review: teaching

novices programming using robots, IET

software, 6 (2012), pp. 502–513. 87

[ML87] Malone, T. W. and Lepper, M. R., Mak-

ing learning fun: A taxonomy of intrinsic

motivations for learning, Aptitude, learn-

ing, and instruction, 3 (1987), pp. 223–253.

108

156

http://dx.doi.org/10.1145/2537753.2537760
http://dx.doi.org/10.1145/2568195.2568203
http://dx.doi.org/10.1145/2133797.2133801

REFERENCES

[MLL07] Mcquiggan, S. W., Lee, S., and Lester,

J. C., Early prediction of student frustra-

tion, Lecture Notes on Computer Science:

Affective Computing and Intelligent Inter-

action, 4738 (2007), pp. 698–709. 17

[MM11] Marsh, H. and Martin, A., Academic Self-

Concept and Academic Achievement: Re-

lations and Causal Ordering, British Jour-

nal of Educational Psychology, 81 (2011),

pp. 59 – 77. 18, 20, 129

[MR01] Mitra, S. and Rana, V., Children and the

Internet: Experiments with minimally in-

vasive education in India, British Jour-

nal of Educational Technology, 32 (2001),

pp. 221–232. 1

[MR+13] McKenney, S., Reeves, T. C., et al., Con-

ducting educational research design, Rout-

ledge, 2013. 37

[MS95] March, S. T. and Smith, G. F., Design and

Natural Science Research on Information

Technology, Decision Support Systems, 15

(1995), pp. 251–266, DOI: 10.1016/0167-

9236(94)00041-2. 26, 27, 29

[MSS+10] Malmi, L., Sheard, J., Simon, Bednarik,

R., Helminen, J., Korhonen, A., Myller,

N., Sorva, J., and Taherkhani, A., Char-

acterizing Research in Computing Edu-

cation: A Preliminary Analysis of the

Literature, Proceedings of the Sixth Inter-

national Workshop on Computing Educa-

tion Research (New York, NY, USA), 2010,

pp. 3–12. 20, 26

[MSS+14] Malmi, L., Sheard, J., Simon, Bednarik,

R., Helminen, J., Kinnunen, P., Korhonen,

A., Myller, N., Sorva, J., and Taherkhani,

A., Theoretical Underpinnings of Comput-

ing Education Research: What is the Ev-

idence?, Proceedings of the Tenth Annual

Conference on International Computing Ed-

ucation Research (New York, NY, USA),

2014, pp. 27–34. 21, 26

[MSX14] Malliarakis, C., Satratzemi, M., and Xino-

galos, S., Educational Games for Teach-

ing Computer Programming, Research on

e-Learning and ICT in Education, 2014,

pp. 87–98. 117

[MT08] Murphy, L. and Thomas, L., Dangers of a

fixed mindset: implications of self-theories

research for computer science education,

ACM SIGCSE Bulletin, 40 (2008), pp. 271–

275. 47, 48, 51, 63, 67

[Mur00] Murphy, R. R., Using robot competitions

to promote intellectual development, AI

magazine, 21 (2000), p. 77. 88

[NBB67] Nunnally, J. C., Bernstein, I. H., and

Berge, J. M. t., Psychometric theory, vol.

226, McGraw-Hill New York, 1967. 71

[NS13] Newton, P. E. and Shaw, S. D., Standards

for talking and thinking about validity,

Psychological Methods, 18 (2013), pp. 301–

319. xi, 40, 71, 72

[OB91] Orlikowski, W. J. and Baroudi, J. J.,

Studying information technology in orga-

nizations: Research approaches and as-

sumptions, Information systems research, 2

(1991), pp. 1–28. 32, 33

[OHB+14] O’Rourke, E., Haimovitz, K., Ballweber,

C., Dweck, C., and Popović, Z., Brain

points: a growth mindset incentive struc-

ture boosts persistence in an educational

game, Proceedings of the 32nd annual ACM

conference on Human factors in computing

systems, 2014, pp. 3339–3348. 114

[OMCD06] O’Mara, A. J., Marsh, H. W., Craven,

R. G., and Debus, R. L., Do self-concept

interventions make a difference? A syn-

ergistic blend of construct validation and

meta-analysis, Educational Psychologist, 41

(2006), pp. 181–206. 18, 21, 107

[Paj92] Pajares, M. F., Teachers beliefs and ed-

ucational research: Cleaning up a messy

construct, Review of educational research,

62 (1992), pp. 307–332. 12

[Pap80] Papert, S., Mindstorms: Children, com-

puters, and powerful ideas, Basic Books,

Inc., 1980. 125, 131

[Pap08] Papastergiou, M., Are Computer Science

and Information Technology Still Mas-

culine Fields? High School Students’

Perceptions and Career Choices, Com-

put. Educ., 51 (2008), pp. 594–608, DOI:

10.1016/j.compedu.2007.06.009. 90

[Pap09] Papastergiou, M., Digital game-based

learning in high school computer science

education: Impact on educational effec-

tiveness and student motivation, Comput-

ers & Education, 52 (2009), pp. 1–12. 109

[Pek06] Pekrun, R., The control-value theory

of achievement emotions: Assumptions,

corollaries, and implications for educa-

tional research and practice, Educational

Psychology Review, 18 (2006), pp. 315 –

341. xi, 18, 19, 20, 21, 107

[Pet09] Peterson, M., The use of computer-

ized games and simulations in computer-

assisted language learning: A meta-

analysis of research, Simulation & Gaming,

41 (2009), 109, 125

[PJM10] Peyton-Jones, S. and Mitchell, B., The

Collapse of Computing Education in

Schools, SIP: The Journal of the Par-

liamentary and Scientific Committee, 67

(2010), pp. 39–40. 10

157

http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/j.compedu.2007.06.009

REFERENCES

[PL92] Parker, L. E. and Lepper, M. R., Effects of

fantasy contexts on children’s learning and

motivation: Making learning more fun,

Journal of Personality and Social Psychol-

ogy, 62 (1992), p. 625. 108

[PP13] Peters, A.-K. and Pears, A., Engagement

in Computer Science and IT – What! A

Matter of Identity?, Learning and Teaching

in Computing and Engineering Conference,

2013, pp. 114 – 121. 13

[Pre05] Prensky, M., Computer games and learn-

ing: Digital game-based learning, Hand-

book of computer game studies, 18 (2005),

pp. 97–122. 109

[PS10] Pekrun, R. and Stephens, E. J., Achieve-

ment Emotions: A Control-Value Ap-

proach, Social and Personality Psychology

Compass, 4 (2010), pp. 238 – 255. xi, 18,

20, 21

[PS13] Porter, L. and Simon, B., Retaining nearly

one-third more majors with a trio of in-

structional best practices in CS1, Proceed-

ings of the 44th ACM Technical Sympo-

sium on Computer Science Education, 2013,

pp. 165 – 170. 3, 11

[PSAS13] Peck, T. C., Seinfeld, S., Aglioti, S. M.,

and Slater, M., Putting yourself in the

skin of a black avatar reduces implicit

racial bias, Consciousness and cognition, 22

(2013), pp. 779–787. 111, 113

[RAB12] Richardson, M., Abraham, C., and Bond,

R., Psychological correlates of university

students’ academic performance: a sys-

tematic review and meta-analysis, Psycho-

logical bulletin, 138 (2012), pp. 353–387. 18

[RCV09] Ritterfeld, U., Cody, M., and Vorderer, P.,

Serious games: Mechanisms and effects,

Routledge, 2009. 109

[Rep12] Repenning, A., Programming goes back to

school, Communications of the ACM, 55

(2012), pp. 38–40. 130

[RFK+09] Resnick, M., Flanagan, M., Kelleher, C.,

MacLaurin, M., Ohshima, Y., Perlin, K.,

and Torres, R., Growing up programming:

democratizing the creation of dynamic, in-

teractive media, CHI’09 Extended Abstracts

on Human Factors in Computing Systems,

2009, pp. 3293–3296. 130

[RGD12] Rattan, A., Good, C., and Dweck, C. S.,

It’s okNot everyone can be good at math:

Instructors with an entity theory com-

fort (and demotivate) students, Journal of

Experimental Social Psychology, 48 (2012),

pp. 731–737. 63

[Rie96] Rieber, L. P., Seriously considering play:

Designing interactive learning environ-

ments based on the blending of mi-

croworlds, simulations, and games, Educa-

tional technology research and development,

44 (1996), pp. 43–58. 108

[RJBS07] Randolph, J. J., Julnes, G., Bednarik,

R., and Sutinen, E., A comparison of the

methodological quality of articles in com-

puter science education journals and con-

ference proceedings, Computer Science Ed-

ucation, 17 (2007), pp. 263–274. 31

[RJSL08a] Randolph, J., Julnes, G., Sutinen, E., and

Lehman, S., A Methodological Review of

Computer Science Education Research, In-

formation Technology Education, 7 (2008),

pp. 135 – 162. 67, 81

[RJSL08b] Randolph, J., Julnes, G., Sutinen, E.,

and Lehman, S., A methodological review

of computer science education research,

Journal of Information Technology Educa-

tion: Research, 7 (2008), pp. 135–162. 31

[RM01] Rieber, L. P. and Matzko, M. J., Serious

design for serious play in physics, Edu-

cational Technology, 41 (2001), pp. 14–24.

108

[RMWW92] Randel, J. M., Morris, B. A., Wetzel,

C. D., and Whitehill, B. V., The effec-

tiveness of games for educational purposes:

A review of recent research, Simulation &

gaming, 23 (1992), pp. 261–276. 108, 109

[Rob00] Roberts, E., Strategies for encouraging in-

dividual achievement in introductory com-

puter science courses, ACM SIGCSE Bul-

letin, 32 (2000), pp. 295–299. 88

[Rob10] Robins, A., Learning edge momentum: A

new account of outcomes in CS1, Computer

Science Education, 20 (2010), pp. 37–71. 15

[Rob12] Robins, A., Learning Edge Momentum,

Encyclopedia of the Sciences of Learning,

Springer, pp. 1845–1848. 15

[RRZMndM15] Rubio, M. A., Romero-Zaliz, R., Mañoso,

C., and de Madrid, A. P., Closing the

Gender Gap in an Introductory Pro-

gramming Course, Computers & Edu-

cation, 82 (2015), pp. 409–420, DOI:

10.1016/j.compedu.2014.12.003. 149

[RS10a] Rogerson, C. and Scott, E., The Fear Fac-

tor: How it Affects Students Learning to

Program in a Tertiary Environment, In-

formation Technology Education, 9 (2010),

pp. 147 – 171. 12, 17, 67

[RS10b] Rogerson, C. and Scott, E., The fear fac-

tor: How it affects students learning to

program in a tertiary environment, Jour-

nal of Information Technology Education:

Research, 9 (2010), pp. 147–171. 2, 12, 47

158

http://dx.doi.org/10.1016/j.compedu.2014.12.003

REFERENCES

[SBE83] Soloway, E., Bonar, J., and Ehrlich,

K., Cognitive strategies and looping con-

structs: An empirical study, Communica-

tions of the ACM, 26 (1983), pp. 853–860.

2, 11

[SBG04] Straub, D., Boudreau, M.-C., and Gefen,

D., Validation Guidelines for IS Positivist

Research, pp. 380 – 427. xi, 71, 72, 80, 81

[SCC02] Shadish, W. R., Cook, T. D., and

Campbell, D. T., Experimental and

quasi-experimental designs for general-

ized causal inference, Wadsworth Cengage

learning, 2002. 40

[Sch10] Schelle, J., Design Outside of the Box:

The Future of Games, Presentation

at the DICE Summit. Available from:

http://www.dicesummit.org/video gallery/

video gallery 2010.asp, 2010. 109

[SCL+ss] Scott, M. J., Counsell, S., Lauria, S.,

Swift, S., Tucker, A., Shepperd, M.,

and Ghinea, G., Enhancing Practice and

Achievement in Introductory Program-

ming with a Robot Olympics, IEEE Trans-

actions on Education (Accepted, In Press),

pp. 1–6, DOI: 10.1109/TE.2013.2288700.

[Sco13] Scott, M. J., Projective Identity and Pro-

cedural Rhetoric in Educational Multime-

dia: Towards the Enrichment of Program-

ming Self-concept and Growth Mindset

with narrative reinforcement, Proceedings

of the 21st ACM International Conference

on Multimedia (Barcelona, Spain), Octo-

ber 2013, pp. 1031–1034.

[SDR+15] Spacco, J., Denny, P., Richards, B., Bab-

cock, D., Hovemeyer, D., Moscola, J., and

Duvall, R., Analyzing Student Work Pat-

terns Using Programming Exercise Data,

Proceedings of the 46th ACM Technical

Symposium on Computer Science Education

(New York, NY, USA), 2015, pp. 18–23.

148

[SFS+06] Simon, Fincher, S, Robins, A, Baker, B,

Box, I, Cutts, Q, de Raadt, M, Haden, P,

Hamer, J, Hamilton, M, Lister, R, Petre,

M, Sutton, K, Tolhurst, D, Tutty, and J,

Predictors of success in a first program-

ming course, Proceedings of the 8th Aus-

tralasian Conference on Computing Educa-

tion, 2006, pp. 189 – 196. 11

[SFSR13] Spacco, J., Fossati, D., Stamper, J., and

Rivers, K., Towards Improving Program-

ming Habits to Create Better Computer

Science Course Outcomes, Proceedings of

the 18th ACM Conference on Innovation

and Technology in Computer Science Educa-

tion (New York, NY, USA), 2013, pp. 243–

248. 148

[SG13a] Scott, M. J. and Ghinea, G., Educating

Programmers: A Reflection on Barriers

to Deliberate Practice, Proceedings of the

2nd HEA STEM Conference (Birmingham,

UK), April 2013, pp. 28–33.

[SG13b] Scott, M. J. and Ghinea, G., Implicit The-

ories of Programming Aptitude as a Bar-

rier to Learning to Code: Are They Dis-

tinct from Intelligence?, Proceedings of the

18th ACM Annual Conference on Innova-

tion and Technology in Computer Science

Education (Kent, UK), July 2013, p. 347.

[SG13c] Scott, M. J. and Ghinea, G., Integrat-

ing narrative reinforcement into the Pro-

gramming Lab: Exploring the ‘Projective

Identity’ Hypothesis, Proceedings of 43rd

ACM Technical Symposium on Computer

Science Education (Denver, CO, USA),

March 2013, pp. 119–122.

[SG14a] Scott, M. J. and Ghinea, G., On the

Domain-Specificity of Mindsets: The Re-

lationship Between Aptitude Beliefs and

Programming Practice, IEEE Transactions

on Education, 57 (2014), pp. 169–174,

DOI: 10.1109/TE.2013.2288700.

[SG14b] Scott, M. J. and Ghinea, G., Measuring

Enrichment: The Assembly and Valida-

tion of an Instrument to Assess Student

Self-beliefs in CS1, Proceedings of the 10th

Annual ACM Conference on International

Computing Education Research (Glasgow,

Scotland), August 2014, pp. 123–130.

[SGew] Scott, M. J. and Ghinea, G., Enrich-

ing the Self-Concept and Mindset of

Novice Programmers using Game-based

Fantasy Role-Play: A Review of Exist-

ing Games, British Journal of Educational

Technology (Under Review), pp. 1–6, DOI:

10.1109/TE.2013.2288700.

[Sha06] Shaffer, D. W., Epistemic frames for epis-

temic games, Computers & education, 46

(2006), pp. 223–234. 108

[SHCD09] Stump, G., Husman, J., Chung, W.-T.,

and Done, A., Student beliefs about intel-

ligence: Relationship to learning, Frontiers

in Education Conference, 2009. FIE’09.

39th IEEE, 2009, pp. 1–6. 48

[She11a] Sheldon, L., The multiplayer classroom:

Designing coursework as a game, Cengage

Learning, 2011. 109, 111

[She11b] Shepperd, M., Group project work from

the outset: An in-depth teaching experi-

ence report, Software Engineering Educa-

tion and Training (CSEE&T), 2011 24th

IEEE-CS Conference on, 2011, pp. 361–

370. 92

159

http://dx.doi.org/10.1109/TE.2013.2288700
http://dx.doi.org/10.1109/TE.2013.2288700
http://dx.doi.org/10.1109/TE.2013.2288700

REFERENCES

[SHM+08a] Simon, B., Hanks, B., Murphy, L., Fitzger-

ald, S., McCauley, R., Thomas, L., and

Zander, C., Saying Isn’t Necessarily Be-

lieving: Influencing Self-Theories in Com-

puting, Proceedings of the 4th Int. Work-

shop on Computing Education Research,

2008, pp. 173 – 184. 67

[SHM+08b] Simon, B., Hanks, B., Murphy, L., Fitzger-

ald, S., McCauley, R., Thomas, L., and

Zander, C., Saying isn’t necessarily be-

lieving: influencing self-theories in com-

puting, Proceedings of the Fourth interna-

tional Workshop on Computing Education

Research, 2008, pp. 173–184. 49

[Sim96] Simon, H. A., The sciences of the artificial,

MIT press, 1996. 26

[Sit11] Sitzmann, T., A meta-analytic examina-

tion of the instructional effectiveness of

computer-based simulation games, Person-

nel Psychology, 64 (2011), pp. 489–528.

109, 125

[SK07a] Simons, K. D. and Klein, J. D., The im-

pact of scaffolding and student achieve-

ment levels in a problem-based learn-

ing environment, Instructional Science, 35

(2007), pp. 41–72. 15

[SK07b] Simons, K. D. and Klein, J. D., The im-

pact of scaffolding and student achieve-

ment levels in a problem-based learn-

ing environment, Instructional Science, 35

(2007), pp. 41–72. 91, 145

[Squ03] Squire, K., Video games in education, Int.

J. Intell. Games & Simulation, 2 (2003),

pp. 49–62. 108

[Squ11] Squire, K., Video games and learning,

Teaching and participatory culture in the

digital age. New York, NY: Teachers Col-

lege Print. Cerca con Google, 2011. 108

[SS80] Swann, W. B. and Snyder, M., On trans-

lating beliefs into action: Theories of abil-

ity and their application in an instruc-

tional setting., Journal of Personality and

Social Psychology, 38 (1980), p. 879. 12, 16

[SSD99] Springer, L., Stanne, M. E., and Dono-

van, S. S., Effects of small-group learning

on undergraduates in science, mathemat-

ics, engineering, and technology: A meta-

analysis, Review of educational research, 69

(1999), pp. 21–51. 91

[SSHL09] Sheard, J., Simon, S., Hamilton, M., and

Lönnberg, J., Analysis of Research into

the Teaching and Learning of Program-

ming, Proceedings of the Fifth Interna-

tional Workshop on Computing Education

Research Workshop (New York, NY, USA),

2009, pp. 93–104. 20

[Sui14] Suits, B., The grasshopper: Games, life

and utopia, Broadview Press, 2014. 108

[SVKT08] Shabalina, O., Vorobkalov, P., Kataev, A.,

and Tarasenko, A., Educational games for

learning programming languages, Informa-

tion Science and Computing, 2008, pp. 79–

83. 109

[Swi08] Swink, S., Game Feel: A Game Designer’s

Guide to Virtual Sensation, Morgan Kauf-

mann, 2008. 112, 115

[TBC12] Thota, N., Berglund, A., and Clear,

T., Illustration of paradigm pluralism in

computing education research, Proceedings

of the Fourteenth Australasian Computing

Education Conference-Volume 123, 2012,

pp. 103–112. 26

[TD98] Tooley, J. and Darby, D., Educational re-

search: a critique, Office for Standards in

Education, 1998. 30

[TD13] Tew, A. and Dorn, B., The Case for

Validated Tools in Computer Science Ed-

ucation Research, Computer, 46 (2013),

pp. 60–66. 63, 66, 71, 81, 145

[TFDW11] Tobias, S., Fletcher, J., Dai, D. Y., and

Wind, A. P., Review of research on com-

puter games, Computer games and instruc-

tion, 2011, pp. 127–222. 108, 109, 125

[TG11] Tew, A. E. and Guzdial, M., The FCS1: A

Language Independent Assessment of CS1

Knowledge, Proceedings of the 42nd ACM

Technical Symposium on Computer Science

Education, 2011, pp. 111 – 116. 2, 11, 67

[THB08] Tychsen, A., Hitchens, M., and Brolund,

T., Character play: the use of game char-

acters in multi-player role-playing games

across platforms, Computers in Entertain-

ment (CIE), 6 (2008), pp. 22:1–22:24. 112,

114

[Tig10] Tight, M., Are academic workloads in-

creasing? The post-war survey evidence

in the UK, Higher Education Quarterly, 64

(2010), pp. 200–215. 22, 107

[VA04] Verner, I. M. and Ahlgren, D. J., Robot

contest as a laboratory for experiential en-

gineering education, ACM Journal on Edu-

cational Resources in Computing, 4 (2004),

p. 2. 88

[Val04] Valentine, D. W., CS Educational Re-

search: A Meta-Analysis of SIGCSE Tech-

nical Symposium Proceedings, Proceedings

of the 35th ACM Technical Symposium on

Computer Science Education, 2004, pp. 255

– 259. 20, 67

[VDC04] Valentine, J. C., DuBois, D. L., and

Cooper, H., The relation between self-

beliefs and academic achievement: A

meta-analytic review, Educational Psychol-

ogist, 39 (2004), pp. 111–133. 107

160

REFERENCES

[Ver13] Verner, I., Characteristics of Student En-

gagement in Robotics, Intelligent Robotics

Systems: Inspiring the NEXT (K. Omar,

M. Nordin, P. Vadakkepat, A. Prabuwono,

S. Abdullah, J. Baltes, S. Amin, W. Has-

san, and M. Nasrudin, eds.), Springer

Berlin Heidelberg, 92

[VJ05] Ventura Jr, P. R., Identifying predictors of

success for an objects-first CS1, Computer

Science Education, 15 (2005), pp. 223–243.

11

[VMM14] Vahldick, A., Mendes, A. J., and

Marcelino, M. J., A review of games de-

signed to improve introductory computer

programming competencies, IEEE Fron-

tiers in Education Conference, Oct 2014,

pp. 1–7. 117

[VVCB+06] Vogel, J. J., Vogel, D. S., Cannon-

Bowers, J., Bowers, C. A., Muse, K., and

Wright, M., Computer gaming and inter-

active simulations for learning: A meta-

analysis, Journal of Educational Computing

Research, 34 (2006), pp. 229–243. 108

[Vyg80] Vygotsky, L. S., Mind in society: The

development of higher psychological pro-

cesses, Harvard university press, 1980. 15

[Wes10] Westland, J. C., Lower bounds on sam-

ple size in structural equation modeling,

Electronic Commerce Research and Applica-

tions, 9 (2010), pp. 476–487. 73

[WEY+97] Wigfield, A., Eccles, J. S., Yoon, K. S.,

Harold, R. D., Arbreton, A. J. A., and

Freedman-Doan, C., Change in children’s

competence beliefs and subjective task val-

ues across the elementary school years: A

3-year study, pp. 451 – 469. 70

[Wie05] Wiedenbeck, S., Factors affecting the suc-

cess of non-majors in learning to program,

Proceedings of the 1st Int. Workshop Com-

puting Education Research, 2005, pp. 13 –

24. 19

[Win96] Winslow, L. E., Programming Pedagogy–

A Psychological Overview, SIGCSE

Bulletin, 28 (1996), pp. 17–22, DOI:

10.1145/234867.234872. 62

[WML88] Wigfield, A., Meece, and L, J., Math anx-

iety in elementary and secondary school

students, Journal of Educational Psychol-

ogy, 80 (1988), pp. 210 – 216. 70

[WS01] Wilson, B. C. and Shrock, S., Contribut-

ing to success in an introductory computer

science course: A study of twelve factors,

SIGCSE Bulletin, 33 (2001), pp. 184 – 188.

11, 19

[WVNVOVDS13] Wouters, P., Van Nimwegen, C., Van Oos-

tendorp, H., and Van Der Spek, E. D., A

meta-analysis of the cognitive and motiva-

tional effects of serious games, Journal of

Educational Psychology, 105 (2013), p. 249.

109, 125

[YB07] Yee, N. and Bailenson, J., The Proteus

effect: The effect of transformed self-

representation on behavior, Human com-

munication research, 33 (2007), pp. 271–

290. 111, 113, 116, 131

[YD12] Yeager, D. S. and Dweck, C. S., Mindsets

that promote resilience: When students

believe that personal characteristics can

be developed, Educational Psychologist, 47

(2012), pp. 302–314. 48, 51, 62

[YSC+12] Young, M. F., Slota, S., Cutter, A. B.,

Jalette, G., Mullin, G., Lai, B., Simeoni,

Z., Tran, M., and Yukhymenko, M., Our

princess is in another castle a review of

trends in serious gaming for education, Re-

view of Educational Research, 82 (2012),

pp. 61–89. 108

[Zim02] Zimmerman, B. J., Becoming a self-

regulated learner: An overview, Theory

into practice, 41 (2002), pp. 64–70. 2

[ZL10] Zichermann, G. and Linder, J., Game-

based marketing: inspire customer loyalty

through rewards, challenges, and contests,

John Wiley & Sons, 2010. 109, 111

161

http://dx.doi.org/10.1145/234867.234872

	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Overview
	1.2 Aims and Objectives
	1.3 Philosophy and Approach
	1.4 Structure of the Thesis

	2 Challenges in the Introductory Programming Lab
	2.1 Introduction
	2.2 Barriers to Programming Practice
	2.3 The Control-Value Theory of Achievement Emotions
	2.4 Need for Further Research
	2.5 Summary

	3 Computing Education Research: A Pragmatic Design Approach
	3.1 Introduction
	3.2 Scholarship in Computing Education
	3.2.1 The Science of the Artificial
	3.2.2 The Boyer Model of Scholarship
	3.2.3 The Empirical Approach
	3.2.4 Aspirations in Computing Education Research

	3.3 A Pragmatic Design Approach
	3.3.1 Philosophical Underpinnings
	3.3.1.1 Ontological Position
	3.3.1.2 Epistemological Position
	3.3.1.3 Methodological Position
	3.3.1.4 Axiological Position

	3.3.2 Research Strategy
	3.3.2.1 The `Twin Spiral' Model
	3.3.2.2 On the Choice of Methods

	3.3.3 On Validity
	3.3.4 On Ethics
	3.3.5 Data Collection Techniques
	3.3.6 Data Analysis Techniques
	3.3.7 Datasets Presented in the Thesis

	3.4 Summary

	4 On the Domain-Specificity of Mindsets
	4.1 Introduction
	4.2 Background
	4.3 Research Questions
	4.4 Hypotheses
	4.5 Method
	4.5.1 Data Collection
	4.5.2 Participants

	4.6 Measurement
	4.6.1 Mindset For Intelligence
	4.6.2 Mindset For Programming Aptitude
	4.6.3 Regularity of Programming Practice
	4.6.4 Early Programming Performance

	4.7 Data Analysis
	4.7.1 The Two-Mindsets Factor Structure
	4.7.2 Consistency Between Different Mindsets
	4.7.3 Impact of Each Mindset on Practice Behaviour
	4.7.4 Change in Belief for Each Mindset Over Time

	4.8 Discussion
	4.9 Limitations
	4.10 Summary

	5 Measuring Enrichment: Assessing Self-Beliefs in CS1
	5.1 Introduction
	5.2 Proposed Conceptual Framework and Instrument Assembly
	5.3 Research Questions
	5.4 Hypotheses
	5.5 Method
	5.5.1 Data Collection
	5.5.2 Participants

	5.6 Data Analysis
	5.6.1 Descriptive Statistics
	5.6.2 Measurement Model
	5.6.3 Reliability
	5.6.4 Construct Validity
	5.6.5 Concurrent Validity

	5.7 Discussion
	5.8 Limitations
	5.9 Summary

	6 On Self-Beliefs, Emotions, Practice, and Robots
	6.1 A Comparison Between Two Courses
	6.2 Related Work
	6.3 Intended Outcomes
	6.4 Course Design
	6.5 Method
	6.5.1 Data Collection
	6.5.2 Research Instruments
	6.5.2.1 Student Self-Beliefs
	6.5.2.2 Self-Reported Weekly Programming Practice
	6.5.2.3 Code Quality

	6.6 Data Analysis
	6.6.1 Differences in Attitude
	6.6.2 Greater Practice with the Robot Olympics
	6.6.3 Higher Overall Quality with Practice and the Robot Olympics
	6.6.4 Varying Effects of Practice and the Robot Olympics on Aspects of Code Quality

	6.7 Discussion
	6.8 Limitations
	6.9 Conclusions

	7 Games-based Fantasy Role-Play in the Programming Lab
	7.1 Introduction
	7.2 Digital Games in Educational Settings
	7.3 Persuasive Mechanisms in Game-based Fantasy Role Plays
	7.3.1 Procedural Rhetoric
	7.3.2 Narrative Reinforcement

	7.4 Games in the Programming Lab
	7.5 Limitations
	7.6 Conclusion

	8 Exploring the `Projective Identity' Hypothesis
	8.1 Introduction
	8.2 Tool Development
	8.3 Method
	8.3.1 Sample
	8.3.2 Measurement
	8.3.3 Procedure

	8.4 Results
	8.5 Discussion
	8.6 Conclusion

	9 Conclusion
	9.1 Overview
	9.2 Key Contributions
	9.3 Implications for Practice
	9.4 Implications for the Field
	9.5 Limitations
	9.6 Future Directions

	References

