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HIGHLIGHTS

e Propose a variance estimator for fixed effects and mean group estimators in panels.

e Robust to various forms of serial and cross sectional dependence in errors.

e Useful in applied work for large N short T panels when little is known about the process generating the errors.

e Shown to be consistent for N going to infinity, with T fixed.
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We propose a robust, partial sample estimator for the covariance matrix of the fixed effects and mean
group estimators of the slope coefficients in a short T panel data model with group-specific effects and
errors that are weakly cross sectionally dependent and serially correlated.
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1. Introduction

Recently, a number of studies have focused on robust estima-
tion of the slope parameters of a regression model where errors
are cross sectionally dependent. Variants of the Newey and West
(1987) spectral density estimator in time series have been sug-
gested by Conley (1999) and Driscoll and Kraay (1998) in the con-
text of GMM estimators of spatial panels where T is large relative to
N (see also Pinkse et al., 2002). More recently, Kelejian and Prucha
(2007) have proposed a spatial version of the non-parametric
heteroskedasticity—autocorrelation consistent (HAC) estimator in-
troduced by White (1980) for a single cross section regression
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with spatially correlated errors. This approach has been extended
by Moscone and Tosetti (2012) in the context of a panel data
model with unobserved fixed effects, where errors are allowed to
be both spatially and serially correlated for N and/or T going to
infinity. Rather than using an arbitrary measure of distance be-
tween units, Bester et al. (2009) have recently suggested to split
the sample into groups so that group-level averages are approxi-
mately independent, and then use the HAC estimator based on a
discrete group-membership metric. However, the validity of this
approach relies on the capacity of the researcher to construct
groups whose averages are approximately independent. Robust in-
ference with clustered data has also been considered by Ibragi-
mov and Miiller (2009), Cameron and Miller (2011), Cameron et al.
(2011) and MacKinnon and Webb (2014). Robinson (2007) consid-
ers smoothed nonparametric kernel regression estimation. Under
this approach, rather than employing mixing conditions, it is as-
sumed that regression errors follow a general linear process rep-
resentation covering both weak (spatial) dependence as well as
dependence at longer ranges. Hence, the author establishes con-
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sistency of the Nadaraya-Watson kernel estimate and derives its
asymptotic distribution.

In this paper, we propose a partial sample estimator for the co-
variance matrix of the fixed effects (FE) and mean group (MG)
estimators of the slope coefficients in a panel data model with
unobserved fixed effects and errors that are weakly cross section-
ally dependent and serially correlated. The idea is approximate the
true covariance matrix with a (weighted) average of cross products
of regression errors, computed over a subset of n cross sectional
units, where n — oo as N rises, and n/N — 0.! We prove that
the suggested partial sample estimator tends to the true covariance
matrix calculated over the partial sample observations, for N going
to infinity, with T fixed. A small Monte Carlo exercise reported in
the paper shows that this approach is quite robust to various forms
of weak cross sectional dependence, when N is large. The proposed
method can be very useful for robust estimation in the context of
micro-dataset where N is very large and there is little knowledge
on the process generating cross sectional dependence.

2. The econometric framework

Consider the panel data model

}’it:ai+ﬂ/xir+eir, i=12,...,N;t=1,2,...,T, (1

where «; are fixed parameters, X; are strictly exogenous regres-
sors, and e;; follows the general process:

€ = Ii1&1 + Tia¢ + - -+ + inenes (2)

where rj; are (unknown) elements, possibly function of a smaller
set of coefficients, of a N x N non-stochastic matrix, R =
(r1.,r2, ..., o) withr, = (g, 12, ..., Tv)’, and E (giegie) = 0,
but can be serially correlated. We make the following assumptions
on the error term and regressors.

Assumption 1. ¢; are independently distributed across i, with
E (i) = 0,E (ef) < oo and E(e;.€,) = £;, with £; being a finite,
positive definite T-dimensional matrix with (t, s)th element, w; .

Assumption 2. max;j<y Y i, |rj| < 00; maxi<iy Y0 |ry| <
o0.

Assumption 3. x; has finite elements, and limy,7)— 00 7 Zf’: . )~(:

;(,; = Q finite and non-singular, with )AEI; = MX;, X; =
.
(i1, X2, ... X)) M =Ir — 17 (1;17) " 1.
Under Assumptions 1-2,0 < |E (eejs)| = ‘Zg;l TinTin@n.es| <

oo, for alli, j, t, s, and the covariance matrix of e ; = (e, ex, .. .,
ene)’, for each t, have absolute summable elements, i.e., Zsz 1
|E (eiceie)| < Z}Ll S hoy Irinl || |on.s| < o0, thus carrying weak
cross section dependence. A large variety of models can be cast
in this framework, for example, the spatial autoregressive process
having AR or MA errors, or a common factor structure with weak
factors.

3. Robust estimation

The FE and MG estimators of 8 in Eq. (1) are:

1 We found a similar idea based on partial sample briefly outlined in Bai (2009),
Remark 8, although no formal proof has been provided.

N -1
By - (zxx) %, )

R 1 .
Buc = N Zﬁia (4)

withy; = My, and §; = (5‘(;)?,)7] )N(;Si, Under Assumptions 1-3,
it is easy to show that, as N tends to infinity and for T fixed,
N (B —B) AN © %), and VN (Bue — B) N ©, Zwo)

where (see Hansen, 2007; Pesaran and Tosetti, 2011)

=Q'wQ ', (5)

EMG = llm — Z Z W;W js sttrj»’ (6)

11 1t,s=1
with Q = limy_oe 3 Y0y X! X;., w;; is the tth column of W, =

()A(J;.;(li.)il ;(:v Wi = dlag {a)1,t53 W tsy + v s wN,tS}- and

v = NILH;O — Z Z Xie X ]S ,wtsrj‘. (7)

i,j=1t,s=1

Note that Xc and X¥» depend on the nuisance parameters in the
matrices R and . Let n be a scalar such thatn — ocoas N — oo
with n/N — 0, we propose the following partial sample estima-
tors for (5) and (6), respectively:

&) R ()

3, = QN‘-II Q' (8)

&(m

Ty = Z (ﬂz .BMG) (ﬂj BMG) ’ 9)
lj 1

where Qy = 1 YN | X/X; and

" = Zx/ & e X, (10)
z] 1

&ir = Vie — ﬂ,iﬁ. Note that, in absence of cross section correlation,

if we set n = N and take the sum only overi = j = 1,...,N,
(8) reduces to the Arellano (1987) cluster-robust variance estima-
tor; while the variance estimator (9) is based on the robust estima-
tor considered in Pesaran and Smith (1995), and Pesaran (2006).
The following theorem shows that the suggested partial sample
estimators (8)-(9) tend to a positive definite matrix, which is the
true covariance matrix computed using the partial sample obser-
vations. Such matrix is a fraction of the true variance based on N
observations (see Appendix for a proof).

Theorem 1. Let 37,» and EMG given by (8) and (9), respectively, and

let n be such that n — oo, and n/N — 0. Then under 1-3, for fixed
T,

¥ = v 10, (V/N) +0, (1/Vn), (11)
550 = 540-+0, (i) ., (/8. 2

(n) 1 n T 55 v X () —
where ¥ w Dije1 Dors— XX T @esTy, and Xy. =
1

Zu ]Z” 1 Wit Wi I} gt . Further, for N — oo,

n

v = Nup<N>+op (v/n/N), (13)
n

= NEA(}Q + 0, (v/n/N). (14)
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Table 1
Monte Carlo results, FE estimator.
N T (I): Cluster-robust (II): Partial sample estimator
estimator n=N°3 n = N% n=N°%
Size Power Size Power Size Power Size Power
Experiment 1: §; = 0
300 5 0.066 0.941 0.058 0.268 0.079 0.331 0.051 0.341
500 5 0.046 0.996 0.048 0.266 0.053 0.347 0.045 0.335
1000 5 0.049 1.000 0.043 0.315 0.051 0.369 0.046 0.359
300 10 0.045 0.999 0.045 0.322 0.068 0.426 0.096 0.529
500 10 0.057 1.000 0.046 0.350 0.055 0.477 0.077 0.591
1000 10 0.051 1.000 0.042 0.387 0.048 0.504 0.057 0.602
Experiment 2 §; ~ [IDU(0.2, 0.4)
300 5 0.081 0.921 0.076 0.268 0.074 0.3 0.078 0.325
500 5 0.098 0.986 0.049 0.244 0.061 0.31 0.097 0.380
1000 5 0.069 1.000 0.046 0.269 0.051 0.335 0.061 0.437
300 10 0.092 0.998 0.058 0314 0.074 0.382 0.093 0.463
500 10 0.089 1.000 0.044 0.322 0.053 0.431 0.071 0.481
1000 10 0.083 1.000 0.045 0.354 0.047 0.447 0.056 0.589
Experiment 3 §; ~ I[IDU(0.7, 0.9)
300 5 0.144 0.523 0.066 0.146 0.097 0.166 0.098 0.168
500 5 0.162 0.684 0.050 0.124 0.063 0.143 0.076 0.185
1000 5 0.152 0.793 0.049 0.146 0.049 0.172 0.060 0.194
300 10 0.152 0.745 0.062 0.178 0.058 0.182 0.084 0.245
500 10 0.148 0.892 0.043 0.158 0.056 0.214 0.073 0.249
1000 10 0.148 0.948 0.041 0.166 0.046 0.220 0.056 0.301

Note: The size and power reported in Column I use the robust estimator for the variance, while those in column (II) use expression (8).

Clearly, for a small n the variance estimators converge fast to
their true counterparts, but these only estimate a small fraction
of the total variance. On the contrary, a large n implies slower
convergence but a larger estimated fraction of the total variance.
Using the above results, the Student’t statistics for the unknown
parameter associated to the £th regressor using the FE and MG
estimators and their partial sample variance estimator are:

Vn/N (,8P,£ - ﬂz) Vn/N (BMG,Z - ,3/3)

by = ——F—7—=, tvc,e = )
o &M
Zp e v, ee
=1,2,...,k
4. Monte Carlo experiments
Suppose y; fori = 1,2,...,Nandt = 1,2,...,T are

generated by the following panel data model

Yie = i + Bxie + eir,

where 8 = 1, and the parameters «; are generated as o; ~
IIDN(1,1), i=1,2,..., N and do not change across replications.
The regressor is generated as:

Xie = o + 0.4%; 11 + Uy,

fori=1,2,...,N, t=-49,...,0,1,...,T,

N
Uy = 0.4 Z SijUjt + €,
j=1
where € ~ N(0,02), 0% ~ IIDU (0.5, 1.5), fori = 1,2,...,N.
As for the individual-specific errors, e;;, we assume the following
spatio-temporal process:
eir = 0.4e; 1 + vy,
fori=1,2,...,N, t=-49,...,0,1,...,T, (15)

N
Vir = 6; Zsijvj[ + & (16)
=

gie ~N(0,02%), o~IDU(0.5,1.5), fori=1,2,...,N, (17)

where s;; are elements of a N x N, time-invariant, row-normalised,
2nd order regular lattice. The first 50 observations are discarded.
We carry three experiments. In Experiment 1 we consider a pure
temporal process and set §; = 0. In Experiment 2 we assume a
moderate degree of spatial correlation, §; ~ IIDU(0.2, 0.4), while
in Experiment 3 we consider a more sizeable degree of spatial
dependence, setting §; ~ IIDU(0.7,0.9). The Arellano (1987)
cluster-robust estimator and the robust estimator considered
in Pesaran and Smith (1995) deliver correct inference under
Experiment 1, while they are biased under Experiments 2 and 3.
The number of replications is set to 1000, experiments are carried
for N = 300,500, 1000, and T = 5, 10, and we try three
alternative choices of n, by setting n = N%3, N04 NO3,

4.1. Results

We report size and power for both FE and MG estimators using
(8) and (9), for various choices of n.? For a comparison, we also
report the Arellano (1987) cluster-robust estimator and the robust
estimator considered in Pesaran and Smith (1995). The nominal
size is set to 5%, while the power of the various tests is computed
under the alternative H; : § = 0.90. Results reported in Tables 1
and 2 show that the proposed estimators work well.

Appendix

Lemma 1. Consider the process e; in (2). Under Assumptions 1-2,
for fixed T,

1 n T
E - Z Z eies | =0(1), and

ij=1ts=1

Vi ! En =0 !
ar{ - ) epeje ] =0(—-]).
n it €jt n

ij=1

2 We have omitted to report Bias and RMSE of Pooled and MG estimators but
these are available upon request.
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Table 2
Monte Carlo results, Mean Group estimator.
N T (I): Robust (I1): Partial sample estimator
estimator n=N°3 n = N%4 n =N
Size Power Size Power Size Power Size Power
Experiment 1§; =0
300 5 0.045 0.606 0.065 0.270 0.073 0.327 0.057 0.344
500 5 0.060 0.680 0.056 0.261 0.061 0.331 0.049 0.351
1000 5 0.050 0.744 0.038 0.303 0.048 0.374 0.041 0.456
300 10 0.050 0.787 0.051 0.323 0.059 0.417 0.097 0.539
500 10 0.063 0.844 0.049 0.341 0.057 0.470 0.056 0.571
1000 10 0.050 0.942 0.041 0.390 0.048 0.506 0.058 0.582
Experiment 2 §; ~ I[IDU(0.2, 0.4)
300 5 0.079 0.714 0.068 0.249 0.070 0.304 0.080 0.333
500 5 0.074 0.760 0.049 0.236 0.065 0.296 0.063 0.375
1000 5 0.071 0.786 0.042 0.261 0.056 0.341 0.055 0.419
300 10 0.073 0.753 0.057 0.326 0.061 0.381 0.103 0.468
500 10 0.078 0.808 0.047 0.322 0.051 0.434 0.059 0.471
1000 10 0.071 0.864 0.041 0.348 0.045 0.442 0.054 0.603
Experiment 3 §; ~ IIDU(0.7, 0.9)
300 5 0.097 0.74 0.052 0.149 0.081 0.180 0.089 0.179
500 5 0.115 0.782 0.055 0.126 0.068 0.141 0.059 0.200
1000 5 0.109 0.764 0.041 0.150 0.052 0.175 0.055 0.202
300 10 0.112 0.758 0.056 0.169 0.072 0.196 0.089 0.238
500 10 0.126 0.752 0.048 0.161 0.054 0.214 0.054 0.238
1000 10 0.131 0.79 0.040 0.164 0.047 0.219 0.051 0.298
Note: The size and power reported in Column [ use the Pesaran and Smith (1995) robust estimator for the variance, while those in column (II) use expression (9).
Further, we have ,
Y wesw
1 & N lj 1 k=1
XY Y an=0, (). (19
i=1 j=1 t,s=1 ZZZW/ekehWh
i,j=1k,h=1
Proof. To prove (18), we note that: ] )
In view of (18)-(19), we obtain?
1 T n 2 1 T n N
0< 13 S an =13 (Y| =iy (Ta) g _ Ly
TRy Lt ~n —a Z Wie e - = Z ZW{ e.e, Wy,
ij=1ts=1 t=1 \i=1 t=1 \i=1 N L :
mi= i=1 k=1
_ 7l XT: ¢ RRe R
T n AT - = Z ZWL e e W;
t=1 N . 1
i=1 k=1
where elements in €; = (&1, &2, ...,6n) are distributed n N
independently across i with mean zero, finite variance and finite — Z W, e e, Wi,
fourth-order moments, and the matrix A = R'R has absolute N Kh=1
summable row and column sums. It follows that we can apply
Lemma 2 in l.(ele.jian. and Prucha (1999) for %eftAezt, t = — Z Wi eieW; +0, ( )
1,2, ..., T,whichimplies (18). As for (19), let 1{;<n be anindicator =1 N
function equal to 1 if i < n, and zero otherwise. Noting that Using (18) lsoh
: sin we also have
E (1iizn) = & and Var (1jjzny) = & (1 — %) it follows that &
1¢ ZWeeW —fZZw W, I, @l
DN IPITETI P ILISELACIAE o) = e
N — Ij 1 ij=1t,s=1
i=1 j=1 t,s= ij=1¢t,s=1 oy
= Xc=0(), (20)
Proof of Theorem 1. We first prove the theorem for . Con- 1
sider Z WeeW, |=0 <7> , 21)
n

A ~ 1SN R QL
B Buc = Wi = DS Wi G = WE - 0D Wi E

k=1
and noting that W/ €; = W] e;, we have:

N N
A (n) 1 1 ,
EMG = — E W/ € — N kg 1 W;('ek, Wj/-_ej, — N kE 1 Wk'ek,

,11

7ZW e e f—ZZW e,eka

ij=1 i,j=1 k=1

1]1

3 1tis interesting to observe that for n = N we have

A(”) = fZW eleW — X:X:W’elekwy<

ij=1 i=1

1

+ = Z W;aek,e;[.wh_ =0.

N k,h=1

k=1

Zzwkeke W;

i=1 k=1

Hence, using all observations would yield an estimator that collapses to zero.
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which implies (12). To prove (14), note that

1 N T
Thie = - DD WWir ot Tz 1g=n),
ij=1t,s=1

having mean
N T
n n
/ _ (N)
Nz E E w,‘tszlJ,-.wtsrj. = NEMG,
i,j=1t,s=1

and variance
2

1\ , vy 2 n ny2 n
52 2 wewaww (e ) 1 (1-5) = 0(55)-

ij=1ts=1

It follows that, for large N, 2,\(/',1(); ~ % EA(,’,VG). Results (11)and (13) can
be proved using a similar line of reasoning as above, by noting that

L~ VR PURLAY

e =e +X; (ﬂ - ﬂp) =6 - X AR (22)
=1

where Z, = X, Qy' < K < oo, and substituting it in the

. ~ ()
expression for ¥ Y m

References

Arellano, M., 1987. Practitioners’ corner: Computing robust standard errors for
within-groups estimators. Oxford Bull. Econ. Stat. 49, 431-434.

Bai, J., 2009. Panel data modes with interactive fixed effects. Econometrica 77,
1229-1279.

Bester, C.A., Conley, T.G., Hansen, C.B., 2011. Inference with dependent data using
cluster covariance estimators. . Econometrics 165, 137-151.

Cameron, A.C., Gelbach, J.B., Miller, D.L.,, 2011. Robust inference with multiway
clustering. J. Bus. Econom. Statist..

Cameron, A.C., Miller, D.L., 2011. Robust inference with clustered data. In: Ullah, A.,
Giles, D.E. (Eds.), Handbook of Empirical Economics and Finance. CRC Press,
pp. 1-28.

Conley, T.G., 1999. GMM estimation with cross sectional dependence. J. Economet-
rics 92, 1-45.

Driscoll, J.C., Kraay, A.C., 1998. Consistent covariance matrix estimation with
spatially dependent panel data. Rev. Econ. Stat. 80, 549-560.

Hansen, C.B., 2007. Asymptotic properties of a robust variance matrix estimator for
panel data when t is large. . Econometrics 141, 597-620.

Ibragimov, R., Miiller, UK., 2009. t-statistic based correlation and heterogeneity
robust inference. ]. Bus. Econom. Statist..

Kelejian, H.H., Prucha, I, 1999. A generalized moments estimator for the
autoregressive parameter in a spatial model. Internat. Econom. Rev. 40,

509-533.
Kelejian, H.H., Prucha, LR, 2007. HAC estimation in a spatial framework.

J. Econometrics 140, 131-154.

MacKinnon, J.G., Webb, M.D., 2014. Wild Bootstrap Inference for Wildly Different
Cluster Sizes. Queen’s Economics Department Working Paper 1314.

Moscone, F., Tosetti, E., 2012. Hac estimation in spatial panels. Econom. Lett. 117,
60-65.

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica 55, 703-708.

Pesaran, M.H., 2006. Estimation and inference in large heterogenous panels with
multifactor error structure. Econometrica 74, 967-1012.

Pesaran, M.H., Smith, R., 1995. Estimation of long-run relationships from dynamic
heterogeneous panels. ]. Econometrics 68, 79-113.

Pesaran, M.H., Tosetti, E., 2011. Large panels with common factors and spatial
correlation. J. Econometrics 161, 182-202. CESifo Working Paper Series No.

2103.

Pinkse, J., Slade, M., Brett, C., 2002. Spatial price competition: a semiparametric
approach. Econometrica 70, 1111-1153.

Robinson, P.M., 2007. Nonparametric spectrum estimation for spatial data. . Statist.
Plann. Inference 137, 1024-1034.

White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity. Econometrica 48, 817-838.


http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref1
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref2
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref3
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref4
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref5
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref6
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref7
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref8
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref9
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref10
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref11
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref13
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref14
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref15
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref16
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref17
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref18
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref19
http://refhub.elsevier.com/S0165-1765(15)00215-3/sbref20

	Robust estimation under error cross section dependence
	Introduction
	The econometric framework
	Robust estimation
	Monte Carlo experiments
	Results

	Appendix
	References


