Effects of annealing on device parameters  of organic field effect transistors using liquid crystalline tetrasubstituted zinc phthalocyanine
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ABSTRACT 
The device performance of organic thin film transistors (OTFTs) employing the solution processed films of   room temperature liquid crystalline tetrasubstituted zinc phthalocyanine derivative was found to depend upon the film morphology. Atomic force microscopic (AFM) and  X-Ray Diffraction  (XRD) studies show that the annealing at 
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 produced a preferentially unidirectional void-free film with improved surface smoothness. The OTFTs with the annealed films exhibited enhanced conductivity, threefold reduction in threshold voltage, increased on-off ratio by nearly one order of magnitude and reduced hysteresis in the transfer characteristics upto 33%.
Introduction
Organic thin film transistors (OTFT) are becoming a sustainable piece of technology due to its low cost, room temperature, large area deposition on a variety of solid and flexible substrates with potential applications in display technology [1,2], large-volume microelectronics [3,4] and biological sensors [5]. Small molecules  have been increasingly e as active semiconducting layers in the fabrication of OTFTs and values of mobility comparable to those obtained with the silicon technology, on-off ratio in the order of 107 and threshold voltage as low as 1V have been achieved for active layers using small molecule organic semiconductor such as  pentacene [6], phthalocyanine [7], porphyrazine [8], rubrene [9] and thiophenes [10] derivatives.  The device parameters such as carrier mobility, threshold voltage, subthreshold swing and on–off ratio  are  significantly dependent upon  the film microstructure. Ordered molecular packing within well-connected  domains in a polycrystalline film promotes the easy charge flow through  the channel between the drain and the source of an  OTFT [11].  The presence of high density of voids  at the grain boundaries may affect the long term stability of the device performance through the degradation of the active layer due to undesirable absorption of  water and oxygen from an open environment.  As a result the device will have large leakage current, high threshold voltage, reduced mobility and low on/off current ratio [12].

 Large grain sizes hinder the diffusion of water and oxygen into the active channel and the mobility of the highly ordered crystal growth on the OTFT active layer surface increases as the grain boundary ratio decreases at the layer (Kumaki et al., 1999).  

2,9(10),16(17),23(24)-(13,17-dioxanonacosane-15-oxy)phthalocyaninato zinc(II) compound (ZnPcR4) in Figure 1(a) is liquid crystalline at a relatively low temperature of 11.5 °C. The synthesis and characterization of this compound were reported in a previous publication [13]. The thermal treatment of films of phthalocyanine, exhibiting mesogenic properties, at temperatures higher than the temperature of phase transition to liquid crystalline phase for several hours leads to the formation of films with ordered structure and therefore this compound is already mesogenic at room temperature.
Experimental 
The surface morphology of spin-coated ZnPcR4 films was investigated at room temperature by using a Nanoscope IIIa atomic force microscope (AFM). X-Ray diffraction measurements were performed using automatic diffractometer DRON-3M (R=192 mm, CuKα-irradiation, Ni-filter, scintillation detector with amplitude discrimination.
150nm thick spun films of peripherally tetrasubstituted zinc phthalocyanine was employed as the active p-type semiconductor layer in the fabrication of the bottom-gate-bottom-contact organic thin film transistor on a heavily doped N-type silicon (100) wafer with 0.005Ω cm resistivity substrate. The gate dielectric was a 250nm thick silicon oxide (SiO2) layer and the source and drain electrodes consisted of 50nm thick gold films with a 10nm titanium underlayer. The device fabrication and measurement details were given in our previous publications [14].The channel length 
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are 10µm and 1mm, respectively. The gate capacitance Ci was estimated to be 10nFcm−2.  The ZnPcR4 films used in this experiment were heated to  in a tubular furnace under vacuum of ~ 2.10-7torr and then gradually cooled down to room temperature at the rate of 100C min-1.

Results and discussion
ZnPcR4 molecules were inhomogeneously distributed at the surface of the as-deposited films as observed from AFM images in Figure 1(b). A large number of voids were seen to be present in the films before thermal treatment. In contrast, an improved organization of domains in the annealed ZnPcR4 layer was evident from AFM images in Figure 1(c), indicating that heat treatment modified the films surface topology and as a result, the surface roughness decreased from 10.9 nm for the as-deposited films to 5.5 nm for the annealed films. The X-ray diffraction data obtained for the films before and after thermal treatment are presented in Figure 2. The as-deposited film of ZnPcR4 was predominantly amorphous while the film after thermal treatment reveals the reflection at 2θ=2.75o related to the spacing of 3.2nm. The position of this peak agrees well with that of the peak corresponding to a (100) lattice spacing in the X-ray pattern of ZnPcR4 powder which suggests a two-dimensional hexagonal lattice with disk-like molecules stacked in columns in the hexagonal arrangement [13]. The presence of a single peak in the film X-ray pattern indicates the formation of the preferentially oriented film. Therefore the main tendency to form more ordered films is observed after thermal treatment. 
Figure 3 presents a set of reproducible p-type output characteristics of the OTFT using both as-deposited and annealed ZnPcR4 films in terms of the drain current 
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as a function of the drain voltage 
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. A systematic increase in 
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was observed for the annealed ZnPcR4 films over the as-deposited films for the whole range of 
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 is defined as the ratio of the difference in current 
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 caused by annealing relative to the drain current 
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for the as deposited device. When the transistor is biased at 
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is estimated to have increased   from 
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 with the rise in the gate voltage  
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.  As seen earlier in the XRD pattern, the molecular stacking and orientation in the annealed ZnPcR4 films is believed to have improved the charge transport across the column, leading to greater the drain current. Similar rise in conductivity of sublimed zinc phthalocyanine films in a sandwich structure between two gold electrodes was observed due to the rearrangement of molecular stacks when annealed at 613 K [15]. 
The transfer characteristics of both devices are presented in Figure 4 and Figure 5 for the linear and saturation regimes corresponding to the drain voltage 
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, respectively. Figure 4 shows a varied degree of the hysteresis depending upon the post-deposition heat treatment of the active ZnPcR4 films for different scan range of negative VG. Values of 36.3nW and 31.1nW were obtained by the numerical integration for the area of the hysteresis loops for the as deposited and the annealed devices, respectively, representing a reduction in energy consumption of the annealed device by nearly14%. The transfer characteristics obtained for
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for the annealed devices. The drain current is found to be higher in the off-to-on than the on-to-off sweep. During off-to-on sweep, empty traps in the annealed ZnPcR4 film near the SiO2 interface became filled by a portion of holes induced by the negative gate voltage VG. These holes remained largely trapped during the on to off sweep because the rate of release of trapped holes is slower than that of the sweep of VG [16]. The trapping of minority electrons may also be involved in the hysteresis for the as-deposited device. Long life electron traps are empty in the on state corresponding to the negative VG. These traps became quickly filled at the start of off state at positive VG. The presence of electron traps in the as-deposited ZnPcR4 film is plausible because of oxygen adsorption through the voids in the relatively unsmooth surface. Similar trapping and detrapping of minority and majority carriers are also responsible for the hysteresis in the transfer characteristics at 
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. A relatively small reduction in the order of 5% was found in the loop area from 30.2nW for the as deposited loop to 28.7nW for the annealed film. Comparable hysteresis behaviour was observed for a 50nm thick pentacene layer in an OTFT structure similar to one used in the present investigation [17]. 
The charge carriers induced by the gate voltage in the channel became captured by the traps, the existence of which are inherent with the polycrystalline morphology of the ZnPcR4 film as observed in the AFM pictures. The mobility of the carriers is therefore dependent upon the gate voltage VG in a power law form [18]. Secondly the active phthalocyanine layer is found to have formed Schottky type contacts with both source and drain electrodes. Therefore, the carrier movement in the bottom contact OTFT contact is mainly influenced by the contact resistances 
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 at  the source and the drain contacts, respectively.   The drain current 
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  is written in terms of the field independent mobility 
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and threshold voltage 
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for saturation region

The exponent 
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is associated with the characteristic temperature 
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 for the width of the Gaussian or slope of the exponential distribution of traps. For
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, Equations (1) and (2) indicate that the characteristics become similar to ones used for the transistors with a single crystal material as an active layer. 
The method of differentiation was employed to solve Equation (2) in order to determine the transistors parameters.19 Values of 
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 for 
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were obtained for as prepared and annealed sample from the transfer characteristic in Figure 5. The films are believed to contain traps with characteristic Meyer-Neldel energies 
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 of 29.38meV and 26.28meV for the exponential tail states in the as-deposited and annealed films, respectively.  
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for the annealed film indicates that  the ratio of trapped-to-free carriers is small as for a nearly perfect crystalline film. The annealed transistor is found to have switched on at a lower voltage 
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for the as-deposited device. The On/off current ratio for the as-deposited film was estimated to be 2.5(103. This is smaller than the value of 1.5(104 for the annealed film by the one order of magnitude. All results of calculations are summarized in Table1. Figure 6 shows that the dependence of the saturation mobility
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 is more pronounced for the as-deposited than annealed ZnPcR4 film. The saturation mobility
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 of as-deposited film is found to increase from 
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 which is smaller one order of magnitude. The values are smaller than those for the annealed film 
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over the gate voltage
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Similar analysis of transfer characteristics in Figure 4 was performed in terms of Equation (1). As shown in Figure 7, there is a sharp decrease in 
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are consistently higher for the as-deposited than annealed film. Both OFETs showed good sub-threshold slopes. Values of the sub-threshold voltage swing 
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,  which is defined as the gate voltage  required to increase the drain current  by a factor of 10, were found to be 
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 from the transfer characteristics for annealed and as-deposited devices.  Values of 
[image: image66.wmf]2

12

cm

10

 

3.9

-

´

 and 
[image: image67.wmf]2

12

cm

10

 

 

3.6

-

´

 were obtained for the density 
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of traps at the interface of the ZnPc4 layer, as-deposited and annealed, respectively with the gate SiO2 dielectric. 
The dependence of   
[image: image69.wmf]D

I

 on the density 
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of traps at the grain boundaries of the layer is generally described by the Levinson model in the form:


[image: image71.wmf](

)

(

)

(

)

)

6

(

V

kTC

ε

8

ε

t

N

q

exp

V

C

L

W

V

μ

I

G

i

pc

0

2

g

3

G

i

D

GB0

D

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

-

=

D

S

D

S

D

SD

I

R

I

R

I

R


where 
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 is the trap free mobility. Figure 8 shows the Levinson plots of 
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 for the devices using both without and after heat treatment of ZnPc4 films. Values of 
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were obtained from the slopes   of   the best linear fits for the transistors with as-deposited and annealed films, respectively,  indicating  nearly one and half time reduction in the grain boundary trap density  due to the heat  treatment of the active ZnPc4 layer. As shown in Figure 9, the grain barrier heights 
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is smaller for the annealed devices than the as-deposited devices. The soft grain boundaries marginally modify the p–p stacking and hence do not affect the charge carrier transport substantially, whereas sharp grain boundaries are characterized with abrupt collapse of the p-conduction network.

 Values of 
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for both types of the devices are found to undergo sharp decreases at low voltage
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and then the reduction tends to be steady. 
Concluding remarks
The active layers of peripherally substituted liquid crystalline zinc phthalocyanine molecules in bottom-gate transistor configurations were annealed at 700C and the device parameters were   examined in terms of the gate voltage dependent carrier mobility, showing significant improvement in the saturation mobility and reduction in the contact resistance due to annealing. The hysteresis loop area in the transfer characteristics and threshold voltage of the annealed devices were found to be lower than those obtained with the  as-deposited films in the transistors  by nearly 15% and 33%, respectively.   The improvement in mobility in annealed layers is consistent with the observation by AFM and XRD studies on the interchain aggregation and partial crystallization of layers. 
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Figure Captions

Figure1: 
(a) molecular structure of active semiconducting material: peripheral 2,9 (10), 16 (17), 23 (24)-(13,17-dioxanonacosane-15-oxy) phalocyaninato Zinc (II)  (ZnPcR4), AFM images of (b) deposited and (c) annealed ZnPcR4 films.
Figure 2: 
XRD patterns of ZnPcR4 films (a) as-deposited and (b) annealed. 

Figure 3. 
Output characteristics for an OTFT  with the ZnPcR4 films in terms of the variation of the drain current 
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as a function of the drain voltage 
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Figure 4: 
Transfer characteristics in the linear region at  VD = -5V for the OTFT  with (a) as deposited  and (b) annealed ZnPcR4 films. Off to on state for as-deposited (solid line) and on to off state (broken line).  
Figure 5: 
Transfer characteristics in the saturation  region at  VD = -40V for the OTFT  with (a) as deposited  and (b) annealed ZnPcR4 films. Off to on state for as-deposited (solid line) and on to off state (broken line).  
Figure 6: 
Dependence of (a) saturation mobility
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 and (b) contact resistance RS on the gate voltage VG for as-deposited (closed rectangle) and annealed (open rectangles) ZnPcR4 films.
Figure 7: 
Dependence of the contact resistance RSD on the gate voltage VG for as-deposited (open circles)  and annealed (open rectangles) ZnPcR4 films.
Figure 8:
Levinson plots as-deposited (open circle) and annealing (closed circle) ZnPcR4 films at VD =-5V 

Figure 9. 
Dependence of interfacial barrier 
[image: image88.wmf]B
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 (curve with open rectangles) on gate voltage VG  for as-deposited (solid lines) and (broken lines) annealed ZnPcR4 films.
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Figure1: (a) molecular structure of active semiconducting material: peripheral 2,9 (10) ,16 (17),23 (24)-(13,17-dioxanonacosane-15-oxy) phalocyaninato Zinc (II)  (ZnPcR4), AFM images of (b) deposited and (c) annealed ZnPcR4 films.
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Figure 2: XRD patterns of ZnPcR4 films (a) as-deposited and (b) annealed. 
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Figure 3. 
Output characteristics for an OTFT  with the ZnPcR4 films in terms of the variation of the drain current 
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Figure 4: 
Transfer characteristics in the linear region at  VD = -5V for the OTFT  with (a) as deposited  and (b) annealed ZnPcR4 films. Off to on state (solid line) and on to off state (broken line).  
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Figure 5: 
Transfer characteristics in the saturation region at  VD = -40V for the OTFT  with (a) as-deposited  and (b) annealed ZnPcR4 films. Off to on state (solid line) and on to off state (broken line).  
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Figure 6: 
Dependence of (a) saturation mobility
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 and (b) contact resistance RS on the gate voltage VG for as-deposited (closed rectangle) and annealed (open rectangles) ZnPcR4 films.
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Figure 7: Dependence of the contact resistance RSD on the gate voltage VG for  as-deposited (open circles)  and annealed (open rectangles) ZnPcR4 films.
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Figure 8 .Levinson plots as-deposited (open circle) and annealing (closed circle) ZnPcR4 films at VD =-5V 
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Figure 9. Dependence of interfacial barrier 
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 (curves with open circles) and the grain boundary mobility 
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 (curve with open rectangles) on gate voltage VG  for as-deposited (solid lines) and (broken lines) annealed ZnPcR4 films
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